1
|
Ziółkowska EA, Jablonka-Shariff A, Williams LL, Jansen MJ, Wang SH, Eultgen EM, Wood MD, Hunter DA, Sharma J, Sardiello M, Bradley RP, Whiteman IT, Reese R, Pestronk A, Sands MS, Heuckeroth RO, Snyder-Warwick AK, Cooper JD. Identifying and treating CLN3 disease outside the central nervous system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635518. [PMID: 39975385 PMCID: PMC11838464 DOI: 10.1101/2025.01.29.635518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
CLN3 disease causes profound neurological deficits in affected children, but less well recognized are a variety of peripheral neuromuscular and gastrointestinal problems. We hypothesized that in addition to central nervous system (CNS) degeneration, CLN3 deficiency may also directly affect neuronal and/or glial cell populations in the rest of the body. Therefore, we examined the neuromuscular and enteric nervous system in Cln3 Δex7/8 mice. There was no overt sciatic nerve axon loss or demyelination in Cln3 Δex7/8 mice, but significant loss of terminal Schwann cells (tSCs) at lower limb neuromuscular junctions (NMJ), and progressive NMJ denervation. This was accompanied by pronounced myofiber atrophy, with fewer and displaced myofibril nuclei, with similar pathology seen in a human CLN3 muscle biopsy. Atrophy was also evident in bowel smooth muscle with Cln3 Δex7/8 mice displaying slow bowel transit, and significant loss of both enteric neurons and glial cells throughout the bowel. Similar enteric pathology was evident at autopsy in the small intestine and colon of a human CLN3 case. Neonatal administration of intravenous gene therapy to Cln3 Δex7/8 mice using an AAV9-hCLN3 vector completely prevented tSCs and NMJ pathology, atrophy of both skeletal and smooth muscle, positively impacted bowel transit and largely prevented the loss of enteric neurons and glia. These findings reveal an underappreciated, but profound, impact of CLN3 disease outside the CNS and suggest these novel aspects of disease may be treatable using gene therapy. Graphical abstract
Collapse
|
2
|
Morison LD, Whiteman IT, Vogel AP, Tilbrook L, Fahey MC, Braden R, Bredebusch J, Hildebrand MS, Scheffer IE, Morgan AT. Speech, Language and Non-verbal Communication in CLN2 and CLN3 Batten Disease. J Inherit Metab Dis 2025; 48:e12838. [PMID: 39821609 PMCID: PMC11739554 DOI: 10.1002/jimd.12838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 01/19/2025]
Abstract
CLN2 and CLN3 diseases, the most common types of Batten disease (also known as neuronal ceroid lipofuscinosis), are childhood dementias associated with progressive loss of speech, language and feeding skills. Here we delineate speech, language, non-verbal communication and feeding phenotypes in 33 individuals (19 females) with a median age of 9.5 years (range 3-28 years); 16 had CLN2 and 17 CLN3 disease; 8/15 (53%) participants with CLN2 and 8/17 (47%) participants with CLN3 disease had speech and language impairments prior to genetic diagnosis. At the time of study all participants, bar one, had language impairments. The remaining participant with typical language was tested at age 3 years, following pre-symptomatic enzyme replacement therapy (ERT) from age 9 months. CLN2 and CLN3 disease had different profiles. For CLN2 disease, all affected individuals showed language impairment with dysarthria; older individuals with classical disease progressively became non-verbal. For CLN3 disease, the presentation was more heterogeneous. Speech impairment was evident early in the disease course, with dysarthria (13/15, 87%), often manifesting as neurogenic stuttering (5/15, 33%). Participants with CLN2 disease had comparable expressive and receptive language skills (p > 0.99), yet participants with CLN3 disease had stronger expressive language than receptive language skills (p = 0.004). Speech, cognitive and language impairment and adaptive behaviour showed progressive decline in both diseases. Individuals with pre-symptomatic ERT or atypical CLN2 disease were less impaired. Challenging behaviours were common in CLN3 (11/17, 65%), but less frequent in CLN2 (4/16, 25%) disease. Individuals with Batten disease require tailored speech therapy incorporating communication partner training utilising environment adaptations and informal communication behaviours.
Collapse
Affiliation(s)
- Lottie D. Morison
- Speech and LanguageMurdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of Audiology and Speech PathologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Ineka T. Whiteman
- Batten Disease Support and Research Association AustraliaShelley BeachNew South WalesAustralia
- Batten Disease Support, Research and Advocacy AssociationColumbusOhioUSA
- Beyond Batten Disease FoundationAustinTexasUSA
| | - Adam P. Vogel
- Department of Audiology and Speech PathologyThe University of MelbourneParkvilleVictoriaAustralia
- Redenlab Pty LtdMelbourneVictoriaAustralia
| | - Lisa Tilbrook
- Batten Disease Support and Research Association AustraliaShelley BeachNew South WalesAustralia
- Thrive Health CarePort PirieSouth AustraliaAustralia
| | - Michael C. Fahey
- Batten Disease Support and Research Association AustraliaShelley BeachNew South WalesAustralia
- Department of PaediatricsMonash UniversityClaytonVictoriaAustralia
- Clinical SciencesMonash HealthClaytonVictoriaAustralia
| | - Ruth Braden
- Speech and LanguageMurdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of Audiology and Speech PathologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Joanna Bredebusch
- Department of Audiology and Speech PathologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Michael S. Hildebrand
- Epilepsy Research CentreThe University of MelbourneHeidelbergVictoriaAustralia
- Department of MedicineAustin HealthHeidelbergVictoriaAustralia
| | - Ingrid E. Scheffer
- Batten Disease Support and Research Association AustraliaShelley BeachNew South WalesAustralia
- Epilepsy Research CentreThe University of MelbourneHeidelbergVictoriaAustralia
- Department of MedicineAustin HealthHeidelbergVictoriaAustralia
- Department of PaediatricsRoyal Children's HospitalParkvilleVictoriaAustralia
- The Florey Institute of Neuroscience and Mental HealthMelbourneVictoriaAustralia
- Neuroscience Research GroupMurdoch Children's Research InstituteMelbourneVictoriaAustralia
| | - Angela T. Morgan
- Speech and LanguageMurdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of Audiology and Speech PathologyThe University of MelbourneParkvilleVictoriaAustralia
- Batten Disease Support and Research Association AustraliaShelley BeachNew South WalesAustralia
- Department of PaediatricsRoyal Children's HospitalParkvilleVictoriaAustralia
| |
Collapse
|
3
|
Cirnigliaro L, Pettinato F, Valle MS, Casabona A, Fiumara A, Vecchio M, Amico V, Rizzo R, Jaeken J, Barone R, Cioni M. Instrumented assessment of gait disturbance in PMM2-CDG adults: a feasibility analysis. Orphanet J Rare Dis 2024; 19:39. [PMID: 38308356 PMCID: PMC10837865 DOI: 10.1186/s13023-024-03027-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 01/11/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Congenital disorders of glycosylation (CDG) are genetic diseases caused by impaired synthesis of glycan moieties linked to glycoconjugates. Phosphomannomutase 2 deficiency (PMM2-CDG), the most frequent CDG, is characterized by prominent neurological involvement. Gait disturbance is a major cause of functional disability in patients with PMM2-CDG. However, no specific gait assessment for PMM2-CDG is available. This study analyses gait-related parameters in PMM2-CDG patients using a standardized clinical assessment and instrumented gait analysis (IGA). RESULTS Seven adult patients with a molecular diagnosis of PMM2-CDG were followed-up from February 2021 to December 2022 and compared to a group of healthy control (HC) subjects, matched for age and sex. Standardized assessment of disease severity including ataxia and peripheral neuropathy along with isometric muscle strength and echo-biometry measurements at lower limbs were performed. IGA spatiotemporal parameters were obtained by means of a wearable sensor in basal conditions. PMM2-CDG patients displayed lower gait speed, stride length, cadence and symmetry index, compared to HC. Significant correlations were found among the used clinical scales and between disease severity (NCRS) scores and the gait speed measured by IGA. Variable reduction of knee extension strength and a significant decrease of lower limb muscle thickness with conserved echo intensity were found in PMM2-CDG compared to HC. CONCLUSIONS The study elucidates different components of gait disturbance in PMM2-CDG patients and shows advantages of using wearable sensor-based IGA in this frame. IGA parameters may potentially serve as quantitative measures for follow-up or outcome quantification in PMM2-CDG.
Collapse
Affiliation(s)
- Lara Cirnigliaro
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania - Policlinico, Via Santa Sofia, 78, 95123, Catania, Italy
| | - Fabio Pettinato
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania - Policlinico, Via Santa Sofia, 78, 95123, Catania, Italy
| | - Maria Stella Valle
- Laboratory of Neuro-Biomechanics, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Antonino Casabona
- Laboratory of Neuro-Biomechanics, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Agata Fiumara
- Referral Centre for Inherited Metabolic Diseases, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Michele Vecchio
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123, Catania, Italy
- Rehabilitation Unit, AOU Policlinico-San Marco, 95123, Catania, Italy
| | - Valerio Amico
- Laboratory of Neuro-Biomechanics, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Renata Rizzo
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania - Policlinico, Via Santa Sofia, 78, 95123, Catania, Italy
| | - Jaak Jaeken
- Department of Development and Regeneration, Centre for Metabolic Diseases, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Rita Barone
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania - Policlinico, Via Santa Sofia, 78, 95123, Catania, Italy.
- Reseach Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy.
| | - Matteo Cioni
- Laboratory of Neuro-Biomechanics, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| |
Collapse
|
4
|
Zhang L, Li Z, Zhang L, Qin Y, Yu D. Dissecting the multifaced function of transcription factor EB (TFEB) in human diseases: From molecular mechanism to pharmacological modulation. Biochem Pharmacol 2023; 215:115698. [PMID: 37482200 DOI: 10.1016/j.bcp.2023.115698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
The transcription factor EB (TFEB) is a transcription factor of the MiT/TFE family that translocations from the cytoplasm to the nucleus in response to various stimuli, including lysosomal stress and nutrient starvation. By activating genes involved in lysosomal function, autophagy, and lipid metabolism, TFEB plays a crucial role in maintaining cellular homeostasis. Dysregulation of TFEB has been implicated in various diseases, including cancer, neurodegenerative diseases, metabolic diseases, cardiovascular diseases, infectious diseases, and inflammatory diseases. Therefore, modulating TFEB activity with agonists or inhibitors may have therapeutic potential. In this review, we reviewed the recently discovered regulatory mechanisms of TFEB and their impact on human diseases. Additionally, we also summarize the existing TFEB inhibitors and agonists (targeted and non-targeted) and discuss unresolved issues and future research directions in the field. In summary, this review sheds light on the crucial role of TFEB, which may pave the way for its translation from basic research to practical applications, bringing us closer to realizing the full potential of TFEB in various fields.
Collapse
Affiliation(s)
- Lijuan Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Yuan Qin
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China; Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China.
| | - Dongke Yu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
5
|
Swier VJ, White KA, Johnson TB, Wang X, Han J, Pearce DA, Singh R, Drack AV, Pfeifer W, Rogers CS, Brudvig JJ, Weimer JM. A novel porcine model of CLN3 Batten disease recapitulates clinical phenotypes. Dis Model Mech 2023; 16:dmm050038. [PMID: 37305926 PMCID: PMC10434985 DOI: 10.1242/dmm.050038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Mouse models of CLN3 Batten disease, a rare lysosomal storage disorder with no cure, have improved our understanding of CLN3 biology and therapeutics through their ease of use and a consistent display of cellular pathology. However, the translatability of murine models is limited by disparities in anatomy, body size, life span and inconsistent subtle behavior deficits that can be difficult to detect in CLN3 mutant mouse models, thereby limiting their use in preclinical studies. Here, we present a longitudinal characterization of a novel miniswine model of CLN3 disease that recapitulates the most common human pathogenic variant, an exon 7-8 deletion (CLN3Δex7/8). Progressive pathology and neuron loss is observed in various regions of the CLN3Δex7/8 miniswine brain and retina. Additionally, mutant miniswine present with retinal degeneration and motor abnormalities, similar to deficits seen in humans diagnosed with the disease. Taken together, the CLN3Δex7/8 miniswine model shows consistent and progressive Batten disease pathology, and behavioral impairment mirroring clinical presentation, demonstrating its value in studying the role of CLN3 and safety/efficacy of novel disease-modifying therapeutics.
Collapse
Affiliation(s)
- Vicki J. Swier
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Katherine A. White
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Tyler B. Johnson
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | | | - Jimin Han
- Department of Ophthalmology, Center for Visual Science, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - David A. Pearce
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Ruchira Singh
- Department of Ophthalmology, Center for Visual Science, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Arlene V. Drack
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA 52242, USA
- University of Iowa Institute for Vision Research, Iowa City, IA 52242, USA
| | - Wanda Pfeifer
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA 52242, USA
| | | | - Jon J. Brudvig
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA
| | - Jill M. Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA
| |
Collapse
|
6
|
Takahashi K, Eultgen EM, Wang SH, Rensing NR, Nelvagal HR, Dearborn JT, Danos O, Buss N, Sands MS, Wong M, Cooper JD. Gene therapy ameliorates spontaneous seizures associated with cortical neuron loss in a Cln2R207X mouse model. J Clin Invest 2023; 133:e165908. [PMID: 37104037 PMCID: PMC10266778 DOI: 10.1172/jci165908] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/25/2023] [Indexed: 04/28/2023] Open
Abstract
Although a disease-modifying therapy for classic late infantile neuronal ceroid lipofuscinosis (CLN2 disease) exists, poor understanding of cellular pathophysiology has hampered the development of more effective and persistent therapies. Here, we investigated the nature and progression of neurological and underlying neuropathological changes in Cln2R207X mice, which carry one of the most common pathogenic mutations in human patients but are yet to be fully characterized. Long-term electroencephalography recordings revealed progressive epileptiform abnormalities, including spontaneous seizures, providing a robust, quantifiable, and clinically relevant phenotype. These seizures were accompanied by the loss of multiple cortical neuron populations, including those stained for interneuron markers. Further histological analysis revealed early localized microglial activation months before neuron loss started in the thalamocortical system and spinal cord, which was accompanied by astrogliosis. This pathology was more pronounced and occurred in the cortex before the thalamus or spinal cord and differed markedly from the staging seen in mouse models of other forms of neuronal ceroid lipofuscinosis. Neonatal administration of adeno-associated virus serotype 9-mediated gene therapy ameliorated the seizure and gait phenotypes and prolonged the life span of Cln2R207X mice, attenuating most pathological changes. Our findings highlight the importance of clinically relevant outcome measures for judging preclinical efficacy of therapeutic interventions for CLN2 disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Joshua T. Dearborn
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | - Mark S. Sands
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Jonathan D. Cooper
- Department of Pediatrics
- Department of Neurology, and
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Balance impairment in cerebrotendinous xanthomatosis: Ankle strategy deficit. A case study. Clin Biomech (Bristol, Avon) 2023; 102:105896. [PMID: 36706624 DOI: 10.1016/j.clinbiomech.2023.105896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
BACKGROUND Cerebrotendinous xanthomatosis is a rare autosomal-recessive lipid storage disorder causing an elevation in cholestanol and cholesterol levels and their deposition in the central nervous system and tendons with consequent posture and gait disturbances. METHODS This report shows the case of a 36-year-old male affected by Cerebrotendinous xanthomatosis with static and dynamic instability. We aimed to provide an instrumented quantification of quiet upright standing using a piezoelectric force platform measuring the variations of center of pressure with the foot position 10 cm and 20 cm apart or extra-rotated with an opening angle of 30°, with eyes open or closed. The area of center of pressure and the length of its trajectory in the anterior-posterior and medial-lateral directions were computed. The temporal variability of center of pressure was evaluated by means of the Root Mean Square. FINDINGS In comparison with a control group, the area, the trajectory length of center of pressure in anterior-posterior and medial-lateral directions and the temporal variability increased in all static conditions. Intra-patient comparison showed that foot position 10 cm apart was the position that most influenced stability causing a marked worsening of area and trajectory length of center of pressure in both anterior-posterior and medial-lateral directions, particularly for the eyes closed condition. INTERPRETATION We found a large static instability due to internal neural and biomechanical constraints causing an insufficiency of ankle strategy. A physical therapy program based on instrumented proprioceptive exercises is to be implemented to teach the use of a hip strategy.
Collapse
|
8
|
Swier VJ, White KA, Johnson TB, Sieren JC, Johnson HJ, Knoernschild K, Wang X, Rohret FA, Rogers CS, Pearce DA, Brudvig JJ, Weimer JM. A Novel Porcine Model of CLN2 Batten Disease that Recapitulates Patient Phenotypes. Neurotherapeutics 2022; 19:1905-1919. [PMID: 36100791 PMCID: PMC9723024 DOI: 10.1007/s13311-022-01296-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2022] [Indexed: 12/13/2022] Open
Abstract
CLN2 Batten disease is a lysosomal disorder in which pathogenic variants in CLN2 lead to reduced activity in the enzyme tripeptidyl peptidase 1. The disease typically manifests around 2 to 4 years of age with developmental delay, ataxia, seizures, inability to speak and walk, and fatality between 6 and 12 years of age. Multiple Cln2 mouse models exist to better understand the etiology of the disease; however, these models are unable to adequately recapitulate the disease due to differences in anatomy and physiology, limiting their utility for therapeutic testing. Here, we describe a new CLN2R208X/R208X porcine model of CLN2 disease. We present comprehensive characterization showing behavioral, pathological, and visual phenotypes that recapitulate those seen in CLN2 patients. CLN2R208X/R208X miniswine present with gait abnormalities at 6 months of age, ERG waveform declines at 6-9 months, vision loss at 11 months, cognitive declines at 12 months, seizures by 15 months, and early death at 18 months due to failure to thrive. CLN2R208X/R208X miniswine also showed classic storage material accumulation and glial activation in the brain at 6 months, and cortical atrophy at 12 months. Thus, the CLN2R208X/R208X miniswine model is a valuable resource for biomarker discovery and therapeutic development in CLN2 disease.
Collapse
Affiliation(s)
- Vicki J Swier
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Katherine A White
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Tyler B Johnson
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Jessica C Sieren
- Department of Radiology, University of Iowa, Iowa City, IA, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Hans J Johnson
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, USA
| | - Kevin Knoernschild
- Department of Radiology, University of Iowa, Iowa City, IA, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | | | | | | | - David A Pearce
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Jon J Brudvig
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Jill M Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA.
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.
| |
Collapse
|
9
|
Simonati A, Williams RE. Neuronal Ceroid Lipofuscinosis: The Multifaceted Approach to the Clinical Issues, an Overview. Front Neurol 2022; 13:811686. [PMID: 35359645 PMCID: PMC8961688 DOI: 10.3389/fneur.2022.811686] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/11/2022] [Indexed: 01/04/2023] Open
Abstract
The main aim of this review is to summarize the current state-of-art in the field of childhood Neuronal Ceroid Lipofuscinosis (NCL), a group of rare neurodegenerative disorders. These are genetic diseases associated with the formation of toxic endo-lysosomal storage. Following a brief historical review of the evolution of NCL definition, a clinically-oriented approach is used describing how the early symptoms and signs affecting motor, visual, cognitive domains, and including seizures, may lead clinicians to a rapid molecular diagnosis, avoiding the long diagnostic odyssey commonly observed. We go on to focus on recent advances in NCL research and summarize contributions to knowledge of the pathogenic mechanisms underlying NCL. We describe the large variety of experimental models which have aided this research, as well as the most recent technological developments which have shed light on the main mechanisms involved in the cellular pathology, such as apoptosis and autophagy. The search for innovative therapies is described. Translation of experimental data into therapeutic approaches is being established for several of the NCLs, and one drug is now commercially available. Lastly, we show the importance of palliative care and symptomatic treatments which are still the main therapeutic interventions.
Collapse
Affiliation(s)
- Alessandro Simonati
- Departments of Surgery, Dentistry, Paediatrics, and Gynaecology, School of Medicine, University of Verona, Verona, Italy
- Department of Clinical Neuroscience, AOUI-VR, Verona, Italy
- *Correspondence: Alessandro Simonati
| | - Ruth E. Williams
- Department of Children's Neuroscience, Evelina London Children's Hospital, London, United Kingdom
- Ruth E. Williams
| |
Collapse
|
10
|
Abreu NJ, de Los Reyes EC. Editorial commentary on "Gait phenotype in Batten disease: A marker of disease progression". Eur J Paediatr Neurol 2021; 35:A2. [PMID: 34844861 DOI: 10.1016/j.ejpn.2021.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Batten disease, also known as neuronal ceroid lipofuscinosis, refers to a diverse group of 13 hereditary inborn errors of metabolism resulting in the abnormal accumulation of autofluorescent storage material in lysosomes leading to neurodegeneration, typically with associated intractable epilepsy, behavioral dysregulation, cognitive, motor, language and visual decline, as well as a shortened life expectancy [1]. Assessment of disease progression within this population is fraught with difficulty because individuals may have limited attention or cooperation affecting compliance with requested tasks, or have visual impairment reducing options for methods of assessment. Further, language and cognitive assessments have been designed to assess typically developing individuals based on specific age limits, which then fail to capture low developmental functioning once the mental age of the individual drops below the basal age of the assessment tool. Yet, metrics to measure disease progression are essential to inform therapeutic decision-making, prognostication, and clinical trial outcomes.
Collapse
Affiliation(s)
- Nicolas J Abreu
- Department of Neurology, New York University Grossman School of Medicine, New York, New York
| | - Emily C de Los Reyes
- Departments of Pediatrics and Neurology, The Ohio State University College of Medicine, and the Division of Child Neurology, Nationwide Children's Hospital, Columbus, Ohio.
| |
Collapse
|