1
|
Rinaldi F, Forte J, Pontecorvi G, Hanieh PN, Carè A, Bellenghi M, Tirelli V, Ammendolia MG, Mattia G, Marianecci C, Puglisi R, Carafa M. pH-responsive oleic acid based nanocarriers: Melanoma treatment strategies. Int J Pharm 2021; 613:121391. [PMID: 34923052 DOI: 10.1016/j.ijpharm.2021.121391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/02/2021] [Accepted: 12/13/2021] [Indexed: 12/18/2022]
Abstract
Numerous clinical observations indicate that, despite novel therapeutic approaches, a high percentage of melanoma patients is non-responder or suffers of severe drug-related toxicity. To overcome these problems, we considered the option of designing, preparing and characterizing nanoemulsions and niosomes containing oleic acid, a pH-sensitive monounsaturated fatty acid holding per se an antimetastatic and anti-inflammatory role in melanoma. These new nanostructures will allow in vivo administration of oleic acid, otherwise toxic in its free form. For pulmonary route chitosan, a mucoadhesive agent, was enclosed in these nanocarriers to improve residence time at the lung site. A deep physical and chemical characterization was carried out evaluating size, ζ -potential, microviscosity, polarity as well as stability over time and in culture media. Moreover, their pH-sensitivity was evaluated by fluorometric assay. Cytotoxicity and cellular uptake were assessed in cultured normal fibroblasts and human melanoma cell lines. Interestingly, results obtained confirm nanocarrier stability and pH-sensitivity, associated to absence of cell toxicity, efficient cellular uptake and retention. Therefore, these new pH-sensitive oleic acid-based nanostructures could represent, by combining drug delivery in a pH-dependent manner with the antimetastatic potential of this fatty acid, a powerful strategy for more specific medicine against metastatic melanoma.
Collapse
Affiliation(s)
- Federica Rinaldi
- Department of Drug Chemistry and Technology, Sapienza University of Rome, Rome, Italy.
| | - Jacopo Forte
- Department of Drug Chemistry and Technology, Sapienza University of Rome, Rome, Italy.
| | - Giada Pontecorvi
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Patrizia Nadia Hanieh
- Department of Drug Chemistry and Technology, Sapienza University of Rome, Rome, Italy.
| | - Alessandra Carè
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Maria Bellenghi
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | | | - Maria Grazia Ammendolia
- National Center of Innovative Technologies in Public Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Gianfranco Mattia
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Carlotta Marianecci
- Department of Drug Chemistry and Technology, Sapienza University of Rome, Rome, Italy.
| | - Rossella Puglisi
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Maria Carafa
- Department of Drug Chemistry and Technology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
2
|
Zhai L, Luo C, Gao H, Du S, Shi J, Wang F. A Dual pH-Responsive DOX-Encapsulated Liposome Combined with Glucose Administration Enhanced Therapeutic Efficacy of Chemotherapy for Cancer. Int J Nanomedicine 2021; 16:3185-3199. [PMID: 34007173 PMCID: PMC8121622 DOI: 10.2147/ijn.s303874] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/22/2021] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The acidic microenvironment of cancer can promote tumor metastasis and drug resistance. Acidic tumor microenvironment-targeted therapy is currently an important means for treating tumors, inhibiting metastasis, and overcoming drug resistance. In this study, a dual pH-responsive DOX-encapsulated liposome (DOPE-DVar7-lip@DOX) was designed and fabricated for targeting the acidic tumor microenvironment. On the one hand, the response of acid-sensitive peptide (DVar7) to the acidic tumor microenvironment increased the uptake of liposomes in tumors and prolonged the retention time; on the other hand, the response of acid-sensitive phospholipid (DOPE) to the acidic tumor microenvironment improved the controlled release of DOX in tumors. METHODS The acid-sensitive peptide DVar7 modified liposomes can be obtained by simple incubation of DSPE-DVar7 with DOX-loaded DOPE liposomes (DOPE-lip@DOX). The tumor targeting of the dual pH-responsive liposome was investigated in vitro and in vivo by near-infrared fluorescence imaging. The tumor therapeutic efficacy of DOPE-DVar7-lip@DOX was evaluated in breast cancer mouse model using the traditional liposome as a control. Moreover, we regulated the tumor microenvironment acidity by injecting glucose to further enhance the therapeutic efficacy of cancer. RESULTS DVar7 can allosterically insert into the tumor cell membrane in the acidic tumor microenvironment to enhance the tumor uptake of liposomes and prolong the retention time of liposomes in tumor. In addition, the therapeutic efficacy of pH-responsive liposomes can be further enhanced by glucose injection regulating the acidity of tumor microenvironment. DISCUSSION DVar7 modified acid-sensitive nanocarriers combined with acidity regulation have great potential to improve drug resistance in clinical practice, thus improving the response rate and therapeutic effect of chemotherapy.
Collapse
Affiliation(s)
- Luoping Zhai
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, People’s Republic of China
| | - Chuangwei Luo
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, People’s Republic of China
| | - Hannan Gao
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, People’s Republic of China
| | - Shuaifan Du
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, People’s Republic of China
| | - Jiyun Shi
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Academy of Sciences, Beijing, 100101, People’s Republic of China
| | - Fan Wang
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, People’s Republic of China
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Academy of Sciences, Beijing, 100101, People’s Republic of China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, People’s Republic of China
| |
Collapse
|
3
|
Zukancic D, Suys EJA, Pilkington EH, Algarni A, Al-Wassiti H, Truong NP. The Importance of Poly(ethylene glycol) and Lipid Structure in Targeted Gene Delivery to Lymph Nodes by Lipid Nanoparticles. Pharmaceutics 2020; 12:E1068. [PMID: 33182382 PMCID: PMC7695259 DOI: 10.3390/pharmaceutics12111068] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/22/2022] Open
Abstract
Targeted delivery of nucleic acids to lymph nodes is critical for the development of effective vaccines and immunotherapies. However, it remains challenging to achieve selective lymph node delivery. Current gene delivery systems target mainly to the liver and typically exhibit off-target transfection at various tissues. Here we report novel lipid nanoparticles (LNPs) that can deliver plasmid DNA (pDNA) to a draining lymph node, thereby significantly enhancing transfection at this target organ, and substantially reducing gene expression at the intramuscular injection site (muscle). In particular, we discovered that LNPs stabilized by 3% Tween 20, a surfactant with a branched poly(ethylene glycol) (PEG) chain linking to a short lipid tail, achieved highly specific transfection at the lymph node. This was in contrast to conventional LNPs stabilized with a linear PEG chain and two saturated lipid tails (PEG-DSPE) that predominately transfected at the injection site (muscle). Interestingly, replacing Tween 20 with Tween 80, which has a longer unsaturated lipid tail, led to a much lower transfection efficiency. Our work demonstrates the importance of PEGylation in selective organ targeting of nanoparticles, provides new insights into the structure-property relationship of LNPs, and offers a novel, simple, and practical PEGylation technology to prepare the next generation of safe and effective vaccines against viruses or tumours.
Collapse
Affiliation(s)
- Danijela Zukancic
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia; (D.Z.); (E.H.P.); (A.A.); (H.A.-W.)
| | - Estelle J. A. Suys
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia; (D.Z.); (E.H.P.); (A.A.); (H.A.-W.)
| | - Emily H. Pilkington
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia; (D.Z.); (E.H.P.); (A.A.); (H.A.-W.)
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Azizah Algarni
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia; (D.Z.); (E.H.P.); (A.A.); (H.A.-W.)
| | - Hareth Al-Wassiti
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia; (D.Z.); (E.H.P.); (A.A.); (H.A.-W.)
| | - Nghia P. Truong
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia; (D.Z.); (E.H.P.); (A.A.); (H.A.-W.)
| |
Collapse
|
4
|
Huang C, Chen F, Zhang L, Yang Y, Yang X, Pan W. 99mTc Radiolabeled HA/TPGS-Based Curcumin-Loaded Nanoparticle for Breast Cancer Synergistic Theranostics: Design, in vitro and in vivo Evaluation. Int J Nanomedicine 2020; 15:2987-2998. [PMID: 32431497 PMCID: PMC7200226 DOI: 10.2147/ijn.s242490] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Background Emerging cancer therapy requires highly sensitive diagnosis in combination with cancer-targeting therapy. In this study, a self-assembled pH-sensitive curcumin (Cur)-loaded nanoparticle of 99mTc radiolabeled hyaluronan-cholesteryl hemisuccinate conjugates (HA-CHEMS) and D-a-tocopheryl polyethylene glycol succinate (TPGS) was prepared for breast cancer synergistic theranostics. Materials and Methods The synthesized amphiphilic HA-CHEMS conjugates and TPGS self-assembled into Cur-loaded nanoparticles (HA-CHEMS-Cur-TPGS NPs) in an aqueous environment. The physicochemical properties of HA-CHEMS-Cur-TPGS NPs were characterized by transmission electron microscopy (TEM) and dynamic lighter scattering (DLS). The in vitro cytotoxicity of HA-CHEMS-Cur-TPGS NPs against breast cancer cells was evaluated by using the methyl thiazolyl tetrazolium (MTT) assay. Moreover, the in vivo animal experiments of HA-CHEMS-Cur-TPGS NPs including SPECT/CT imaging biodistribution and antitumor efficiency were investigated in 4T1 tumor-bearing BALB/c mice; furthermore, pharmacokinetics were investigated in healthy mice. Results HA-CHEMS-Cur-TPGS NPs exhibited high curcumin loading, uniform particle size distribution, and excellent stability in vitro. In the cytotoxicity assay, HA-CHEMS-Cur-TPGS NPs showed remarkably higher cytotoxicity to 4T1 cells with an IC50 value at 38 μg/mL, compared with free curcumin (77 μg/mL). Moreover, HA-CHEMS-Cur-TPGS NPs could be effectively and stably radiolabeled with 99mTc. The SPECT images showed that 99mTc-HA-CHEMS-Cur-TPGS NPs could target the 4T1 tumor up to 4.85±0.24%ID/g at 4 h post-injection in BALB/c mice. More importantly, the in vivo antitumor efficacy studies showed that HA-CHEMS-Cur-TPGS NPs greatly inhibited the tumor growth without resulting in obvious toxicities to major organs. Conclusion The results indicated that HA-CHEMS-Cur-TPGS NPs with stable 99mTc labeling and high curcumin-loading capacity hold great potential for breast cancer synergistic theranostics.
Collapse
Affiliation(s)
- Chong Huang
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.,School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Fen Chen
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, People's Republic of China.,Zhejiang Jingxin Pharmaceutical Co., Ltd, Xinchang 312500, People's Republic of China
| | - Ling Zhang
- Department of Biotherapy, Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Yue Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xinggang Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| |
Collapse
|
5
|
Bhardwaj P, Tripathi P, Gupta R, Pandey S. Niosomes: A review on niosomal research in the last decade. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101581] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
6
|
Rinaldi F, Del Favero E, Rondelli V, Pieretti S, Bogni A, Ponti J, Rossi F, Di Marzio L, Paolino D, Marianecci C, Carafa M. pH-sensitive niosomes: Effects on cytotoxicity and on inflammation and pain in murine models. J Enzyme Inhib Med Chem 2017; 32:538-546. [PMID: 28114822 PMCID: PMC6010110 DOI: 10.1080/14756366.2016.1268607] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
pH-sensitive nonionic surfactant vesicles (niosomes) by polysorbate-20 (Tween-20) or polysorbate-20 derivatized by glycine (added as pH sensitive agent), were developed to deliver Ibuprofen (IBU) and Lidocaine (LID). For the physical-chemical characterization of vesicles (mean size, size distribution, zeta potential, vesicle morphology, bilayer properties and stability) dynamic light scattering (DLS), small angle X-ray scattering and fluorescence studies were performed. Potential cytotoxicity was evaluated on immortalized human keratinocyte cells (HaCaT) and on immortalized mouse fibroblasts Balb/3T3. In vivo antinociceptive activity (formalin test) and anti-inflammatory activity tests (paw edema induced by zymosan) in murine models were performed on drug-loaded niosomes. pH-sensitive niosomes were stable in the presence of 0 and 10% fetal bovine serum, non-cytotoxic and able to modify IBU or LID pharmacological activity in vivo. The synthesis of stimuli responsive surfactant, as an alternative to add pH-sensitive molecules to niosomes, could represent a promising delivery strategy for anesthetic and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Federica Rinaldi
- a Fondazione Istituto Italiano di Tecnologia , Center for Life Nano Science@Sapienza , Rome , Italy
| | - Elena Del Favero
- b Department of Medical Biotechnologies and Traslational Medicine , University of Milan , Milan , Italy
| | - Valeria Rondelli
- b Department of Medical Biotechnologies and Traslational Medicine , University of Milan , Milan , Italy
| | - Stefano Pieretti
- c Department of Therapeutic Research and Medicine Evaluation , Istituto Superiore di Sanità , Rome , Italy
| | - Alessia Bogni
- d Consumers and Reference Materials, Consumer Products Safety Unit (F.2) , European Commission, Directorate General Joint Research Centre Directorate F - Health , ISPRA , Varese , Italy
| | - Jessica Ponti
- d Consumers and Reference Materials, Consumer Products Safety Unit (F.2) , European Commission, Directorate General Joint Research Centre Directorate F - Health , ISPRA , Varese , Italy
| | - François Rossi
- d Consumers and Reference Materials, Consumer Products Safety Unit (F.2) , European Commission, Directorate General Joint Research Centre Directorate F - Health , ISPRA , Varese , Italy
| | - Luisa Di Marzio
- e Department of Pharmacy , University "G. d'Annunzio" , Chieti , Italy
| | - Donatella Paolino
- f Interregional Research Center for Food Safety & Health (IRC-FSH), Campus Universitario "S. Venuta", University of Catanzaro "Magna Græcia" , Catanzaro , Italy.,g Department of Health Sciences , Campus Universitario "S. Venuta", University of Catanzaro "Magna Græcia" , Catanzaro , Italy
| | - Carlotta Marianecci
- h Department of Drug Chemistry and Technology , University of Rome "Sapienza" , Rome , Italy
| | - Maria Carafa
- h Department of Drug Chemistry and Technology , University of Rome "Sapienza" , Rome , Italy
| |
Collapse
|
7
|
Hu B, Yuan Y, Yan Y, Zhou X, Li Y, Kan Q, Li S. Preparation and evaluation of a novel anticancer drug delivery carrier for 5-Fluorouracil using synthetic bola-amphiphile based on lysine as polar heads. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:637-645. [PMID: 28415509 DOI: 10.1016/j.msec.2017.02.106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 01/05/2023]
Abstract
A novel bolaamphiphile surfactant N,N'-(dodecane-1, 12-diyl) bis (2,6-diaminohexanamide) (DADL) was designed and synthesized using l-lysine and 1,12-diaminododecane as the hydrophilic and hydrophobic part, respectively. After separation and purification, the structure of the synthetic bolaamphiphile surfactant was verified by FTIR, MS and 1H NMR. The synthetic bolaamphiphile was able to self-assemble to form vesicles. After formulation screening, vesicles loaded with 5-Fluorouracil (5-Fu) were prepared with Tween 60 and DADL by sonication and were examined by dynamic light scattering and transmission electron microscopy. Micro-FTIR was applied to investigate the conformation of the bola molecules within the vesicle membrane. The release profile of the vesicles showed a pH-sensitive and sustained release. No significant toxicity was observed in an in vitro cell viability assay. The antitumor efficacy of the 5-Fu-loaded vesicles on H22 tumor-bearing mice was remarkably high due to the EPR effects. These results show that our novel bolaamphiphile derived from lysine has excellent potential as a pH-sensitive drug carrier.
Collapse
Affiliation(s)
- Beibei Hu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yue Yuan
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Yun Yan
- College of Chemistry and Molecular Engineering, Peking University, 202 Chenfu Road, Beijing 100871, China
| | - Xiaoping Zhou
- School of Pharmacy, Jilin University, 1266 Fujin Road, Changchun 130021, China
| | - Yue Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Qiming Kan
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Sanming Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
8
|
Abstract
Lipid vesicular systems composed of hydrated amphihiles with or without bilayer inducing agents such as cholesterol. On the basis of used amphiphilic molecule different nomenclature are used as liposomes, ufasomes and niosomes. Nonionic surfactants with mono-, di- or trialkyl chains form niosomes which are lipid vesicles with more chemical stability in comparison with phospholipids of liposomes. Both hydrophobic and hydrophilic chemicals can be encapsulated in niosomes as a new drug delivery system. This drug carrier system could have administered via injection, oral, pulmonary, vaginal, rectal, ophthalmic, nasal or transdermal routes with penetration enhancing potential. This chapter presents a detailed explain about niosome forming components, methods of preparation and routes of administration. Many examples for drug delivery potential of niosomes are also available in this review. Vaccine adjuvant and genetic substances vector capabilities are not given here.
Collapse
|
9
|
Yamazaki N, Sugimoto T, Fukushima M, Teranishi R, Kotaka A, Shinde C, Kumei T, Sumida Y, Munekata Y, Maruyama KI, Yuba E, Harada A, Kono K. Dual-stimuli responsive liposomes using pH- and temperature-sensitive polymers for controlled transdermal delivery. Polym Chem 2017. [DOI: 10.1039/c6py01754a] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The use of skin environment-sensitive liposomes for transdermal penetration is beneficial for improving cosmetic efficacy.
Collapse
|
10
|
Pardakhty A. Non-Ionic Surfactant Vesicles (Niosomes) as New Drug Delivery Systems. ADVANCES IN MEDICAL TECHNOLOGIES AND CLINICAL PRACTICE 2017. [DOI: 10.4018/978-1-5225-0751-2.ch004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lipid vesicular systems composed of hydrated amphihiles with or without bilayer inducing agents such as cholesterol. On the basis of used amphiphilic molecule different nomenclature are used as liposomes, ufasomes and niosomes. Nonionic surfactants with mono-, di- or trialkyl chains form niosomes which are lipid vesicles with more chemical stability in comparison with phospholipids of liposomes. Both hydrophobic and hydrophilic chemicals can be encapsulated in niosomes as a new drug delivery system. This drug carrier system could have administered via injection, oral, pulmonary, vaginal, rectal, ophthalmic, nasal or transdermal routes with penetration enhancing potential. This chapter presents a detailed explain about niosome forming components, methods of preparation and routes of administration. Many examples for drug delivery potential of niosomes are also available in this review. Vaccine adjuvant and genetic substances vector capabilities are not given here.
Collapse
|
11
|
Niosomal approach to brain delivery: Development, characterization and in vitro toxicological studies. Int J Pharm 2016; 511:969-82. [PMID: 27498282 DOI: 10.1016/j.ijpharm.2016.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/30/2016] [Accepted: 08/02/2016] [Indexed: 01/15/2023]
Abstract
The majority of active agents do not readily permeate into brain due to the presence of the blood-brain barrier and blood-cerebrospinal fluid barrier. Currently, the most innovative and promising non-invasive strategy in brain delivery is the design and preparation of nanocarriers, which can move through the brain endothelium. Niosomes can perform brain delivery, in fact polysorbates, can act as an anchor for apolipoprotein E from blood plasma. The particles mimic LDL and interact with the LDL receptor leading to the endothelial cells uptake. The efficacy of niosomes for anticancer therapeutic applications was correlated to their physicochemical and drug delivery properties. Dimensions and ζ-potential were characterized using dynamic light scattering and asymmetric flow-field fractionation system. Lipid bilayer was characterized measuring the fluidity, polarity and microviscosity by fluorescent probe spectra evaluation. Morphology and homogeneity were characterized using atomic force microscopy. Physicochemical stability and serum stability (45% v/v fetal bovine and human serum) were evaluated as a function of time using dynamic light scattering. U87-MG human glioblastoma cells were used to evaluate vesicle cytotoxicity and internalisation efficiency. From the obtained data, the systems appear useful to perform a prolonged (modified) release of biological active substances to the central nervous system.
Collapse
|
12
|
Marianecci C, Petralito S, Rinaldi F, Hanieh PN, Carafa M. Some recent advances on liposomal and niosomal vesicular carriers. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2015.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Hu BB, Yuan Y, Zhou XP, Li SM. Synthesis and properties of a novel bolaamphiphile surfactant derived from proline. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2015.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Marianecci C, Di Marzio L, Del Favero E, Cantù L, Brocca P, Rondelli V, Rinaldi F, Dini L, Serra A, Decuzzi P, Celia C, Paolino D, Fresta M, Carafa M. Niosomes as Drug Nanovectors: Multiscale pH-Dependent Structural Response. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1241-9. [PMID: 26740247 DOI: 10.1021/acs.langmuir.5b04111] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The use of nanocarriers, which respond to different stimuli controlling their physicochemical properties and biological responsivness, shows a growing interest in pharmaceutical science. The stimuli are activated by targeting tissues and biological compartments, e.g., pH modification, temperature, redox condition, enzymatic activity, or can be physically applied, e.g., a magnetic field and ultrasound. pH modification represents the easiest method of passive targeting, which is actually used to accumulate nanocarriers in cells and tissues. The aim of this paper was to physicochemically characterize pH-sensitive niosomes using different experimental conditions and demonstrate the effect of surfactant composition on the supramolecular structure of niosomes. In this attempt, niosomes, made from commercial (Tween21) and synthetic surfactants (Tween20 derivatives), were physicochemically characterized by using different techniques, e.g., transmission electron microscopy, Raman spectroscopy, and small-angle X-ray scattering. The changes of niosome structure at different pHs depend on surfactants, which can affect the supramolecular structure of colloidal nanocarriers and their potential use both in vitro and in vivo. At pH 7.4, the shape and structure of niosomes have been maintained; however, niosomes show some differences in terms of bilayer thicknesses, water penetration, membrane coupling, and cholesterol dispersion. The acid pH (5.5) can increase the bilayer fluidity, and affect the cholesterol depletion. In fact, Tween21 niosomes form large vesicles with lower curvature radius at acid pH; while Tween20-derivative niosomes increase the intrachain mobility within a more interchain correlated membrane. These results demonstrate that the use of multiple physicochemical procedures provides more information about supramolecular structures of niosomes and improves the opportunity to deeply investigate the effect of stimuli responsiveness on the niosome structure.
Collapse
Affiliation(s)
- Carlotta Marianecci
- Department of Drug Chemistry and Technology, University of Rome "Sapienza" , 00185 Rome, Italy
| | - Luisa Di Marzio
- Department of Pharmacy, University of Chieti - Pescara "G d'Annunzio" , 66100 Chieti - Pescara, Italy
| | - Elena Del Favero
- Department of Medical Biotechnologies and Traslational Medicine, University of Milan , LITA, 20122 Milan, Italy
| | - Laura Cantù
- Department of Medical Biotechnologies and Traslational Medicine, University of Milan , LITA, 20122 Milan, Italy
| | - Paola Brocca
- Department of Medical Biotechnologies and Traslational Medicine, University of Milan , LITA, 20122 Milan, Italy
| | - Valeria Rondelli
- Department of Medical Biotechnologies and Traslational Medicine, University of Milan , LITA, 20122 Milan, Italy
| | - Federica Rinaldi
- Center for Life Nano Science@Sapienza, Fondazione Istituto Italiano di Tecnologia , 00197 Rome, Italy
| | - Luciana Dini
- Department of Biological and Environmental Sciences and Technologies, University of Salento , 73100 Lecce, Italy
| | - Antonio Serra
- Department of Physics Applied to Materials Science Laboratory (PAMS-Lab), University of Salento , 73100 Lecce, Italy
| | - Paolo Decuzzi
- Department of Translational Imaging, Houston Methodist Research Institute , Houston, Texas 77030, United States
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia , 16163 Genoa, Italy
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Græcia" , 88100 Catanzaro, Italy
| | - Christian Celia
- Department of Pharmacy, University of Chieti - Pescara "G d'Annunzio" , 66100 Chieti - Pescara, Italy
- Department of Nanomedicine, Houston Methodist Research Institute , Houston, Texas 77030, United States
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Græcia" , 88100 Catanzaro, Italy
- IRC FSH-Interregional Research Center for Food Safety & Health, University of Catanzaro "Magna Græcia" , 88100 Catanzaro, Italy
| | - Massimo Fresta
- IRC FSH-Interregional Research Center for Food Safety & Health, University of Catanzaro "Magna Græcia" , 88100 Catanzaro, Italy
- Department of Health Sciences, University of Catanzaro "Magna Græcia" , 88100 Catanzaro, Italy
| | - Maria Carafa
- Department of Drug Chemistry and Technology, University of Rome "Sapienza" , 00185 Rome, Italy
| |
Collapse
|
15
|
HPLC–FLD and spectrofluorometer apparatus: How to best detect fluorescent probe-loaded niosomes in biological samples. Colloids Surf B Biointerfaces 2015; 135:575-580. [DOI: 10.1016/j.colsurfb.2015.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/28/2015] [Accepted: 08/05/2015] [Indexed: 02/06/2023]
|
16
|
Tila D, Yazdani-Arazi SN, Ghanbarzadeh S, Arami S, Pourmoazzen Z. pH-sensitive, polymer modified, plasma stable niosomes: promising carriers for anti-cancer drugs. EXCLI JOURNAL 2015; 14:21-32. [PMID: 26417350 PMCID: PMC4553888 DOI: 10.17179/excli2013-609] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/07/2014] [Indexed: 12/14/2022]
Abstract
The aim of this study was the design and evaluation of a novel plasma stable, pH-sensitive niosomal formulation of Mitoxantrone by a modified ethanol injection method. Cholesterol hemisuccinate was added instead of cholesterol in order to produce pH-sensitivity property and using PEG-Poly (monomethyl itaconate)-CholC6 (PEG-PMMI-CholC6) copolymer introduced simultaneously pH-sensitivity and plasma stability properties in prepared niosomes. The pH-sensitivity and cytotoxicity of Mitoxantrone niosomes were evaluated in vitro in phosphate buffer with different pHs as well as using human ovarian cancer cell line (OVCAR-3), human breast cancer cell line (MCF-7) and human umbilical vein endothelial cells (HUVEC). Results showed that both cholesterol derivatives bearing formulations had pH-sensitive property and were found to release their contents under mild acidic conditions rapidly. In addition, the PEG-PMMI-CholC6-based niosomes could reserve the pH-sensitivity after incubation in plasma. Both Mitoxantrone-loaded pH-sensitive niosomes showed higher cytotoxicity than the conventional niosomes on OVCAR-3 and MCF-7 cell lines. However, both pH-sensitive niosomes exhibited lower cytotoxic effect on HUVEC cell line. Plasma stable, pH-sensitive niosomes could improve the cytotoxic effect and reduce the side effects of anti-tumor drugs.
Collapse
Affiliation(s)
- Dena Tila
- Tabriz University of Medical Sciences, Tabriz, Iran, Research Center for Pharmaceutical Nanotechnology
| | | | - Saeed Ghanbarzadeh
- Tabriz University of Medical Sciences, Tabriz, Iran, Research Center for Pharmaceutical Nanotechnology ; Tabriz University of Medical Sciences, Tabriz, Iran, Department of Pharmaceutics, Faculty of Pharmacy ; Tabriz University of Medical Sciences, Tabriz, Iran, Student Research Committee, Faculty of Pharmacy
| | - Sanam Arami
- Tabriz University of Medical Sciences, Tabriz, Iran, Research Center for Pharmaceutical Nanotechnology ; Tabriz University of Medical Sciences, Tabriz, Iran, Student Research Committee, Faculty of Pharmacy
| | - Zhaleh Pourmoazzen
- Chemistry Department, Science Faculty, Azarbaijan Shahid Madani University,Tabriz, Iran
| |
Collapse
|
17
|
Nag OK, Yadav VR, Croft B, Hedrick A, Awasthi V. Liposomes Modified with Superhydrophilic Polymer Linked to a Nonphospholipid Anchor Exhibit Reduced Complement Activation and Enhanced Circulation. J Pharm Sci 2015; 104:114-23. [DOI: 10.1002/jps.24254] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/07/2014] [Accepted: 10/13/2014] [Indexed: 01/23/2023]
|
18
|
Niosomes from 80s to present: the state of the art. Adv Colloid Interface Sci 2014; 205:187-206. [PMID: 24369107 DOI: 10.1016/j.cis.2013.11.018] [Citation(s) in RCA: 286] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/26/2013] [Indexed: 01/14/2023]
Abstract
Efficient and safe drug delivery has always been a challenge in medicine. The use of nanotechnology, such as the development of nanocarriers for drug delivery, has received great attention owing to the potential that nanocarriers can theoretically act as "magic bullets" and selectively target affected organs and cells while sparing normal tissues. During the last decades the formulation of surfactant vesicles, as a tool to improve drug delivery, brought an ever increasing interest among the scientists working in the area of drug delivery systems. Niosomes are self assembled vesicular nanocarriers obtained by hydration of synthetic surfactants and appropriate amounts of cholesterol or other amphiphilic molecules. Just like liposomes, niosomes can be unilamellar or multilamellar, are suitable as carriers of both hydrophilic and lipophilic drugs and are able to deliver drugs to the target site. Furthermore, niosomal vesicles, that are usually non-toxic, require less production costs and are stable over a longer period of time in different conditions, so overcoming some drawbacks of liposomes. The niosome properties are specifically dictated by size, shape, and surface chemistry which are able to modify the drug's intrinsic pharmacokinetics and eventual drug targeting to the areas of pathology. This up-to-date review deals with composition, preparation, characterization/evaluation, advantages, disadvantages and application of niosomes.
Collapse
|
19
|
How well does cholesteryl hemisuccinate mimic cholesterol in saturated phospholipid bilayers? J Mol Model 2014; 20:2121. [DOI: 10.1007/s00894-014-2121-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 12/18/2013] [Indexed: 12/22/2022]
|
20
|
Marianecci C, Rinaldi F, Di Marzio L, Mastriota M, Pieretti S, Celia C, Paolino D, Iannone M, Fresta M, Carafa M. Ammonium glycyrrhizinate-loaded niosomes as a potential nanotherapeutic system for anti-inflammatory activity in murine models. Int J Nanomedicine 2014; 9:635-51. [PMID: 24493924 PMCID: PMC3908944 DOI: 10.2147/ijn.s55066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Liquorice extracts demonstrate therapeutic efficacy in treating dermatitis, eczema, and psoriasis when compared with corticosteroids. In this work, nonionic surfactant vesicles (niosomes, NSVs) containing polysorbate 20 (Tween 20), cholesterol, and cholesteryl hemisuccinate at different molar concentrations were used to prepare monoammonium glycyrrhizinate (AG)-loaded NSVs. The anti-inflammatory properties of AG-loaded NSVs were investigated in murine models. METHODS The physicochemical properties of the NSVs were characterized using dynamic light scattering. The fluidity of the lipid bilayer was evaluated by measuring the fluorescence intensity of diphenylhexatriene. The drug entrapment efficiency of AG was assessed using high-performance liquid chromatography. The physicochemical stability of the NSVs was evaluated as a function of time using dynamic light scattering combined with Turbiscan Lab Expert analysis. Serum stability was determined by incubating the NSVs with 10% v/v fetal bovine serum. The cytotoxic effects of the NSVs were investigated in human dermal fibroblasts using the Trypan blue dye exclusion assay (for cell mortality) and an MTT assay (for cell viability). Release profiles for the AG-loaded NSVs were studied in vitro using cellulose membranes. NSVs showing the most desirable physicochemical properties were selected to test for in vivo anti-inflammatory activity in murine models. The anti-inflammatory activity of the NSVs was investigated by measuring edema and nociception in mice stimulated with chemical agents. RESULTS NSVs showed favorable physicochemical properties for in vitro and in vivo administration. In addition, they demonstrated long-term stability based on Turbiscan Lab Expert analysis. The membrane fluidity of the NSVs was not affected by self-assembling of the surfactants into colloidal structures. Fluorescence anisotropy was found to be independent of the molar ratios of cholesteryl hemisuccinate and/or cholesterol during preparation of the NSVs. The anti-inflammatory AG drug showed no effect on the stability of the NSVs. In vivo experiments demonstrated that AG-loaded NSVs decreased edema and nociceptive responses when compared with AG alone and empty NSVs. In vitro and in vivo results demonstrated that pH sensitive and neutral NSVs show no statistical significant difference. CONCLUSION NSVs were nontoxic and showed features favorable for potential administration in vivo. In addition, neutral NSVs showed signs of increased anti-inflammatory and antinociceptive responses when compared with AG.
Collapse
Affiliation(s)
- Carlotta Marianecci
- Department of Drug Chemistry and Technologies, University Sapienza of Rome, Rome, Italy
| | - Federica Rinaldi
- Department of Drug Chemistry and Technologies, University Sapienza of Rome, Rome, Italy
| | - Luisa Di Marzio
- Department of Pharmacy, University G d’Annunzio of Chieti of Pescara, Chieti, Italy
| | - Marica Mastriota
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Stefano Pieretti
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Christian Celia
- Department of Pharmacy, University G d’Annunzio of Chieti of Pescara, Chieti, Italy
- Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, TX, USA
| | - Donatella Paolino
- Department of Health Sciences, University Magna Graecia of Catanzaro, University Campus S Venuta, Building of BioSciences, Germaneto, Italy
| | - Michelangelo Iannone
- ARPA Calabria, Environmental Epidemiology Center, Italy
- CNR, Neuroscience Institute, Pharmacology Section, Complesso “Nini Barbieri”, Roccelletta di Borgia, Italy
| | - Massimo Fresta
- Department of Health Sciences, University Magna Graecia of Catanzaro, University Campus S Venuta, Building of BioSciences, Germaneto, Italy
| | - Maria Carafa
- Department of Drug Chemistry and Technologies, University Sapienza of Rome, Rome, Italy
| |
Collapse
|
21
|
Ghanbarzadeh S, Khorrami A, Pourmoazzen Z, Arami S. Plasma stable, pH-sensitive non-ionic surfactant vesicles simultaneously enhance antiproliferative effect and selectivity of Sirolimus. Pharm Dev Technol 2013; 20:279-87. [DOI: 10.3109/10837450.2013.860553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Nag OK, Awasthi V. Surface engineering of liposomes for stealth behavior. Pharmaceutics 2013; 5:542-69. [PMID: 24300562 PMCID: PMC3873679 DOI: 10.3390/pharmaceutics5040542] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/10/2013] [Accepted: 10/14/2013] [Indexed: 02/08/2023] Open
Abstract
Liposomes are used as a delivery vehicle for drug molecules and imaging agents. The major impetus in their biomedical applications comes from the ability to prolong their circulation half-life after administration. Conventional liposomes are easily recognized by the mononuclear phagocyte system and are rapidly cleared from the blood stream. Modification of the liposomal surface with hydrophilic polymers delays the elimination process by endowing them with stealth properties. In recent times, the development of various materials for surface engineering of liposomes and other nanomaterials has made remarkable progress. Poly(ethylene glycol)-linked phospholipids (PEG-PLs) are the best representatives of such materials. Although PEG-PLs have served the formulation scientists amazingly well, closer scrutiny has uncovered a few shortcomings, especially pertaining to immunogenicity and pharmaceutical characteristics (drug loading, targeting, etc.) of PEG. On the other hand, researchers have also begun questioning the biological behavior of the phospholipid portion in PEG-PLs. Consequently, stealth lipopolymers consisting of non-phospholipids and PEG-alternatives are being developed. These novel lipopolymers offer the potential advantages of structural versatility, reduced complement activation, greater stability, flexible handling and storage procedures and low cost. In this article, we review the materials available as alternatives to PEG and PEG-lipopolymers for effective surface modification of liposomes.
Collapse
Affiliation(s)
- Okhil K Nag
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 North Stonewall Avenue, Oklahoma City, OK 73117, USA.
| | | |
Collapse
|
23
|
Multifunctional Tumor-Targeting Nanocarriers Based on Hyaluronic Acid-Mediated and pH-Sensitive Properties for Efficient Delivery of Docetaxel. Pharm Res 2013; 31:1032-45. [DOI: 10.1007/s11095-013-1225-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 10/03/2013] [Indexed: 01/24/2023]
|
24
|
Cui ZK, Lafleur M. Lamellar self-assemblies of single-chain amphiphiles and sterols and their derived liposomes: distinct compositions and distinct properties. Colloids Surf B Biointerfaces 2013; 114:177-85. [PMID: 24184913 DOI: 10.1016/j.colsurfb.2013.09.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 11/17/2022]
Abstract
Typically, single-chain amphiphiles and sterols do not form fluid lamellar phases once hydrated individually. Most of the single-chain amphiphiles form actually micelles in aqueous environments, while sterols display a very limited solubility in water. However, under certain conditions, mixtures of single-chain amphiphiles and sterols lead to the formation of stable fluid bilayers. Over the past decade, several of these systems leading to fluid lamellar self-assemblies have been identified and this article reviews the current knowledge relative to these non-phospholipid bilayers made of single-chain amphiphiles and sterols. It presents an integrated view about the molecular features that are required for their stability, the properties they share, and the origin of these characteristics. It was also shown that these lamellar systems could lead to the formation of unilamellar vesicles, similar to phospholipid based liposomes. These vesicles display distinct properties that make them potentially appealing for technological applications; they display a limited permeability, they are stable, they are formed with molecules that are relatively chemically inert (and relatively cheap), and they can be readily functionalized. The features of these distinct liposomes and their technological applications are reviewed. Finally, the putative biological implications of these non-phospholipid fluid bilayers are also discussed.
Collapse
Affiliation(s)
- Zhong-Kai Cui
- Department of Chemistry, Center for Self-Assembled Chemical Structures (CSACS), Université de Montréal, C.P. 6128, Succ. Centre Ville, Montréal, Québec H3C 3J7, Canada
| | - Michel Lafleur
- Department of Chemistry, Center for Self-Assembled Chemical Structures (CSACS), Université de Montréal, C.P. 6128, Succ. Centre Ville, Montréal, Québec H3C 3J7, Canada.
| |
Collapse
|
25
|
Marianecci C, Rinaldi F, Di Marzio L, Pozzi D, Caracciolo G, Manno D, Dini L, Paolino D, Celia C, Carafa M. Interaction of pH-sensitive non-phospholipid liposomes with cellular mimetic membranes. Biomed Microdevices 2013; 15:299-309. [PMID: 23239124 DOI: 10.1007/s10544-012-9731-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Surfactant nanocarriers have received considerable attention in the last several years as interesting alternative to classic liposomes. Different pH-sensitive vesicular colloidal carriers based on Tween 20 derivatives, obtained after functionalization of the head groups of the surfactant with natural, or simply modified, amino acids, were proposed as drug nanocarriers. Dynamic light scattering, Small Angle X-ray Scattering, Trasmission Electron Microscopy and fluorescence studies were used for the physico-chemical characterization of vesicles and mean size, size distribution, zeta potential, vesicle morphology and bilayer properties were evaluated. The pH-sensitivity and the stability of formulations, in absence and in presence of foetal bovine serum, were also evaluated. Moreover, the contact between surfactant vesicles and liposomes designed to model the cellular membrane was investigated by fluorescence studies to preliminary explore the potential interaction between vesicle and cell membranes. Experimental findings showed that physico-chemical and technological features of pH-sensitive vesicles were influenced by the composition of the carriers. Furthermore, proposed carriers are able to interact with mimetic cell membrane and it is reasonable to attribute the observed differences in interaction to the architectural/structural properties of Tween 20 derivatives. The findings reported in this investigation showed that a deep and extensive physico-chemical characterization of the carrier is a fundamental step, according to the evidence that the knowledge of nanocarrier properties is necessary to translate its potentiality to in vitro/in vivo applications.
Collapse
Affiliation(s)
- Carlotta Marianecci
- Department of Drug Chemistry and Technologies, University of Rome "Sapienza", Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Polysorbate 20 vesicles as oral delivery system: In vitro characterization. Colloids Surf B Biointerfaces 2013; 104:200-6. [DOI: 10.1016/j.colsurfb.2012.10.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/19/2012] [Accepted: 10/23/2012] [Indexed: 11/21/2022]
|
27
|
Zhao Y, Vararattanavech A, Li X, Hélixnielsen C, Vissing T, Torres J, Wang R, Fane AG, Tang CY. Effects of proteoliposome composition and draw solution types on separation performance of aquaporin-based proteoliposomes: implications for seawater desalination using aquaporin-based biomimetic membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:1496-1503. [PMID: 23311686 DOI: 10.1021/es304306t] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Aquaporins are a large family of water transport proteins in cell membranes. Their high water permeability and solute rejection make them potential building blocks for high-performance biomimetic membranes for desalination. In the current study, proteoliposomes were prepared using AquaporinZ from Escherichia coli cells, and their separation properties were characterized by stopped-flow measurements. The current study systematically investigated the effect of proteoliposome composition (lipid type, protein-to-lipid ratio (PLR), and the addition of cholesterol) on water permeability and NaCl retention. Among the various lipids investigated, 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)-based proteoliposomes were found to have excellent osmotic water permeability and NaCl reflection coefficient values. Increasing the PLR of DOPC proteoliposomes up to 1:200 increased their osmotic water permeability. However, further increase in the PLR reduced the osmotic water permeability probably due to the occurrence of defects in the proteoliposomes, whereas the addition of cholesterol improved their osmotic water permeation likely due to defects sealing. The current study also investigated the effect of major dissolved ions in seawater (e.g., Mg(2+) and SO(4)(2-)) on the stability of proteoliposomes, and design criteria for aquaporin-based biomimetic membranes are proposed in the context of desalination.
Collapse
Affiliation(s)
- Yang Zhao
- Singapore Membrane Technology Centre, Nanyang Technological University, Singapore 639798
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Synthesis of robust and high-performance aquaporin-based biomimetic membranes by interfacial polymerization-membrane preparation and RO performance characterization. J Memb Sci 2012. [DOI: 10.1016/j.memsci.2012.08.039] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Anti-inflammatory activity of novel ammonium glycyrrhizinate/niosomes delivery system: Human and murine models. J Control Release 2012; 164:17-25. [DOI: 10.1016/j.jconrel.2012.09.018] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 09/05/2012] [Accepted: 09/18/2012] [Indexed: 01/07/2023]
|
30
|
Wang M, Yuan Y, Gao Y, Ma HM, Xu HT, Zhang XN, Pan WS. Preparation and characterization of 5-fluorouracil pH-sensitive niosome and its tumor-targeted evaluation: in vitro and in vivo. Drug Dev Ind Pharm 2011; 38:1134-41. [PMID: 22182601 DOI: 10.3109/03639045.2011.641565] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The purpose of this study was to investigate preparation, characterization and tumor-targeted effect of pH-sensitive niosomes, composed of a nonionic surfactant mixed with cholesteryl hemisuccinate (CHEMS), a derivative of cholesterol (CHOL), as a pH-sensitive molecule. CHEMS was synthesized with CHOL and succinic acid, the structure of which was analyzed by Mass spectrometry (MS) and ¹H Nuclear magnetic resonance (¹H NMR) spectrum. Niosomes were prepared via film hydration-probe ultrasound method. Both normal niosomes and pH-sensitive niosomes showed spherical morphology under transmission electron microscope (TEM) with a average particle sizes of 172 ± 6.2 nm and 153 ± 4.7 nm, respectively. The thermotropic behavior, structure changes and interaction of 5-fluorouracil (5-Fu) with other materials were characterized by differential scanning calorimetry (DSC), and the disappearance of the melting peak of drug revealed the fact that drug was encapsulated in niosomes. Bulk-equilibrium reverse-dialysis method was chosen to investigate the behavior of drug release from normal niosomes and pH-sensitive niosomes in different pH medium, and the results showed that the noisome containing CHEMS had a pH-sensitive property. Tumor-targeted effect was proved by the fact that pH-sensitive niosomes showed a remarkable high concentration in tumor site of the mice transplanted with tumor cell.
Collapse
Affiliation(s)
- Mi Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | | | | | | | | | | | | |
Collapse
|
31
|
Ghosh S, Dey J. Interaction of sodium N-lauroylsarcosinate with N-alkylpyridinium chloride surfactants: spontaneous formation of pH-responsive, stable vesicles in aqueous mixtures. J Colloid Interface Sci 2011; 358:208-16. [PMID: 21420688 DOI: 10.1016/j.jcis.2011.02.054] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 01/11/2011] [Accepted: 02/21/2011] [Indexed: 11/28/2022]
Abstract
The interaction of sodium N-lauroylsarcosinate (SLS) with N-cetylpyridinium chloride (CPC) and N-dodecylpyridinium chloride (DPC) was investigated in aqueous mixtures. A strong interaction between the anionic and cationic surfactants was observed. The interaction parameter, β was determined for a wide composition range and was found to be negative. The mixed systems were found to have much lower critical micelle concentration (cmc) and surface tension at cmc. The surfactant mixtures exhibit synergism in the range of molar fractions investigated. The self-assembly formation in the mixtures of different compositions and total concentrations were studied using a number of techniques, including surface tension, fluorescence spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), confocal fluorescence microscopy (CFM). Thermodynamically stable unilamellar vesicles were observed to form upon mixing of the anionic and cationic surfactants in a wide range of composition and concentrations in buffered aqueous media. TEM as well as DLS measurements were performed to obtain shape and size of the vesicular structures, respectively. These unilamellar vesicles are stable for periods as long as 3 months and appear to be the equilibrium form of aggregation. Effect of pH, and temperature on the stability was investigated. The vesicular structures were observed to be stable at pH as low as 2.0 and at biological temperature (37°C). In presence of 10 mol% of cholesterol the mixed surfactant vesicles exhibited leakage of the encapsulated calcein dye, showing potential application in pH-triggered drug release.
Collapse
Affiliation(s)
- Sampad Ghosh
- Department of Chemistry, Indian Institute of Technology, Kharagpur, India
| | | |
Collapse
|
32
|
Zhang J, Feng K, Cuddihy M, Kotov NA, Ma PX. Spontaneous formation of temperature-responsive assemblies by molecular recognition of a β-cyclodextrin containing block copolymer and poly(N-isopropylacrylamide). SOFT MATTER 2010; 6:3669-3679. [PMID: 20657806 PMCID: PMC2907537 DOI: 10.1039/c000898b] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We report the construction of novel temperature-responsive assemblies based on a double hydrophilic block copolymer (consisting of a PEG block and a β-cyclodextrin-containing block, PEG-b-PCD) and poly(N-isopropylacrylamide) (PNIPAm). Thus formed nano-assemblies exhibit a spherical morphology and have a temperature-responsive loose core. The driving force for the formation of these assemblies was found to be the inclusion complexation interaction between the hydrophobic cavity of β-cyclodextrin and the isopropyl group of PNIPAm. The particle size of these assemblies changed reversibly in response to the external temperature change. The particle size also changed with the PNIPAm/PEG-b-PCD weight ratio. A model hydrophobic drug (indomethacin) was loaded into these assemblies with a high efficiency. An in vitro release study showed that the payload could be released in a sustained manner after an initial burst release. The release rate could be switched between high and low in an ON/OFF fashion by temperature. These results demonstrate that the nano-assemblies have high potential for applications in controlled drug delivery and biomedicine when temperature responsiveness is desired.
Collapse
Affiliation(s)
- Jianxiang Zhang
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kai Feng
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Meghan Cuddihy
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicholas A. Kotov
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter X Ma
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
33
|
Novel Tween® 20 derivatives enable the formation of efficient pH-sensitive drug delivery vehicles for human hepatoblastoma. Bioorg Med Chem Lett 2010; 20:3021-5. [DOI: 10.1016/j.bmcl.2010.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 04/02/2010] [Accepted: 04/06/2010] [Indexed: 11/22/2022]
|
34
|
Carafa M, Marianecci C, Rinaldi F, Santucci E, Tampucci S, Monti D. Span®and Tween®neutral and pH-sensitive vesicles: Characterization andin vitroskin permeation. J Liposome Res 2009; 19:332-40. [DOI: 10.3109/08982100903014994] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
35
|
|
36
|
The overall adhesion-spreading process of liposomes on a mercury electrode is controlled by a mixed diffusion and reaction kinetics mechanism. J Solid State Electrochem 2008. [DOI: 10.1007/s10008-008-0639-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Di Marzio L, Marianecci C, Cinque B, Nazzarri M, Cimini AM, Cristiano L, Cifone MG, Alhaique F, Carafa M. pH-sensitive non-phospholipid vesicle and macrophage-like cells: binding, uptake and endocytotic pathway. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2749-56. [PMID: 18762164 DOI: 10.1016/j.bbamem.2008.07.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 07/17/2008] [Accepted: 07/31/2008] [Indexed: 01/22/2023]
Abstract
Phospholipid and non-phospholipid vesicles are extensively studied as drug delivery systems to modify pharmacokinetics of drugs and to improve their action in target cells. It is believed that the major barrier to efficient drug delivery is entrapment of drugs in the endosomal compartment, since this eventually leads to its degradation in lysosomes. For these reasons, the knowledge of internalization pathway plays a fundamental role in optimizing drug targeting. The aim of this work is to characterize pH-sensitive Tween 20 vesicles, their interaction with macrophage-like cells and their comparison with pH-sensitive liposomes. The effect of different amounts of cholesteryl hemissucinate on surfactant vesicle formation and pH-sensitivity was studied. To evaluate the initial mode of internalization in Raw 264.7 and the intracellular fate of neutral and pH-sensitive formulations, flow cytometry in presence and in absence of selected inhibitors and fluorescence microscopy in absence and presence of specific fluorescent endocytotic markers were used. The obtained results showed that the surfactant vesicle pH-sensitivity was about two or three fold higher than that obtained with pH-sensitive liposomes in the presence of serum in vitro. The uptake mechanism of surfactant vesicles, after incubation with macrophage-like cells, is comparable to that of liposomes (clathrin-mediated endocytosis).
Collapse
Affiliation(s)
- L Di Marzio
- Department of Scienze del Farmaco, Faculty of Pharmacy, University G. D'Annunzio, Via dei Vestini, 66100 Chieti, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|