1
|
Laughlin M, McIndoe R, Adams SH, Araiza R, Ayala JE, Kennedy L, Lanoue L, Lantier L, Macy J, Malabanan E, McGuinness OP, Perry R, Port D, Qi N, Elias CF, Shulman GI, Wasserman DH, Lloyd KCK. The mouse metabolic phenotyping center (MMPC) live consortium: an NIH resource for in vivo characterization of mouse models of diabetes and obesity. Mamm Genome 2024; 35:485-496. [PMID: 39191872 PMCID: PMC11522164 DOI: 10.1007/s00335-024-10067-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
The Mouse Metabolic Phenotyping Center (MMPC)Live Program was established in 2023 by the National Institute for Diabetes, Digestive and Kidney Diseases (NIDDK) at the National Institutes of Health (NIH) to advance biomedical research by providing the scientific community with standardized, high quality phenotyping services for mouse models of diabetes and obesity. Emerging as the next iteration of the MMPC Program which served the biomedical research community for 20 years (2001-2021), MMPCLive is designed as an outwardly-facing consortium of service cores that collaborate to provide reduced-cost consultation and metabolic, physiologic, and behavioral phenotyping tests on live mice for U.S. biomedical researchers. Four MMPCLive Centers located at universities around the country perform complex and often unique procedures in vivo on a fee for service basis, typically on mice shipped from the client or directly from a repository or vendor. Current areas of expertise include energy balance and body composition, insulin action and secretion, whole body carbohydrate and lipid metabolism, cardiovascular and renal function, food intake and behavior, microbiome and xenometabolism, and metabolic pathway kinetics. Additionally, an opportunity arose to reduce barriers to access and expand the diversity of the biomedical research workforce by establishing the VIBRANT Program. Directed at researchers historically underrepresented in the biomedical sciences, VIBRANT-eligible investigators have access to testing services, travel and career development awards, expert advice and experimental design consultation, and short internships to learn test technologies. Data derived from experiments run by the Centers belongs to the researchers submitting mice for testing which can be made publicly available and accessible from the MMPCLive database following publication. In addition to services, MMPCLive staff provide expertise and advice to researchers, develop and refine test protocols, engage in outreach activities, publish scientific and technical papers, and conduct educational workshops and training sessions to aid researchers in unraveling the heterogeneity of diabetes and obesity.
Collapse
Affiliation(s)
- Maren Laughlin
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, USA
| | - Richard McIndoe
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, USA
| | - Sean H Adams
- Department of Surgery, School of Medicine, University of California Davis, Davis, USA
- Center for Alimentary and Metabolic Science, School of Medicine, University of California Davis, Davis, USA
| | - Renee Araiza
- Mouse Biology Program, University of California Davis, Davis, USA
| | | | - Lucy Kennedy
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, USA
| | - Louise Lanoue
- Mouse Biology Program, University of California Davis, Davis, USA
| | | | - James Macy
- Department of Comparative Medicine, Yale School of Medicine, New Haven, USA
| | | | | | - Rachel Perry
- Department of Internal Medicine, Yale School of Medicine, New Haven, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, USA
| | - Daniel Port
- Mouse Biology Program, University of California Davis, Davis, USA
| | - Nathan Qi
- Department of Molecular & Integrated Physiology, University of Michigan, Ann Arbor, USA
- Caswell Diabetes Institute, University of Michigan Medical School, Ann Arbor, USA
| | - Carol F Elias
- Department of Molecular & Integrated Physiology, University of Michigan, Ann Arbor, USA
- Caswell Diabetes Institute, University of Michigan Medical School, Ann Arbor, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, USA
| | | | - K C Kent Lloyd
- Department of Surgery, School of Medicine, University of California Davis, Davis, USA.
- Mouse Biology Program, University of California Davis, Davis, USA.
| |
Collapse
|
2
|
Critical evaluation of colon submucosal microdialysis in awake, mobile rats. PLoS One 2018; 13:e0191041. [PMID: 29324792 PMCID: PMC5764360 DOI: 10.1371/journal.pone.0191041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 12/27/2017] [Indexed: 01/16/2023] Open
Abstract
Sensors able to record large bowel physiology and biochemistry in situ in awake rodents are lacking. Microdialysis is a mini-invasive technique that may be utilized to continuously deliver or recover low-molecular substances from various tissues. In this experiment we evaluated the feasibility of in vivo microdialysis to monitor extracellular fluid chemistry in the descending colon submucosa of conscious, freely moving rodents. Following surgical implantation of a microdialysis probe, male Wistar rats were housed in metabolic cages where they were analgized and clinically followed for four days with free access to standard diet and water. To assess local microcirculation and probe function, glucose, lactate, glucose-to-lactate ratio and urea clearance were determined in the dialysates from the three postoperative days with focus on the final 24-h period. In an attempt to mitigate the expected tissue inflammatory response, one group of animals had the catheters perfused with 5-aminosalicylic acid-enriched medium with final concentration 1 μmol/L. For verification of probe position and the assessment of the surrounding foreign body reaction, standard histological and immunohistochemical methods were employed. Microdialysis of rat gut is associated with considerable technical challenges that may lead to the loss of probe function and high drop-out rate. In this setting, limited data did not allow to draw any firm conclusion regarding local anti-inflammatory effectiveness of 5-aminosalicylic acid perfusion. Although intestinal microdialysis may be suitable for larger anesthetized animals, low reproducibility of the presented method compromises its routine experimental use in awake and freely moving small-sized rodents.
Collapse
|
4
|
Huinink KD, Lambooij B, Jansen-van Zelm K, Cremers TIFH, van Oeveren W, Bakker PL, Venema K, Westerink BHC, Korf J. Microfiltration sampling in rats and in cows: toward a portable device for continuous glucocorticoidhormone sampling. Analyst 2010; 135:390-6. [DOI: 10.1039/b921629d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|