1
|
Wu L, Yang L, Qian X, Hu W, Wang S, Yan J. Mannan-Decorated Lipid Calcium Phosphate Nanoparticle Vaccine Increased the Antitumor Immune Response by Modulating the Tumor Microenvironment. J Funct Biomater 2024; 15:229. [PMID: 39194667 DOI: 10.3390/jfb15080229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
With the rapid development of tumor immunotherapy, nanoparticle vaccines have attracted much attention as potential therapeutic strategies. A systematic review and analysis must be carried out to investigate the effect of mannose modification on the immune response to nanoparticles in regulating the tumor microenvironment, as well as to explore its potential clinical application in tumor therapy. Despite the potential advantages of nanoparticle vaccines in immunotherapy, achieving an effective immune response in the tumor microenvironment remains a challenge. Tumor immune escape and the overexpression of immunosuppressive factors limit its clinical application. Therefore, our review explored how to intervene in the immunosuppressive mechanism in the tumor microenvironment through the use of mannan-decorated lipid calcium phosphate nanoparticle vaccines to improve the efficacy of immunotherapy in patients with tumors and to provide new ideas and strategies for the field of tumor therapy.
Collapse
Affiliation(s)
- Liusheng Wu
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 19077, Singapore
| | - Lei Yang
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xinye Qian
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Wang Hu
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Shuang Wang
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jun Yan
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Wang W, Zhan Y, Gao D, Lu F, Peng L, Chen Y, Han J, Xue Z. Unveiling the hidden effects of hypoxia: Pituitary damage and hormonal imbalance in fat greenling (Hexagrammos otakii). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172381. [PMID: 38604374 DOI: 10.1016/j.scitotenv.2024.172381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/12/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND In fisheries, hypoxia stress is one of the most common environmental stresses that often lead to the death of large numbers of fish and cause significant economic losses. The pituitary, an important endocrine gland, lies below the hypothalamus region of the brain. It plays a crucial part in controlling vital physiological functions in fish, such as growth, reproduction, and responses to stress. However, the detailed mechanisms of how hypoxia affects these physiological processes via the pituitary remain largely unknown. METHODS Fat greenlings (Hexagrammous otakii) were exposed to different dissolved oxygen (DO = 7. 6 mg/L and DO = 2 mg/L) for 24 h. miRNA-mRNA association analysis of H. otakii pituitary after hypoxia stress. Detecting apoptosis in H. otakii pituitary using Tunel and qPCR. Subsequent detection of hormones in H. otakii liver, gonads and serum by ELISA. RESULTS In this study, hypoxia causes immune system disorders and inflammatory responses through the combined analysis of miRNAs and mRNAs. Subsequent verification indicated a significant accumulation of reactive oxygen species (ROS) subsequent to hypoxia treatment. The overproduction of ROS cause oxidative stress and apoptosis in the pituitary, ultimately causing pituitary damage and reduced growth hormone and luteinising hormone release. CONCLUSIONS According to the association study of miRNA-mRNA, apoptosis problems caused by hypoxia stress result in H. otakii pituitary damage. In the meantime, this work clarifies the possible impact of hypoxia-stress on the pituitary cells, as well as on the gonadal development and growth of H. otakii.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Applied Biology and Aquaculture of Fish in Northern Liaoning Province, Dalian Ocean University, Dalian 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Yu Zhan
- Key Laboratory of Applied Biology and Aquaculture of Fish in Northern Liaoning Province, Dalian Ocean University, Dalian 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Dongxu Gao
- Key Laboratory of Applied Biology and Aquaculture of Fish in Northern Liaoning Province, Dalian Ocean University, Dalian 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Fengzhi Lu
- Key Laboratory of Applied Biology and Aquaculture of Fish in Northern Liaoning Province, Dalian Ocean University, Dalian 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Lei Peng
- Key Laboratory of Applied Biology and Aquaculture of Fish in Northern Liaoning Province, Dalian Ocean University, Dalian 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Yan Chen
- Key Laboratory of Applied Biology and Aquaculture of Fish in Northern Liaoning Province, Dalian Ocean University, Dalian 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Jian Han
- Key Laboratory of Applied Biology and Aquaculture of Fish in Northern Liaoning Province, Dalian Ocean University, Dalian 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China.
| | - Zhuang Xue
- Key Laboratory of Applied Biology and Aquaculture of Fish in Northern Liaoning Province, Dalian Ocean University, Dalian 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
3
|
Costanzo G, Ledda AG, Ghisu A, Vacca M, Firinu D, Del Giacco S. Eosinophilic Granulomatosis with Polyangiitis Relapse after COVID-19 Vaccination: A Case Report. Vaccines (Basel) 2021; 10:vaccines10010013. [PMID: 35062675 PMCID: PMC8779858 DOI: 10.3390/vaccines10010013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 01/14/2023] Open
Abstract
Background: We here describe the case of a 71-year-old Caucasian woman previously diagnosed with Eosinophilic Granulomatosis with Polyangiitis (EGPA) that had been treated with Mepolizumab, an anti-IL5 monoclonal antibody, since 2019 with a good clinical response. Methods: She had a mild COVID-19 in December 2020 and she tested negative for SARS-CoV-2 infection in only late January 2021. In April 2021 she received the first dose of mRNA BNT162b2 vaccine. Ten days later she developed myalgia, dyspnea and numbness of the limbs due to a relapse of EGPA that occurred during Mepolizumab treatment.
Collapse
Affiliation(s)
- Giulia Costanzo
- Correspondence: ; Tel.: +39-070-51096119; Fax: +39-070-51096227
| | | | | | | | | | | |
Collapse
|
4
|
Eosinophilic Granulomatosis with Polyangiitis Relapse after COVID-19 Vaccination: A Case Report. Vaccines (Basel) 2021. [PMID: 35062675 DOI: 10.3390/vaccines10010013.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND We here describe the case of a 71-year-old Caucasian woman previously diagnosed with Eosinophilic Granulomatosis with Polyangiitis (EGPA) that had been treated with Mepolizumab, an anti-IL5 monoclonal antibody, since 2019 with a good clinical response. METHODS She had a mild COVID-19 in December 2020 and she tested negative for SARS-CoV-2 infection in only late January 2021. In April 2021 she received the first dose of mRNA BNT162b2 vaccine. Ten days later she developed myalgia, dyspnea and numbness of the limbs due to a relapse of EGPA that occurred during Mepolizumab treatment.
Collapse
|