1
|
El Menshawe SF, Shalaby K, Elkomy MH, Aboud HM, Ahmed YM, Abdelmeged AA, Elkarmalawy M, Abou Alazayem MA, El Sisi AM. Repurposing celecoxib for colorectal cancer targeting via pH-triggered ultra-elastic nanovesicles: Pronounced efficacy through up-regulation of Wnt/β-catenin pathway in DMH-induced tumorigenesis. Int J Pharm X 2024; 7:100225. [PMID: 38230407 PMCID: PMC10788539 DOI: 10.1016/j.ijpx.2023.100225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/16/2023] [Accepted: 12/17/2023] [Indexed: 01/18/2024] Open
Abstract
Celecoxib (CLX), a selective inhibitor for cyclooxygenase 2 (COX-2), has manifested potential activity against diverse types of cancer. However, low bioavailability and cardiovascular side effects remain the major challenges that limit its exploitation. In this work, we developed ultra-elastic nanovesicles (UENVs) with pH-triggered surface charge reversal traits that could efficiently deliver CLX to colorectal segments for snowballed tumor targeting. CLX-UENVs were fabricated via a thin-film hydration approach. The impact of formulation factors (Span 80, Tween 80, and sonication time) on the nanovesicular features was evaluated using Box-Behnken design, and the optimal formulation was computed. The optimum formulation was positively coated with polyethyleneimine (CLX-PEI-UENVs) and then coated with Eudragit S100 (CLX-ES-PEI-UENVs). The activity of the optimized nano-cargo was explored in 1,2-dimethylhydrazine-induced colorectal cancer in Wistar rats. Levels of COX-2, Wnt-2 and β-catenin were assessed in rats' colon. The diameter of the optimized CLX-ES-PEI-UENVs formulation was 253.62 nm, with a zeta potential of -23.24 mV, 85.64% entrapment, and 87.20% cumulative release (24 h). ES coating hindered the rapid release of CLX under acidic milieu (stomach and early small intestine) and showed extended release in the colon section. In colonic environments, the ES coating layer was removed due to high pH, and the charge on the nanovesicular corona was shifted from negative to positive. Besides, a pharmacokinetics study revealed that CLX-ES-PEI-UENVs had superior oral bioavailability by 2.13-fold compared with CLX suspension. Collectively, these findings implied that CLX-ES-PEI-UENVs could be a promising colorectal-targeted nanoplatform for effective tumor management through up-regulation of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Shahira F. El Menshawe
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Khaled Shalaby
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Mohammed H. Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Heba M. Aboud
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Yasmin M. Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | | | - Marwa Elkarmalawy
- Department of Pharmaceutics and Drug Manufacturing, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | | | - Amani M. El Sisi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
2
|
Noreen S, Pervaiz F, Ijaz M, Hanif MF, Hamza JR, Mahmood H, Shoukat H, Maqbool I, Ashraf MA. pH-sensitive docetaxel-loaded chitosan/thiolated hyaluronic acid polymeric nanoparticles for colorectal cancer. Nanomedicine (Lond) 2024; 19:755-777. [PMID: 38334078 DOI: 10.2217/nnm-2023-0318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
Aim: This study aimed to develop and evaluate pH-sensitive docetaxel-loaded thiolated hyaluronic acid (HA-SH) nanoparticles (NPs) for targeted treatment of colon cancer. Materials & methods: HA-SH, synthesized via oxidation and subsequent covalent linkage to cysteamine, served as the precursor for developing HA-SH NPs through polyelectrolyte complexation involving chitosan and thiol-bearing HA. Results & conclusion: HA-SH NPs displayed favorable characteristics, with small particle sizes (184-270 nm), positive zeta potential (15.4-18.6 mV) and high entrapment efficiency (91.66-95.02%). In vitro, NPs demonstrated potent mucoadhesion and enhanced cytotoxicity compared with free docetaxel. In vivo assessments confirmed safety and biocompatibility, suggesting HA-SH NPs as promising pH-sensitive drug carriers with enhanced antitumor activity for colorectal cancer treatments.
Collapse
Affiliation(s)
- Sobia Noreen
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
- Centre for Chemistry & Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, 6020, Austria
| | - Fahad Pervaiz
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Muhammad Ijaz
- Centre for Chemistry & Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, 6020, Austria
- COMSATS University Islamabad, Lahore Campus, Punjab, 54000, Pakistan
| | - Muhammad Farhan Hanif
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Jam Riyan Hamza
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, MN 55812, USA
| | - Hassan Mahmood
- COMSATS University Islamabad, Lahore Campus, Punjab, 54000, Pakistan
| | - Hina Shoukat
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Irsah Maqbool
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | | |
Collapse
|
3
|
Halanayake KD, Kalutharage NK, Hewage JW. Microencapsulation of biosynthesized zinc oxide nanoparticles (ZnO-NPs) using Plumeria leaf extract and kinetic studies in the release of ZnO-NPs from microcapsules. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-020-04100-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AbstractBiosynthesis using plant extract is known as one of the potential techniques to synthesize different zinc oxide nanoparticles (ZnO-NPs) in different size ranges. ZnO-NPs were synthesized using Plumeria leaf extract with laboratory chemical reagent Zn(CH3COO)2 and followed by the micro-encapsulation of biosynthesized ZnO-NPs using chitosan and cellulose with TEOF as a cross-linker employing freeze gelation method. Both neat and encapsulated ZnO-NPs have been characterized by FT-IR, UV spectroscopy, XRD, and SEM techniques. The UV-spectroscopic analysis confirmed the characteristic band of ZnO-NPs at 356.0 nm, and FIIR showed the peaks at 544 cm−1 and 545 cm−1 corresponding to the Zn–O bond. Powder XRD pattern showed the wurtzite structure of ZnO and gave the calculated average crystallite size as of 27.23 nm. In the case of encapsulated ZnO-NPs, the UV–visible spectrum showed two strong absorption peaks at 232.5 nm, 242.5 nm, and a weak peak at 357 nm. A broad peak at 3333 cm−1 in FT-IR spectra is either due to N–H stretching in the amide group of chitosan or hydroxyl group in encapsulated ZnO-NPs. It was observed that chitosan loaded ZnO-NPs had higher entrapment efficiency (81.98%) at 15 mL of plant extract. The kinetic profile in the release of ZnO particles out from encapsulated ZnO-NPs was observed to follow four kinetic paths in 120 min at pH 1.2. The particle release followed the zero-order kinetic in the first 50 min and then followed by Hixson–Crowell kinetic in the next 50 min with two different rate constants, 2.6 × 10−3 min−1 and 13 × 10−3 min−1, before it backs to the zero-order kinetics. This study shows that ZnO nanoparticles can easily be biosynthesized and encapsulated for use in the pharmaceutical industry.
Collapse
|
4
|
Broesder A, Kosta AMMAC, Woerdenbag HJ, Nguyen DN, Frijlink HW, Hinrichs WLJ. pH-dependent ileocolonic drug delivery, part II: preclinical evaluation of novel drugs and novel excipients. Drug Discov Today 2020; 25:1374-1388. [PMID: 32562842 DOI: 10.1016/j.drudis.2020.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/18/2020] [Accepted: 06/08/2020] [Indexed: 01/18/2023]
Abstract
Novel drugs and novel excipients in pH-dependent ileocolonic drug delivery systems have to be tested in animals. Which animal species are suitable and what in vivo methods are used to verify ileocolonic drug delivery?
Collapse
Affiliation(s)
- Annemarie Broesder
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Anne-Marijke M A C Kosta
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells and Systems, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Herman J Woerdenbag
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Duong N Nguyen
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Henderik W Frijlink
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Wouter L J Hinrichs
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
5
|
Maqbool I, Akhtar M, Ahmad R, Sadaquat H, Noreen S, Batool A, Khan SU. Novel multiparticulate pH triggered delayed release chronotherapeutic drug delivery of celecoxib-β-cyclodextrin inclusion complexes by using Box-Behnken design. Eur J Pharm Sci 2020; 146:105254. [DOI: 10.1016/j.ejps.2020.105254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/29/2020] [Accepted: 02/01/2020] [Indexed: 01/18/2023]
|
6
|
Shams T, Illangakoon UE, Parhizkar M, Harker AH, Edirisinghe S, Orlu M, Edirisinghe M. Electrosprayed microparticles for intestinal delivery of prednisolone. J R Soc Interface 2019; 15:rsif.2018.0491. [PMID: 30158187 PMCID: PMC6127171 DOI: 10.1098/rsif.2018.0491] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/25/2018] [Indexed: 12/16/2022] Open
Abstract
Single and coaxial electrospraying was used to prepare Eudragit L100-55 polymer microparticles containing prednisolone as the active pharmaceutical ingredient. Different compositions of prednisolone and Eudragit L100-55 were used to develop five different formulations with different polymer : drug ratios. The resultant microparticles had a toroidal shape with a narrow size distribution. Prednisolone was present in an amorphous physical state, as confirmed by X-ray diffraction analysis. Dissolution studies were carried out in order to investigate the feasibility of the proposed system for site-specific release of prednisolone. The release rates were interpreted in terms of diffusion-controlled release. It was shown that utilization of pH-responsive Eudragit L100-55 could minimize the release of prednisolone in the acidic conditions of the stomach, which was followed by rapid release as the pH of the release medium was adjusted to 6.8 after the first 2 h. This is especially desirable for the treatment of conditions including inflammatory bowel disease and colon cancer.
Collapse
Affiliation(s)
- T Shams
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - U E Illangakoon
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - M Parhizkar
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - A H Harker
- Department of Physics and Astronomy and London Centre for Nanotechnology, University College London, London WC1E 6BT, UK
| | - S Edirisinghe
- Maidstone Hospital, Hermitage Lane, Maidstone ME16 9QQ, UK
| | - M Orlu
- Department of Pharmaceutics, University College London School of Pharmacy, Brunswick Square, London WC1N 1AX, UK
| | - M Edirisinghe
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| |
Collapse
|
7
|
Hii YS, Jeevanandam J, Chan YS. Plant mediated green synthesis and nanoencapsulation of MgO nanoparticle from Calotropis gigantea: Characterisation and kinetic release studies. INORG NANO-MET CHEM 2019. [DOI: 10.1080/24701556.2019.1569053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yiik Siang Hii
- Department of Chemical Engineering, Curtin University Malaysia, Sarawak, Malaysia
| | - Jaison Jeevanandam
- Department of Chemical Engineering, Curtin University Malaysia, Sarawak, Malaysia
| | - Yen San Chan
- Department of Chemical Engineering, Curtin University Malaysia, Sarawak, Malaysia
| |
Collapse
|
8
|
Hatton GB, Madla CM, Rabbie SC, Basit AW. All disease begins in the gut: Influence of gastrointestinal disorders and surgery on oral drug performance. Int J Pharm 2018; 548:408-422. [PMID: 29969711 DOI: 10.1016/j.ijpharm.2018.06.054] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/23/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023]
Abstract
The term "disease" conjures a plethora of graphic imagery for many, and the use of drugs to combat symptoms and treat underlying pathology is at the core of modern medicine. However, the effects of the various gastrointestinal diseases, infections, co-morbidities and the impact of gastrointestinal surgery on the pharmacokinetic and pharmacodynamic behaviour of drugs have been largely overlooked. The better elucidation of disease pathology and the role of underlying cellular and molecular mechanisms have increased our knowledge as far as diagnoses and prognoses are concerned. In addition, the recent advances in our understanding of the intestinal microbiome have linked the composition and function of gut microbiota to disease predisposition and development. This knowledge, however, applies less so in the context of drug absorption and distribution for orally administered dosage forms. Here, we revisit and re-evaluate the influence of a portfolio of gastrointestinal diseases and surgical effects on the functionality of the gastrointestinal tract, their implications for drug delivery and attempt to uncover significant links for clinical practice.
Collapse
Affiliation(s)
- Grace B Hatton
- UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Christine M Madla
- UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Sarit C Rabbie
- UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Abdul W Basit
- UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London, WC1N 1AX, United Kingdom.
| |
Collapse
|
9
|
Gamo K, Okuzono Y, Yabuki M, Ochi T, Sugimura K, Sato Y, Sagara M, Hayashi H, Ishimura Y, Nishimoto Y, Murakawa Y, Shiokawa Z, Gotoh M, Miyazaki T, Ebisuno Y. Gene Signature-Based Approach Identified MEK1/2 as a Potential Target Associated With Relapse After Anti-TNFα Treatment for Crohn's Disease. Inflamm Bowel Dis 2018; 24:1251-1265. [PMID: 29669006 PMCID: PMC6176896 DOI: 10.1093/ibd/izy079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Anti-tumor necrosis factor alpha (anti-TNFα) therapy has become the mainstay of therapy for Crohn's disease (CD). However, post-therapy, the recurrence rate is still high. The aim of this study was to dissect the molecular mechanism for recurrence of CD treated with anti-TNFα therapy and investigate novel therapeutic options that could induce complete remission. METHODS We re-analyzed publicly available mucosal gene expression data from CD patients pre- and post-infliximab therapy to extract the transcriptional differences between responders and healthy controls. We used a systematic computational approach based on identified differences to discover novel therapies and validated this prediction through in vitro and in vivo experimentation. RESULTS We identified a set of 3545 anti-TNFα therapy-untreatable genes (TUGs) that are significantly regulated in intestinal epithelial cells, which remain altered during remission. Pathway enrichment analysis of these genes clearly showed excessive growth state and suppressed terminal differentiation, whereas immune components were clearly resolved. Through in silico screening strategy, we observed that MEK inhibitors were predicted to revert expression of genes dysregulated in infliximab responders. In vitro transcriptome analysis demonstrated that selective MEK1/2 inhibitor significantly normalized reference genes from TUGs. In addition, in vitro functional study proved that MEK1/2 inhibitor facilitated intestinal epithelial differentiation. Finally, using murine colitis model, administration of MEK1/2 inhibitor significantly improved diarrhea and histological score. CONCLUSIONS Our data revealed the abnormalities in anti-TNFα responders' CD colons that would be cause of recurrence of CD. Also, we provided evidence regarding MEK1/2 inhibitor as a potential treatment against CD to achieve sustainable remission.
Collapse
Affiliation(s)
- Kanae Gamo
- Immunology Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Yuumi Okuzono
- Immunology Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Masato Yabuki
- Immunology Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Takashi Ochi
- Immunology Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Kyoko Sugimura
- Immunology Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Yosuke Sato
- Immunology Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Masaki Sagara
- Immunology Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Hiroki Hayashi
- Immunology Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Yoshimasa Ishimura
- Drug Safety Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Yutaka Nishimoto
- Pharmaceutical Technology Research and Development Laboratories, CMC Center, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Osaka, Japan
| | - Yusuke Murakawa
- Pharmaceutical Technology Research and Development Laboratories, CMC Center, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Osaka, Japan
| | - Zenyu Shiokawa
- Immunology Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Masayuki Gotoh
- Immunology Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Takahiro Miyazaki
- Immunology Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Yukihiko Ebisuno
- Immunology Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Japan,Address correspondence to: Yukihiko Ebisuno, PhD, Immunology Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 2-26-1, Muraoka-Higashi, Fujisawa 251–8555, Japan ()
| |
Collapse
|
10
|
Paprskářová A, Možná P, Oga EF, Elhissi A, Alhnan MA. Instrumentation of Flow-Through USP IV Dissolution Apparatus to Assess Poorly Soluble Basic Drug Products: a Technical Note. AAPS PharmSciTech 2016; 17:1261-6. [PMID: 26573157 DOI: 10.1208/s12249-015-0444-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/19/2015] [Indexed: 11/30/2022] Open
Abstract
Supersaturation and precipitation are common limitations encountered especially with poorly soluble basic drugs. The aims of this work were to explore the pattern of dissolution and precipitation of poorly soluble basic drugs using a United States Pharmacopoeia (USP) IV dissolution apparatus and to compare it to the widely used USP II dissolution apparatus. In order to investigate the influence of gastric emptying time on bioavailability, tables of two model drugs (dipyridamole 100 mg and cinnarizine 15 mg) were investigated and pH change from 1.2 to 6.8 were achieved after 10, 20 or 30 min using USP II or USP IV dissolution apparatuses. Using USP II, dipyridamole and cinnarizine concentrations dropped instantly as a result of drug precipitation with drug crystals evident in the dissolution vessel. At pH change times of 10, 20 and 30 min, the total amount of dissolved drug was dependent on pH change time. Using USP IV, at a flow rate of 8 ml/min, it was possible to have comparable release to agitation at 50 rpm using USP II suggesting that comparable hydrodynamic forces are possible. No drop in drug percentage occurs as the dissolved fraction was readily emptied from the flow cell, preventing drug accumulation in the dissolution medium. However, a negligible percentage of drug release took place following pH change. In conclusion, the use of the flow-through cell dissolution provided laminar flow, use of realistic fluid volumes and avoided precipitation of dissolved drug fraction in the gastric phase as it is discharged before pH change.
Collapse
|
11
|
Microfabrication for Drug Delivery. MATERIALS 2016; 9:ma9080646. [PMID: 28773770 PMCID: PMC5509096 DOI: 10.3390/ma9080646] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 07/14/2016] [Accepted: 07/26/2016] [Indexed: 12/22/2022]
Abstract
This review is devoted to discussing the application of microfabrication technologies to target challenges encountered in life processes by the development of drug delivery systems. Recently, microfabrication has been largely applied to solve health and pharmaceutical science issues. In particular, fabrication methods along with compatible materials have been successfully designed to produce multifunctional, highly effective drug delivery systems. Microfabrication offers unique tools that can tackle problems in this field, such as ease of mass production with high quality control and low cost, complexity of architecture design and a broad range of materials. Presented is an overview of silicon- and polymer-based fabrication methods that are key in the production of microfabricated drug delivery systems. Moreover, the efforts focused on studying the biocompatibility of materials used in microfabrication are analyzed. Finally, this review discusses representative ways microfabrication has been employed to develop systems delivering drugs through the transdermal and oral route, and to improve drug eluting implants. Additionally, microfabricated vaccine delivery systems are presented due to the great impact they can have in obtaining a cold chain-free vaccine, with long-term stability. Microfabrication will continue to offer new, alternative solutions for the development of smart, advanced drug delivery systems.
Collapse
|
12
|
Bazan L, Bendas ER, El Gazayerly ON, Badawy SS. Comparative pharmaceutical study on colon targeted micro-particles of celecoxib: in-vitro–in-vivo evaluation. Drug Deliv 2016; 23:3339-3349. [DOI: 10.1080/10717544.2016.1178824] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Lamyaa Bazan
- Pharmaceutical Technology Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt,
| | - Ehab R. Bendas
- Clinical Pharmacy Department, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University, Cairo, Egypt, and
| | - Omaima N. El Gazayerly
- Pharmaceutics & Industrial Pharmacy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sabry Sayed Badawy
- Pharmaceutical Technology Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt,
| |
Collapse
|
13
|
Tayel SA, El-Nabarawi MA, Tadros MI, Abd-Elsalam WH. Duodenum-triggered delivery of pravastatin sodium: II. Design, appraisal and pharmacokinetic assessments of enteric surface-decorated nanocubosomal dispersions. Drug Deliv 2016; 23:3266-3278. [PMID: 27094305 DOI: 10.3109/10717544.2016.1172367] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Saadia Ahmed Tayel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed Ahmed El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mina Ibrahim Tadros
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Wessam Hamdy Abd-Elsalam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
14
|
Vieira ACF, Serra AC, Veiga FJ, Gonsalves AMDR, Basit AW, Murdan S. Diclofenac-β-cyclodextrin for colonic drug targeting: In vivo performance in rats. Int J Pharm 2016; 500:366-70. [PMID: 26784980 DOI: 10.1016/j.ijpharm.2016.01.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 12/17/2022]
Abstract
The aim of this in vivo study was to assess the ability of the prodrug conjugate diclofenac-β-cyclodextrin to release diclofenac in the colon following oral administration, using sulfapyridine (a metabolite of sulfasalazine) as a marker of colonic absorption. Two groups of rats were used; the test rats received a suspension containing the two prodrugs, diclofenac-β-cyclodextrin and sulfasalazine, while the control rats received a suspension containing the corresponding free drugs, sodium diclofenac and sulfapyridine. The rats were fasted overnight with free access to water before and throughout the first 12h of the study. Blood was collected from the tail vein at pre-determined time points and the plasma analyzed for the concentrations of diclofenac and sulfapyridine. Following the oral administration of the two prodrugs, a more extended absorption profile was observed and Cmax was achieved 10h post-dose, in contrast to rapid absorption of the free drugs (tmax of diclofenac being 1.3h, and that of sulfapyridine being 2.1h). In addition to a later tmax, conjugation of diclofenac to β-cyclodextrin also resulted in a reduced Cmax and a reduced AUC. The same tmax for diclofenac-β-cyclodextrin as for sulfasalazine confirms the colonic metabolism of diclofenac-β-cyclodextrin. This study shows the potential of this new cyclodextrin-based prodrug to target and release diclofenac specifically in the colon following oral administration.
Collapse
Affiliation(s)
- Amélia C F Vieira
- Department of Pharmaceutics, UCL School of Pharmacy, London, United Kingdom; Centre for Pharmaceutical Studies, Laboratory of Pharmaceutical Science, Faculty of Pharmacy, University of Coimbra, Portugal; Chymiotechnon and Department of Chemistry, Faculty of Science and Technology, University of Coimbra, Portugal
| | - Arménio C Serra
- Chymiotechnon and Department of Chemistry, Faculty of Science and Technology, University of Coimbra, Portugal
| | - Francisco J Veiga
- Centre for Pharmaceutical Studies, Laboratory of Pharmaceutical Science, Faculty of Pharmacy, University of Coimbra, Portugal
| | | | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, London, United Kingdom
| | - Sudaxshina Murdan
- Department of Pharmaceutics, UCL School of Pharmacy, London, United Kingdom.
| |
Collapse
|
15
|
A trial for the design and optimization of pH-sensitive microparticles for intestinal delivery of cinnarizine. Drug Deliv Transl Res 2016; 6:195-209. [DOI: 10.1007/s13346-015-0277-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Jablan J, Jug M. Development of Eudragit® S100 based pH-responsive microspheres of zaleplon by spray-drying: Tailoring the drug release properties. POWDER TECHNOL 2015. [DOI: 10.1016/j.powtec.2015.05.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Hatton GB, Yadav V, Basit AW, Merchant HA. Animal Farm: Considerations in Animal Gastrointestinal Physiology and Relevance to Drug Delivery in Humans. J Pharm Sci 2015; 104:2747-76. [DOI: 10.1002/jps.24365] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/22/2014] [Accepted: 12/22/2014] [Indexed: 12/30/2022]
|
18
|
Tayel SA, El-Nabarawi MA, Tadros MI, Abd-Elsalam WH. Duodenum-triggered delivery of pravastatin sodium via enteric surface-coated nanovesicular spanlastic dispersions: Development, characterization and pharmacokinetic assessments. Int J Pharm 2015; 483:77-88. [PMID: 25666025 DOI: 10.1016/j.ijpharm.2015.02.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 01/15/2023]
|
19
|
Lamberti G, Soroush F, Smith A, Kiani MF, Prabhakarpandian B, Pant K. Adhesion patterns in the microvasculature are dependent on bifurcation angle. Microvasc Res 2015; 99:19-25. [PMID: 25708050 DOI: 10.1016/j.mvr.2015.02.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 01/14/2015] [Accepted: 02/11/2015] [Indexed: 01/16/2023]
Abstract
Particle adhesion in vivo is highly dependent on the microvascular environment comprising of unique anatomical, geometrical, physiological fluid flow conditions and cell-particle and cell-cell interactions. Hence, proper design of vascular-targeted drug carriers that efficiently deliver therapeutics to the targeted cells or tissue at effective concentrations must account for these complex conditions observed in vivo. In this study, we build upon our previous results with the goal of characterizing the effects of bifurcations and their corresponding angle on adhesion of functionalized particles and neutrophils to activated endothelium. Our hypothesis is that adhesion is significantly affected by the type of biochemical interactions between particles and vessel wall as well as the presence of bifurcations and their corresponding angle. Here, we investigate adhesion of functionalized particles (2 μm and 7 μm microparticles) to protein coated channels as well as adhesion of human neutrophils to human endothelial cells under various physiological flow conditions in microfluidic bifurcating channels comprising of different contained angles (30°, 60°, 90°, or 120°). Our findings indicate that both functionalized particle and neutrophil adhesion propensity increase with a larger bifurcation angle. Moreover, the difference in the adhesion patterns of neutrophils and rigid, similar sized (7 μm) particles is more apparent in the junction regions with a larger contained angle. By selecting the right particle size range, enhanced targeted binding of vascular drug carriers can be achieved along with a higher efficacy at optimal drug dosage. Hence, vascular drug particle design needs to be tailored to account for higher binding propensity at larger bifurcation angles.
Collapse
Affiliation(s)
- Giuseppina Lamberti
- Department of Mechanical Engineering, Temple University, 1947 N. 12th Street, Philadelphia, PA 19122, USA
| | - Fariborz Soroush
- Department of Mechanical Engineering, Temple University, 1947 N. 12th Street, Philadelphia, PA 19122, USA
| | - Ashley Smith
- Biomedical Technology, CFD Research Corporation, 701 McMillian Way, Huntsville, AL 35806, USA
| | - Mohammad F Kiani
- Department of Mechanical Engineering, Temple University, 1947 N. 12th Street, Philadelphia, PA 19122, USA; Department of Radiation Oncology, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | | | - Kapil Pant
- Biomedical Technology, CFD Research Corporation, 701 McMillian Way, Huntsville, AL 35806, USA
| |
Collapse
|
20
|
Khan IU, Stolch L, Serra CA, Anton N, Akasov R, Vandamme TF. Microfluidic conceived pH sensitive core–shell particles for dual drug delivery. Int J Pharm 2015; 478:78-87. [DOI: 10.1016/j.ijpharm.2014.10.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 10/04/2014] [Accepted: 10/04/2014] [Indexed: 01/14/2023]
|
21
|
Liu W, Selomulya C, Chen XD. Design of polymeric microparticles for pH-responsive and time-sustained drug release. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.10.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Choi HK, Lee YJ, Lee YH, Park JP, Min K, Park H. Inflammatory responses in the muscle coat of stomach and small bowel in the postoperative ileus model of guinea pig. Yonsei Med J 2013; 54:1336-41. [PMID: 24142636 PMCID: PMC3809856 DOI: 10.3349/ymj.2013.54.6.1336] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Small intestinal function returns first after surgery, and then the function of the stomach returns to normal after postoperative ileus (POI). The aim of this study was to investigate inflammatory responses in the muscle coat of stomach and small intestine in guinea pig POI model. MATERIALS AND METHODS The distance of charcoal migration from pylorus to the distal intestine was measured. Hematoxylin and eosin (H&E) and immunohistochemical stain for calprotectin were done from the histologic sections of stomach, jejunum and ileum obtained at 3 and 6 hour after operation. Data were compared between sham operation and POI groups. RESULTS The distance of charcoal migration was significantly reduced in the 3 and 6 hour POI groups compared with sham operated groups (p<0.05). On H&E staining, the degree of inflammation was significantly higher in the stomach of 3 hour POI groups compared with jejunum and ileum of POI groups or sham operated groups (p<0.05). Calprotectin positive cells were significantly increased in the muscle coat of stomach of 3 hour POI groups compared with jejunum and ileum of POI groups or sham operated groups (p<0.05). There was strong association between the degree of inflammation and calprotectin positive cells in stomach. CONCLUSION Postoperative ileus induced by cecal manipulation significantly increased the degree of inflammation and calprotectin positive cells in the muscle coat of stomach as a remote organ. The relevance of degree of inflammation and the recovery time of ileus should be pursued in the future research.
Collapse
Affiliation(s)
- Hong Kyu Choi
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul 135-720, Korea.
| | | | | | | | | | | |
Collapse
|
23
|
Kharb V, Saharan VA, Dev K, Jadhav H, Purohit S. Formulation, evaluation and 32full factorial design-based optimization of ondansetron hydrochloride incorporated taste masked microspheres. Pharm Dev Technol 2013; 19:839-52. [DOI: 10.3109/10837450.2013.836220] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Zhang Y, Chen J, Zhang G, Lu J, Yan H, Liu K. Sustained release of ibuprofen from polymeric micelles with a high loading capacity of ibuprofen in media simulating gastrointestinal tract fluids. REACT FUNCT POLYM 2012. [DOI: 10.1016/j.reactfunctpolym.2012.03.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
El-Bary AA, Aboelwafa AA, Al Sharabi IM. Influence of some formulation variables on the optimization of pH-dependent, colon-targeted, sustained-release mesalamine microspheres. AAPS PharmSciTech 2012; 13:75-84. [PMID: 22130789 PMCID: PMC3299443 DOI: 10.1208/s12249-011-9721-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 11/04/2011] [Indexed: 11/30/2022] Open
Abstract
The aim of this work was to understand the influence of different formulation variables on the optimization of pH-dependent, colon-targeted, sustained-release mesalamine microspheres prepared by O/O emulsion solvent evaporation method, employing pH-dependent Eudragit S and hydrophobic pH-independent ethylcellulose polymers. Formulation variables studied included concentration of Eudragit S in the internal phase and the ratios between; internal to external phase, drug to Eudragit S and Eudragit S to ethylcellulose to mesalamine. Prepared microspheres were evaluated by carrying out in vitro release studies and determination of particle size, production yield, and encapsulation efficiency. In addition, morphology of microspheres was examined using optical and scanning electron microscopy. Emulsion solvent evaporation method was found to be sensitive to the studied formulation variables. Particle size and encapsulation efficiency increased by increasing Eudragit S concentration in the internal phase, ratio of internal to external phase, and ratio of Eudragit S to the drug. Employing Eudragit S alone in preparation of the microspheres is only successful in forming acid-resistant microspheres with pulsatile release pattern at high pH. Eudragit S and ethylcellulose blend microspheres were able to control release under acidic condition and to extend drug release at high pH. The stability studies carried out at 40°C/75% RH for 6 months proved the stability of the optimized formulation. From the results of this investigation, microencapsulation of mesalamine in microspheres using blend of Eudragit S and ethylcellulose could constitute a promising approach for site-specific and controlled delivery of drug in colon.
Collapse
Affiliation(s)
- Ahmed Abd El-Bary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-aini Street, Cairo, 11562 Egypt
| | - Ahmed A. Aboelwafa
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-aini Street, Cairo, 11562 Egypt
| | - Ibrahim M. Al Sharabi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-aini Street, Cairo, 11562 Egypt
| |
Collapse
|
26
|
Alhnan MA, Kidia E, Basit AW. Spray-drying enteric polymers from aqueous solutions: A novel, economic, and environmentally friendly approach to produce pH-responsive microparticles. Eur J Pharm Biopharm 2011; 79:432-9. [DOI: 10.1016/j.ejpb.2011.03.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 03/12/2011] [Accepted: 03/16/2011] [Indexed: 11/28/2022]
|
27
|
Alhnan MA, Murdan S, Basit AW. Encapsulation of poorly soluble basic drugs into enteric microparticles: A novel approach to enhance their oral bioavailability. Int J Pharm 2011; 416:55-60. [DOI: 10.1016/j.ijpharm.2011.05.079] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 05/26/2011] [Accepted: 05/28/2011] [Indexed: 11/29/2022]
|
28
|
Rizi K, Green RJ, Khutoryanskaya O, Donaldson M, Williams AC. Mechanisms of burst release from pH-responsive polymeric microparticles. J Pharm Pharmacol 2011; 63:1141-55. [PMID: 21827486 DOI: 10.1111/j.2042-7158.2011.01322.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Microencapsulation of drugs into preformed polymers is commonly achieved through solvent evaporation techniques or spray drying. We compared these encapsulation methods in terms of controlled drug release properties of prepared microparticles and investigated the underlying mechanisms responsible for the 'burst release' effect. METHODS Using two different pH-responsive polymers with a dissolution threshold of pH 6 (Eudragit L100 and AQOAT AS-MG), hydrocortisone, a model hydrophobic drug, was incorporated into microparticles below and above its solubility within the polymer matrix. KEY FINDINGS Although, spray drying was an attractive approach due to rapid particle production and relatively low solvent waste, the oil-in-oil microencapsulation method was superior in terms of controlled drug release properties from the microparticles. Slow solvent evaporation during the oil-in-oil emulsification process allowed adequate time for drug and polymer redistribution in the microparticles and reduced uncontrolled drug burst release. Electron microscopy showed that this slower manufacturing procedure generated nonporous particles whereas thermal analysis and X-ray diffractometry showed that drug loading above the solubility limit of the drug in the polymer generated excess crystalline drug on the surface of the particles. Raman spectral mapping illustrated that drug was homogeneously distributed as a solid solution in the particles when loaded below saturation in the polymer with consequently minimal burst release. CONCLUSIONS Both the manufacturing method (which influenced particle porosity and density) and drug:polymer compatibility and loading (which affected drug form and distribution) were responsible for burst release seen from our particles.
Collapse
Affiliation(s)
- Khalida Rizi
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading, UK
| | | | | | | | | |
Collapse
|
29
|
Prabhakarpandian B, Shen MC, Pant K, Kiani MF. Microfluidic devices for modeling cell-cell and particle-cell interactions in the microvasculature. Microvasc Res 2011; 82:210-20. [PMID: 21763328 DOI: 10.1016/j.mvr.2011.06.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 06/20/2011] [Accepted: 06/24/2011] [Indexed: 01/02/2023]
Abstract
Cell-fluid and cell-cell interactions are critical components of many physiological and pathological conditions in the microvasculature. Similarly, particle-cell interactions play an important role in targeted delivery of therapeutics to tissue. Development of in vitro fluidic devices to mimic these microcirculatory processes has been a critical step forward in our understanding of the inflammatory process, developing of nano-particulate drug carriers, and developing realistic in vitro models of the microvasculature and its surrounding tissue. However, widely used parallel plate flow based devices and assays have a number of important limitations for studying the physiological conditions in vivo. In addition, these devices are resource hungry and time consuming for performing various assays. Recently developed, more realistic, microfluidic based devices have been able to overcome many of these limitations. In this review, an overview of the fluidic devices and their use in studying the effects of shear forces on cell-cell and cell-particle interactions is presented. In addition, use of mathematical models and computational fluid dynamics (CFD) based models for interpreting the complex flow patterns in the microvasculature is highlighted. Finally, the potential of 3D microfluidic devices and imaging for better representing in vivo conditions under which cell-cell and cell-particle interactions take place is discussed.
Collapse
|
30
|
Rizi K, Green RJ, Donaldson MX, Williams AC. Using pH Abnormalities in Diseased Skin to Trigger and Target Topical Therapy. Pharm Res 2011; 28:2589-98. [DOI: 10.1007/s11095-011-0488-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 05/19/2011] [Indexed: 11/29/2022]
|
31
|
Alhnan MA, Basit AW. In-process crystallization of acidic drugs in acrylic microparticle systems: influence of physical factors and drug-polymer interactions. J Pharm Sci 2011; 100:3284-3293. [PMID: 21500197 DOI: 10.1002/jps.22572] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 03/13/2011] [Accepted: 03/22/2011] [Indexed: 11/08/2022]
Abstract
Emulsion-solvent evaporation is an established method to fabricate amorphous drug-loaded microparticles. In some cases, however, the encapsulated drug is present in its crystalline form, which can affect drug release and negatively impact on other characteristics of the final product. This work aimed to investigate the factors that are responsible for the formation (and inhibition) of drug crystals in modified-release microparticles. Five acidic drugs were encapsulated into Eudragit S or Eudragit L microparticles. Drug crystallinity was observed when indometacin and naproxen were encapsulated, while crystallization was not observed in the case of ketoprofen, salicylic acid, or paracetamol (acetaminophen). All drug-loaded microparticles had single glass transition temperature (T(g) ) intermediate between the T(g) of the drug and that of the polymer. The drop in T(g) in the case of the paracetamol-loaded particles was higher than predicted from the Gordon-Taylor equation, indicating that paracetamol was acting as a plasticizer in this system. After melt quenching in the presence of the Eudragit polymers, the crystallization of paracetamol was inhibited. The ratio of drug to polymer in the microparticles was the major determinant of drug crystallization, as was the solubility of the drug in the processing solvent. This work confirms that drug crystallization is a complex phenomenon, and that drug-polymer molecular interactions play a role in the inhibition of drug crystallization.
Collapse
Affiliation(s)
- Mohamed A Alhnan
- Department of Pharmaceutics, The School of Pharmacy, University of London, London WC1N 1AX, UK
| | - Abdul W Basit
- Department of Pharmaceutics, The School of Pharmacy, University of London, London WC1N 1AX, UK.
| |
Collapse
|
32
|
Alhnan MA, Basit AW. Engineering polymer blend microparticles: An investigation into the influence of polymer blend distribution and interaction. Eur J Pharm Sci 2011; 42:30-6. [DOI: 10.1016/j.ejps.2010.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Revised: 09/11/2010] [Accepted: 10/06/2010] [Indexed: 11/30/2022]
|
33
|
Merchant HA, McConnell EL, Liu F, Ramaswamy C, Kulkarni RP, Basit AW, Murdan S. Assessment of gastrointestinal pH, fluid and lymphoid tissue in the guinea pig, rabbit and pig, and implications for their use in drug development. Eur J Pharm Sci 2011; 42:3-10. [DOI: 10.1016/j.ejps.2010.09.019] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 09/28/2010] [Indexed: 10/19/2022]
|
34
|
Alhnan MA, Cosi D, Murdan S, Basit AW. Inhibiting the Gastric Burst Release of Drugs from Enteric Microparticles: The Influence of Drug Molecular Mass and Solubility. J Pharm Sci 2010; 99:4576-83. [DOI: 10.1002/jps.22174] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Nilkumhang S, Alhnan MA, McConnell EL, Basit AW. Drug distribution in enteric microparticles. Int J Pharm 2009; 379:1-8. [DOI: 10.1016/j.ijpharm.2009.05.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 05/28/2009] [Accepted: 05/28/2009] [Indexed: 10/20/2022]
|
36
|
Nilkumhang S, Basit AW. The robustness and flexibility of an emulsion solvent evaporation method to prepare pH-responsive microparticles. Int J Pharm 2009; 377:135-41. [PMID: 19515519 DOI: 10.1016/j.ijpharm.2009.03.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 03/14/2009] [Accepted: 03/20/2009] [Indexed: 10/21/2022]
Abstract
A microparticle preparation method based on an emulsion of ethanol in liquid paraffin stabilised using sorbitan sesquioleate which produces enteric microparticles of excellent morphology, size and pH-sensitive drug release was assessed for its robustness to changes in formulation and processing parameters. Prednisolone and methacrylic acid and methyl methacrylate copolymer (Eudragit S) were the drug and polymer of choice. Emulsion solvent evaporation procedures are notoriously sensitive to changes in methodology and so emulsion stirring speed, drug loading, polymer concentration and surfactant (emulsifier) concentration were varied; microparticle size, encapsulation efficiency, yield and in vitro dissolution behaviour were assessed. The yield and encapsulation efficiency remained high under all stirring speeds, drug loadings and polymer concentrations. This suggests that the process is flexible and efficiency can be maintained. Surfactant concentration was an important parameter; above an optimum concentration resulted in poorly formed particles. All processing parameters affected particle size but this did not alter the acid resistance of the microparticles. At high pH values the smaller microparticles had the most rapid drug release. In conclusion, the microparticle preparation method was resistant to many changes in processing, although surfactant concentration was critical. Manipulation of particle size can be used to modify the drug release profiles without adversely affecting the gastro-resistant properties of these pH-responsive microparticles.
Collapse
Affiliation(s)
- Suchada Nilkumhang
- Department of Pharmaceutics, The School of Pharmacy, University of London, 29/39 Brunswick Square, London WC1N 1AX, UK
| | | |
Collapse
|