1
|
Casein-Based Nanoparticles: A Potential Tool for the Delivery of Daunorubicin in Acute Lymphocytic Leukemia. Pharmaceutics 2023; 15:pharmaceutics15020471. [PMID: 36839793 PMCID: PMC9967267 DOI: 10.3390/pharmaceutics15020471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was to develop casein-based nanoscale carriers as a potential delivery system for daunorubicin, as a pH-responsive targeting tool for acute lymphocytic leukemia. A coacervation technique followed by nano spray-drying was used for the preparation of drug-loaded casein nanoparticles. Four batches of drug-loaded formulations were developed at varied drug-polymer ratios using a simple coacervation technique followed by spray-drying. They were further characterized using scanning electron microscopy, dynamic light scattering, FTIR spectroscopy, XRD diffractometry, and differential scanning calorimetry. Drug release was investigated in different media (pH 5 and 7.4). The cytotoxicity of the daunorubicin-loaded nanoparticles was compared to that of the pure drug. The influence of the polymer-to-drug ratio on the nanoparticles' properties such as their particle size, surface morphology, production yield, drug loading, entrapment efficiency, and drug release behavior was studied. Furthermore, the cytotoxicity of the drug-loaded nanoparticles was investigated confirming their potential as carriers for daunorubicin delivery.
Collapse
|
2
|
Jacobs GP. Irradiation of pharmaceuticals: A literature review. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2021.109795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
3
|
Georgilis E, Abdelghani M, Pille J, Aydinlioglu E, van Hest JC, Lecommandoux S, Garanger E. Nanoparticles based on natural, engineered or synthetic proteins and polypeptides for drug delivery applications. Int J Pharm 2020; 586:119537. [DOI: 10.1016/j.ijpharm.2020.119537] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022]
|
4
|
|
5
|
Freag MS, Elnaggar YSR, Abdelmonsif DA, Abdallah OY. Layer-by-layer-coated lyotropic liquid crystalline nanoparticles for active tumor targeting of rapamycin. Nanomedicine (Lond) 2016; 11:2975-2996. [DOI: 10.2217/nnm-2016-0236] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: This work spotlights on fabrication of CD44-tropic, layer-by-layer (LbL) coated, liquid crystalline nanoparticles of rapamycin (Rap-LbL-LCNPs) to enhance its water solubility and enable its anticancer use. Methods: Rap-LCNPs were fabricated using hydrotrope method and then coated using LbL self-assembly technique. Results: LbL coating strategy successfully reduced monoolein-induced hemolysis and increased LCNPs serum stability. Lyophilized Rap-LbL-LCNPs were successfully sterilized using γ-radiations. In CD44-overexpressed MDA-MB-231 cells, Rap-LbL-LCNPs demonstrated superior cytotoxicity compared with the nontargeted formulation. Rap-LbL-LCNPs showed 3.35-fold increase in bioavailability compared with free drug. Rap-LbL-LCNPs significantly inhibited tumor growth, enhanced animal survival and reduced nephrotoxic and hyperglycemic effects of Rap. Conclusion: LbL coating strategy of Rap-LCNPs could serve as a promising approach that facilitates Rap use in cancer therapy.
Collapse
Affiliation(s)
- May S Freag
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Yosra SR Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy & Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| | - Doaa A Abdelmonsif
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
6
|
Freag MS, Elnaggar YS, Abdelmonsif DA, Abdallah OY. Stealth, biocompatible monoolein-based lyotropic liquid crystalline nanoparticles for enhanced aloe-emodin delivery to breast cancer cells: in vitro and in vivo studies. Int J Nanomedicine 2016; 11:4799-4818. [PMID: 27703348 PMCID: PMC5036603 DOI: 10.2147/ijn.s111736] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Recently, research has progressively highlighted on clues from conventional use of herbal medicines to introduce new anticancer drugs. Aloe-emodin (AE) is a herbal drug with promising anticancer activity. Nevertheless, its clinical utility is handicapped by its low solubility. For the first time, this study aims to the fabrication of surface-functionalized polyethylene glycol liquid crystalline nanoparticles (PEG-LCNPs) of AE to enhance its water solubility and enable its anticancer use. Developed AE-PEG-LCNPs were optimized via particle size and zeta potential measurements. Phase behavior, solid state characteristics, hemocompatibility, and serum stability of LCNPs were assessed. Sterile formulations were developed using various sterilization technologies. Furthermore, the potential of the formulations was investigated using cell culture, pharmacokinetics, biodistribution, and toxicity studies. AE-PEG-LCNPs showed particle size of 190 nm and zeta potential of −49.9, and PEGylation approach reduced the monoolein hemolytic tendency to 3% and increased the serum stability of the nanoparticles. Sterilization of liquid and lyophilized AE-PEG-LCNPs via autoclaving and γ-radiations, respectively, insignificantly affected the physicochemical properties of the nanoparticles. Half maximal inhibitory concentration of AE-PEG-LCNPs was 3.6-fold lower than free AE after 48 hours and their cellular uptake was threefold higher than free AE after 24-hour incubation. AE-PEG-LCNPs presented 5.4-fold increase in t1/2 compared with free AE. Biodistribution and toxicity studies showed reduced AE-PEG-LCNP uptake by reticuloendothelial system organs and good safety profile. PEGylated LCNPs could serve as a promising nanocarrier for efficient delivery of AE to cancerous cells.
Collapse
Affiliation(s)
- May S Freag
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University
| | - Yosra Sr Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University; Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria
| | - Doaa A Abdelmonsif
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University
| |
Collapse
|
7
|
Long-acting injectable hormonal dosage forms for contraception. Pharm Res 2015; 32:2180-91. [PMID: 25899076 DOI: 10.1007/s11095-015-1686-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/20/2015] [Indexed: 11/27/2022]
Abstract
Although great efforts have been made to develop long-acting injectable hormonal contraceptives for more than four decades, few long-acting injectable contraceptives have reached the pharmaceutical market or even entered clinical trials. On the other hand, in clinical practice there is an urgent need for injectable long-acting reversible contraceptives which can provide contraceptive protection for more than 3 months after one single injection. Availability of such products will offer great flexibility to women and resolve certain continuation issues currently occurring in clinics. Herein, we reviewed the strategies exploited in the past to develop injectable hormonal contraceptive dosages including drug microcrystal suspensions, drug-loaded microsphere suspensions and in situ forming depot systems for long-term contraception and discussed the potential solutions for remaining issues met in the previous development.
Collapse
|
8
|
Abuhanoğlu G, Ozer AY. Radiation sterilization of new drug delivery systems. Interv Med Appl Sci 2014; 6:51-60. [PMID: 24936306 PMCID: PMC4047505 DOI: 10.1556/imas.6.2014.2.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/17/2014] [Accepted: 02/14/2014] [Indexed: 11/19/2022] Open
Abstract
Radiation sterilization has now become a commonly used method for sterilization of several active ingredients in drugs or drug delivery systems containing these substances. In this context, many applications have been performed on the human products that are required to be sterile, as well as on pharmaceutical products prepared to be developed. The new drug delivery systems designed to deliver the medication to the target tissue or organ, such as microspheres, nanospheres, microemulsion, and liposomal systems, have been sterilized by gamma (γ) and beta (β) rays, and more recently, by e-beam sterilization. In this review, the sterilization of new drug delivery systems was discussed other than conventional drug delivery systems by γ irradiation.
Collapse
Affiliation(s)
- Gürhan Abuhanoğlu
- Department of Radiopharmacy, Faculty of Pharmacy, Hacettepe University Sıhhiye, Ankara Turkey
| | - A Yekta Ozer
- Department of Radiopharmacy, Faculty of Pharmacy, Hacettepe University Sıhhiye, Ankara Turkey
| |
Collapse
|
9
|
Elzoghby AO, Saad NI, Helmy MW, Samy WM, Elgindy NA. Ionically-crosslinked milk protein nanoparticles as flutamide carriers for effective anticancer activity in prostate cancer-bearing rats. Eur J Pharm Biopharm 2013; 85:444-51. [PMID: 23872177 DOI: 10.1016/j.ejpb.2013.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 06/14/2013] [Accepted: 07/09/2013] [Indexed: 02/07/2023]
Abstract
In this study, casein (CAS) nanoparticles were used to encapsulate the hydrophobic anticancer drug, flutamide (FLT), aiming at controlling its release, enhancing its anti-tumor activity, and reducing its hepatotoxicity. The nanoparticles were prepared by emulsification of CAS, at pH below its isoelectric point, and stabilized via ionic-crosslinking with sodium tripolyphosphate (TPP). The nanoparticles were spherical and positively charged with a size below 100 nm and exhibited a sustained drug release up to 4 days. After intravenous administration into prostate cancer-bearing rats for 28 days, FLT-loaded CAS nanoparticles showed a higher anti-tumor efficacy as revealed by a significantly higher % reduction in PSA serum level (75%) compared to free FLT (55%). Moreover, the nanoparticles demonstrated a marked reduction in the relative weights of both prostate tumor and seminal vesicle (43% and 32%) compared to free FLT (12% and 18%), respectively. A significantly higher anti-proliferative, anti-angiogenic, and apoptotic effects was demonstrated by the nanoparticles compared to drug solution as evidenced by their ability to decrease the expression of the proliferative marker (Ki-67) and reduce the level of tumor angiogenic markers (VEGF and IGF-1) as well as their ability to activate caspase-3 with subsequent induction of apoptosis in prostate cancer cells. Conclusively, these novel ionically-crosslinked milk protein nanovehicles offer a promising carrier to allow controlled intravenous delivery of hydrophobic anticancer drugs.
Collapse
Affiliation(s)
- Ahmed O Elzoghby
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | | | | | | | | |
Collapse
|
10
|
Elzoghby AO, Helmy MW, Samy WM, Elgindy NA. Novel ionically crosslinked casein nanoparticles for flutamide delivery: formulation, characterization, and in vivo pharmacokinetics. Int J Nanomedicine 2013; 8:1721-32. [PMID: 23658490 PMCID: PMC3647443 DOI: 10.2147/ijn.s40674] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A novel particulate delivery matrix based on ionically crosslinked casein (CAS) nanoparticles was developed for controlled release of the poorly soluble anticancer drug flutamide (FLT). Nanoparticles were fabricated via oil-in-water emulsification then stabilized by ionic crosslinking of the positively charged CAS molecules below their isoelectric point, with the polyanionic crosslinker sodium tripolyphosphate. With the optimal preparation conditions, the drug loading and incorporation efficiency achieved were 8.73% and 64.55%, respectively. The nanoparticles exhibited a spherical shape with a size below 100 nm and a positive zeta potential (+7.54 to +17.3 mV). FLT was molecularly dispersed inside the nanoparticle protein matrix, as revealed by thermal analysis. The biodegradability of CAS nanoparticles in trypsin solution could be easily modulated by varying the sodium tripolyphosphate crosslinking density. A sustained release of FLT from CAS nanoparticles for up to 4 days was observed, depending on the crosslinking density. After intravenous administration of FLT-CAS nanoparticles into rats, CAS nanoparticles exhibited a longer circulation time and a markedly delayed blood clearance of FLT, with the half-life of FLT extended from 0.88 hours to 14.64 hours, compared with drug cosolvent. The results offer a promising method for tailoring biodegradable, drug-loaded CAS nanoparticles as controlled, long-circulating drug delivery systems of hydrophobic anticancer drugs in aqueous vehicles.
Collapse
Affiliation(s)
- Ahmed O Elzoghby
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | | | | | | |
Collapse
|
11
|
Elzoghby AO, Samy WM, Elgindy NA. Novel Spray-Dried Genipin-Crosslinked Casein Nanoparticles for Prolonged Release of Alfuzosin Hydrochloride. Pharm Res 2012; 30:512-22. [DOI: 10.1007/s11095-012-0897-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 10/08/2012] [Indexed: 01/27/2023]
|
12
|
Checa-Casalengua P, Jiang C, Bravo-Osuna I, Tucker BA, Molina-Martínez IT, Young MJ, Herrero-Vanrell R. Preservation of biological activity of glial cell line-derived neurotrophic factor (GDNF) after microencapsulation and sterilization by gamma irradiation. Int J Pharm 2012; 436:545-54. [PMID: 22828071 DOI: 10.1016/j.ijpharm.2012.07.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 07/10/2012] [Accepted: 07/12/2012] [Indexed: 11/25/2022]
Abstract
A main issue in controlled delivery of biotechnological products from injectable biodegradable microspheres is to preserve their integrity and functional activity after the microencapsulation process and final sterilization. The present experimental work tested different technological approaches to maintain the biological activity of an encapsulated biotechnological product within PLGA [poly (lactic-co-glycolic acid)] microspheres (MS) after their sterilization by gamma irradiation. GDNF (glial cell line-derived neurotrophic factor), useful in the treatment of several neurodegenerative diseases, was chosen as a labile model protein. In the particular case of optic nerve degeneration, GDNF has been demonstrated to improve the damaged retinal ganglion cells (RGC) survival. GDNF was encapsulated in its molecular state by the water-in-oil-in-water (W/O/W) technique or as solid according to the solid-in-oil-in-water (S/O/W) method. Based on the S/O/W technique, GDNF was included in the PLGA microspheres alone (S/O/W 1) or in combination with an antioxidant (vitamin E, Vit E) (S/O/W 2). Microspheres were sterilized by gamma-irradiation (dose of 25 kGy) at room and low (-78 °C) temperatures. Functional activity of GDNF released from the different microspheres was evaluated both before and after sterilization in their potential target cells (retinal cells). Although none of the systems proposed achieved with the goal of totally retain the structural stability of the GDNF-dimer, the protein released from the S/O/W 2 microspheres was clearly the most biologically active, showing significantly less retinal cell death than that released from either W/O/W or S/O/W 1 particles, even in low amounts of the neurotrophic factor. According to the results presented in this work, the biological activity of biotechnological products after microencapsulation and sterilization can be further preserved by the inclusion of the active molecule in its solid state in combination with antioxidants and using low temperature (-78 °C) during gamma irradiation exposure.
Collapse
Affiliation(s)
- P Checa-Casalengua
- Dep. of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Avd. Complutense s/n, Complutense University, Madrid 28040, Spain
| | | | | | | | | | | | | |
Collapse
|
13
|
Elzoghby AO, Abo El-Fotoh WS, Elgindy NA. Casein-based formulations as promising controlled release drug delivery systems. J Control Release 2011; 153:206-16. [DOI: 10.1016/j.jconrel.2011.02.010] [Citation(s) in RCA: 334] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 02/09/2011] [Indexed: 01/06/2023]
|
14
|
|