1
|
Varga P, Németh A, Zeiringer S, Roblegg E, Budai-Szűcs M, Balla-Bartos C, Ambrus R. Formulation and investigation of differently charged β-cyclodextrin-based meloxicam potassium containing nasal powders. Eur J Pharm Sci 2024; 202:106879. [PMID: 39154714 DOI: 10.1016/j.ejps.2024.106879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/25/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Nasal systemic drug delivery may provide an easy way to substitute parenteral or oral dosing, however, the excipients have an important role in nasal formulations to increase the permeability of the mucosa and prolong the residence time of the drug. In this work, we aimed to produce meloxicam potassium monohydrate (MXP) containing nasal powders by a nano spray drier with the use of a neutral, an anionic and a cationic β-cyclodextrin as permeation enhancers, and (polyvinyl)alcohol (PVA) as a water soluble polymer. The following examinations were performed in order to study the effect of the applied excipients on the nasal applicability of the formulations: laser scattering, scanning electron microscope measurement, XRPD, DSC and FTIR measurements, adhesivity, in vitro drug release and permeability tests through an artificial membrane and RPMI 2650 cells. Based on our results, spherical particles were prepared with a size of 1.89-2.21 µm in which MXP was present in an amorphous state. Secondary interactions were formed between the excipients and the drug. The charged cyclodextrin-based formulations showed significantly higher adhesive force values regardless of the presence of PVA. The drug release was fast and complete. The passive diffusion of MXP was influenced not only by the charge of the cyclodextrin, but the presence of PVA, too. The permeation of the drug was enhanced in the presence of the anionic cyclodextrin testing it on RPMI 2650 cell model.
Collapse
Affiliation(s)
- Patrícia Varga
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Street 6, Szeged 6720, Hungary
| | - Anett Németh
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Street 6, Szeged 6720, Hungary
| | - Scarlett Zeiringer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Universitaetsplatz 1, Graz 8010, Austria
| | - Eva Roblegg
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Universitaetsplatz 1, Graz 8010, Austria
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Street 6, Szeged 6720, Hungary
| | - Csilla Balla-Bartos
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Street 6, Szeged 6720, Hungary
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Street 6, Szeged 6720, Hungary.
| |
Collapse
|
2
|
Mittraparp-Arthorn P, Ungphaiboon S, Takahashi Yupanqui C, Suwannasin S, Wijukkul C, Tanmanee N, Srichana T. The potential of turmeric extract-loaded chitosan microparticles for the treatment of gastrointestinal disorders. J Microencapsul 2024; 41:547-563. [PMID: 39140474 DOI: 10.1080/02652048.2024.2390958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
AIM To develop turmeric extract-loaded chitosan microparticles for treating gastrointestinal disorders. METHODS The microparticles were prepared using a spray-drying process, optimised the characteristics by biomarker loading, and encapsulation efficiency, and assessed for bioactivities related to gastrointestinal diseases. RESULTS The optimised microparticles were spherical, with a mean diameter of 2.11 ± 0.34 µm, a SPAN of 4.46 ± 0.68, a zeta potential of +37.6 ± 0.2 mV, loading of 15.7% w/w curcuminoids, 5.4% w/w ar-turmerone, and encapsulation efficiency of 63.26 ± 1.62% w/w curcuminoids and 43.75 ± 1.33% w/w ar-turmerone. Encapsulation of turmeric extract improved release at 6 h by 20 times and mucoadhesion by 3.6 times. The microparticles exhibited high acid-neutralising capacity (1.64 ± 0.34 mEq/g) and inhibited nitric oxide production about twice as effectively as the turmeric extract, while maintaining antioxidant and antibacterial activities. CONCLUSION Encapsulation of turmeric extract in chitosan microparticles effectively enhanced therapeutic potential for gastrointestinal disorders.
Collapse
Affiliation(s)
| | - Suwipa Ungphaiboon
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Chutha Takahashi Yupanqui
- Center of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
| | - Sirikan Suwannasin
- Division of Biological Sciences, Faculty of Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Chutikan Wijukkul
- Division of Biological Sciences, Faculty of Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Niwan Tanmanee
- Pharmaceutical Laboratory Service Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
3
|
Wong SN, Li S, Low KH, Chan HW, Zhang X, Chow S, Hui B, Chow PCY, Chow SF. Development of favipiravir dry powders for intranasal delivery: An integrated cocrystal and particle engineering approach via spray freeze drying. Int J Pharm 2024; 653:123896. [PMID: 38346602 DOI: 10.1016/j.ijpharm.2024.123896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
The therapeutic potential of pharmaceutical cocrystals in intranasal applications remains largely unexplored despite progressive advancements in cocrystal research. We present the application of spray freeze drying (SFD) in successful fabrication of a favipiravir-pyridinecarboxamide cocrystal nasal powder formulation for potential treatment of broad-spectrum antiviral infections. Preliminary screening via mechanochemistry revealed that favipiravir (FAV) can cocrystallize with isonicotinamide (INA), but not nicotinamide (NCT) and picolinamide (PIC) notwithstanding their structural similarity. The cocrystal formation was characterized by differential scanning calorimetry, Fourier-transform infrared spectroscopy, and unit cell determination through Rietveld refinement of powder X-ray analysis. FAV-INA crystalized in a monoclinic space group P21/c with a unit cell volume of 1223.54(3) Å3, accommodating one FAV molecule and one INA molecule in the asymmetric unit. The cocrystal was further reproduced as intranasal dry powders by SFD, of which the morphology, particle size, in vitro drug release, and nasal deposition were assessed. The non-porous flake shaped FAV-INA powders exhibited a mean particle size of 19.79 ± 2.61 μm, rendering its suitability for intranasal delivery. Compared with raw FAV, FAV-INA displayed a 3-fold higher cumulative fraction of drug permeated in Franz diffusion cells at 45 min (p = 0.001). Dose fraction of FAV-INA deposited in the nasal fraction of a customized 3D-printed nasal cast reached over 80 %, whereas the fine particle fraction remained below 6 % at a flow rate of 15 L/min, suggesting high nasal deposition whilst minimal lung deposition. FAV-INA was safe in RPMI 2650 nasal and SH-SY5Y neuroblastoma cells without any in vitro cytotoxicity observed. This study demonstrated that combining the merits of cocrystallization and particle engineering via SFD can propel the development of advanced dry powder formulations for intranasal drug delivery.
Collapse
Affiliation(s)
- Si Nga Wong
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, Hong Kong Special Administrative Region
| | - Si Li
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, Hong Kong Special Administrative Region
| | - Kam-Hung Low
- Department of Chemistry, Faculty of Science, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Ho Wan Chan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Xinyue Zhang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Stephanie Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Bo Hui
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Philip C Y Chow
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, Hong Kong Special Administrative Region.
| |
Collapse
|
4
|
Ramirez CAB, Mathews PD, Madrid RRM, Garcia ITS, Rigoni VLS, Mertins O. Antibacterial polypeptide-bioparticle for oral administration: Powder formulation, palatability and in vivo toxicity approach. BIOMATERIALS ADVANCES 2023; 153:213525. [PMID: 37352744 DOI: 10.1016/j.bioadv.2023.213525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023]
Abstract
The upsurge of bacterial resistance to conventional antibiotics turned a well-recognized public health threat. The need of developing new biomaterials of effective practical use in order to tackle bacterial resistance became urgent. In this study, a submicrometric bioparticle of known antibacterial activity was produced in powder form with suitable texture and appealing characteristics for effective oral administration. Through complex coacervating a natural-source antimicrobial polypeptide with chitosan-N-arginine and alginate, the bioactive polypeptide was physically incorporated to the bioparticle whose structure positively responds to the pH variations found in gastrointestinal tract. The powder formulation presented high palatability that was evaluated using fish as in vivo animal model. A thorough survey of the fish intestinal tissues, following a systematic oral administration, revealed high penetration potential of the biomaterial through epithelial cells and deeper intestine layers. Despite, no cytotoxic effect was observed in analyzing the tissues through different histology methods. The absence of intestinal damage was corroborated by immune histochemistry, being the integrity of epithelial motor myosin Vb and related traffic proteins preserved. Hematology further endorsed absence of toxicity in blood cells whose morphology was evaluated in detail. The study evidenced the applicability potential of a new biomaterial of appealing and safe oral administration of antibacterial polypeptide.
Collapse
Affiliation(s)
- Carlos A B Ramirez
- Laboratory of Nano Bio Materials, Department of Biophysics, Paulista Medical Scholl, Federal University of Sao Paulo, 04023-062 Sao Paulo, Brazil
| | - Patrick D Mathews
- Laboratory of Nano Bio Materials, Department of Biophysics, Paulista Medical Scholl, Federal University of Sao Paulo, 04023-062 Sao Paulo, Brazil; Muséum National d'Histoire Naturelle, Sorbonne Université, CP26, 75231 Paris, France.
| | - Rafael R M Madrid
- Laboratory of Nano Bio Materials, Department of Biophysics, Paulista Medical Scholl, Federal University of Sao Paulo, 04023-062 Sao Paulo, Brazil
| | - Irene T S Garcia
- Department of Physical-Chemistry, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Brazil
| | - Vera L S Rigoni
- Laboratory of Nano Bio Materials, Department of Biophysics, Paulista Medical Scholl, Federal University of Sao Paulo, 04023-062 Sao Paulo, Brazil
| | - Omar Mertins
- Laboratory of Nano Bio Materials, Department of Biophysics, Paulista Medical Scholl, Federal University of Sao Paulo, 04023-062 Sao Paulo, Brazil.
| |
Collapse
|
5
|
Ahmed Tawfik M, Eltaweel MM, Farag MM, Shamsel-Din HA, Ibrahim AB. Sonophoresis-assisted transdermal delivery of antimigraine-loaded nanolipomers: Radio-tracking, histopathological assessment and in-vivo biodistribution study. Int J Pharm 2023; 644:123338. [PMID: 37607646 DOI: 10.1016/j.ijpharm.2023.123338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023]
Abstract
Migraine is a disabling neurovascular polygenic disorder affecting life quality with escorted socioeconomic encumbrances. Herein, we investigated the consolidated amalgamation of passive lipomer approach alongside active sonophoresis assisted transdermal delivery of zolmitriptan (ZT) using high frequency ultrasound pre-treatment protocol to mitigate migraine attacks. A modified nanoprecipitation technique was utilized to prepare zolmitriptan loaded lipomers (ZTL) adopting 23 factorial design. Three factors were scrutinized namely lipid type, ZT: lipid ratio and ZT: Gantrez® ratio. The prepared systems were characterized regarding particle size, zeta potential, polydispersity index, entrapment efficiency and in-vitro release studies. The best achieved ZTL system was evaluated for ZT- Gantrez® intermolecular interactions, drug crystallinity, morphology, ex-vivo permeation and histopathological examination. Finally, a comparative in-vivo biodistribution study through radiotracking technique using Technetium-99 m was adopted. L2 was the best-achieved ZTL system with respect to spherical particle size (390.7 nm), zeta-potential (-30.8 mV), PDI (0.2), entrapment efficiency (86.2%), controlled release profile, flux (147.13 μg/cm2/hr) and enhancement ratio (5.67). Histopathological studies proved the safety of L2 system upon application on skin. L2 revealed higher brain Cmax (12.21 %ID/g), prolonged brain MRT (8.67 hr), prolonged brain 0.23 hr), significantly high relative bioavailability (2929.36%) and similar brain Tmax (0.5 hr) compared to I.V. route with higher brain/blood ratio. Thus, sonophoresis assisted transdermal delivery of ZTL offers a propitious alterative to alleviate migraine symptoms.
Collapse
Affiliation(s)
- Mai Ahmed Tawfik
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt
| | - Mai M Eltaweel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt
| | - Michael M Farag
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt.
| | - Hesham A Shamsel-Din
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt
| | - Ahmed B Ibrahim
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt
| |
Collapse
|
6
|
Babu SR, Shekara HH, Sahoo AK, Harsha Vardhan PV, Thiruppathi N, Venkatesh MP. Intranasal nanoparticulate delivery systems for neurodegenerative disorders: a review. Ther Deliv 2023; 14:571-594. [PMID: 37691577 DOI: 10.4155/tde-2023-0019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
Neurodegenerative diseases are a significant cause of mortality worldwide, and the blood-brain barrier (BBB) poses a significant challenge for drug delivery. An intranasal route is a prominent approach among the various methods to bypass the BBB. There are different pathways involved in intranasal drug delivery. The drawbacks of this method include mucociliary clearance, enzymatic degradation and poor drug permeation. Novel nanoformulations and intranasal drug-delivery devices offer promising solutions to overcome these challenges. Nanoformulations include polymeric nanoparticles, lipid-based nanoparticles, microspheres, liposomes and noisomes. Additionally, intranasal devices could be utilized to enhance drug-delivery efficacy. Therefore, intranasal drug-delivery systems show potential for treating neurodegenerative diseases through trigeminal or olfactory pathways, which can significantly improve patient outcomes.
Collapse
Affiliation(s)
- Someshbabu Ramesh Babu
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Harshith Hosahalli Shekara
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Ashish Kumar Sahoo
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Pyda Venkata Harsha Vardhan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Nitheesh Thiruppathi
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Madhugiri Prakash Venkatesh
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Faculty of Pharmaceutical Sciences, UCSI University, Kaula Lampur, Malaysia
| |
Collapse
|
7
|
Lukova P, Katsarov P. Contemporary Aspects of Designing Marine Polysaccharide Microparticles as Drug Carriers for Biomedical Application. Pharmaceutics 2023; 15:2126. [PMID: 37631340 PMCID: PMC10458623 DOI: 10.3390/pharmaceutics15082126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The main goal of modern pharmaceutical technology is to create new drug formulations that are safer and more effective. These formulations should allow targeted drug delivery, improved drug stability and bioavailability, fewer side effects, and reduced drug toxicity. One successful approach for achieving these objectives is using polymer microcarriers for drug delivery. They are effective for treating various diseases through different administration routes. When creating pharmaceutical systems, choosing the right drug carrier is crucial. Biomaterials have become increasingly popular over the past few decades due to their lack of toxicity, renewable sources, and affordability. Marine polysaccharides, in particular, have been widely used as substitutes for synthetic polymers in drug carrier applications. Their inherent properties, such as biodegradability and biocompatibility, make marine polysaccharide-based microcarriers a prospective platform for developing drug delivery systems. This review paper explores the principles of microparticle design using marine polysaccharides as drug carriers. By reviewing the current literature, the paper highlights the challenges of formulating polymer microparticles, and proposes various technological solutions. It also outlines future perspectives for developing marine polysaccharides as drug microcarriers.
Collapse
Affiliation(s)
- Paolina Lukova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Plamen Katsarov
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
8
|
Meirelles LMA, de Melo Barbosa R, de Almeida Júnior RF, Machado PRL, Perioli L, Viseras C, Raffin FN. Biocomposite for Prolonged Release of Water-Soluble Drugs. Pharmaceutics 2023; 15:1722. [PMID: 37376170 DOI: 10.3390/pharmaceutics15061722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
This study aimed to develop a prolonged-release system based on palygorskite and chitosan, which are natural ingredients widely available, affordable, and accessible. The chosen model drug was ethambutol (ETB), a tuberculostatic drug with high aqueous solubility and hygroscopicity, which is incompatible with other drugs used in tuberculosis therapy. The composites loaded with ETB were obtained using different proportions of palygorskite and chitosan through the spray drying technique. The main physicochemical properties of the microparticles were determined using XRD, FTIR, thermal analysis, and SEM. Additionally, the release profile and biocompatibility of the microparticles were evaluated. As a result, the chitosan-palygorskite composites loaded with the model drug appeared as spherical microparticles. The drug underwent amorphization within the microparticles, with an encapsulation efficiency greater than 84%. Furthermore, the microparticles exhibited prolonged release, particularly after the addition of palygorskite. They demonstrated biocompatibility in an in vitro model, and their release profile was influenced by the proportion of inputs in the formulation. Therefore, incorporating ETB into this system offers improved stability for the administered product in the initial tuberculosis pharmacotherapy dose, minimizing its contact with other tuberculostatic agents in the treatment, as well as reducing its hygroscopicity.
Collapse
Affiliation(s)
- Lyghia M A Meirelles
- Laboratory of Drug Development, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil
| | - Raquel de Melo Barbosa
- Laboratory of Drug Development, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Campus de Cartuja s/n, University of Granada, 18071 Granada, Spain
| | | | - Paula Renata Lima Machado
- Immunology Laboratory, Pharmacy Faculty, Federal University of Rio Grande do Norte, Natal 59010-180, Brazil
| | - Luana Perioli
- Department of Pharmaceutic Science, University of Perugia, 06123 Perugia, Italy
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Campus de Cartuja s/n, University of Granada, 18071 Granada, Spain
- Andalusian Institute of Earth Sciences, CSIC-University of Granada, Av. de Las Palmeras 4, 18100 Armilla, Spain
| | - Fernanda Nervo Raffin
- Laboratory of Drug Development, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil
| |
Collapse
|
9
|
Inoue D, Yamashita A, To H. Development of In Vitro Evaluation System for Assessing Drug Dissolution Considering Physiological Environment in Nasal Cavity. Pharmaceutics 2022; 14:pharmaceutics14112350. [PMID: 36365167 PMCID: PMC9697526 DOI: 10.3390/pharmaceutics14112350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Estimating the dissolution behavior of a solid in the nasal mucus is challenging for solid dosage forms designed for the nasal application as the solid dissolves into nasal mucus and permeates through the mucosa. In the current study, the dissolution behavior of powders in the artificial nasal fluid was investigated using a 3D-printed chamber system to establish in vitro evaluation system for the dissolution of solid formulations that can simulate the intranasal environment in vivo. The dissolution rates of the five model drugs correlated with their solubility (r2 = 0.956, p < 0.01). The permeation rate of drugs across the Calu-3 cell layers after powder application depends on the membrane permeability of the drug. An analysis of membrane permeability considering the dissolution of powders showed the possibility of characterizing whether the drug in the powder was dissolution-limited or permeation-limited. This suggests that critical information can be obtained to understand which mechanism is more effective for the improvement of drug absorption from powders. This study indicates that the elucidation of drug dissolution behavior into nasal mucus is an important factor for the formulation of nasal powders and that the in vitro system developed could be a useful tool.
Collapse
Affiliation(s)
- Daisuke Inoue
- Department of Medical Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Molecular Pharmaceutics Laboratory, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
- Correspondence:
| | - Ayari Yamashita
- Molecular Pharmaceutics Laboratory, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Hideto To
- Department of Medical Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
10
|
Chavda VP, Jogi G, Shah N, Athalye MN, Bamaniya N, K Vora L, Cláudia Paiva-Santos A. Advanced particulate carrier-mediated technologies for nasal drug delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
11
|
Formulation and In Vitro Characterization of a Vacuum-Dried Drug–Polymer Thin Film for Intranasal Application. Polymers (Basel) 2022; 14:polym14142954. [PMID: 35890730 PMCID: PMC9320708 DOI: 10.3390/polym14142954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022] Open
Abstract
Intranasal drug applications show significant therapeutic potential for diverse pharmaceutical modalities. Because the formulation applied to the nasal cavity is discharged to the pharyngeal side by mucociliary clearance, the formulation should be dissolved effectively in a limited amount of mucus within its retention time in the nasal cavity. In this study, to develop novel formulations with improved dissolution behavior and compatibility with the intranasal environment, a thin-film formulation including drug and polymer was prepared using a vacuum-drying method. The poorly water-soluble drugs ketoprofen, flurbiprofen, ibuprofen, and loxoprofen were dissolved in a solvent comprising water and methanol, and evaporated to obtain a thin film. Physical analyses using differential scanning calorimetry (DSC), powder X-ray diffraction analysis (PXRD), and scanning electron microscopy SEM revealed that the formulations were amorphized in the film. The dissolution behavior of the drugs was investigated using an in vitro evaluation system that mimicked the intranasal physiological environment. The amorphization of drugs formulated with polymers into thin films using the vacuum-drying method improved the dissolution rate in artificial nasal fluid. Therefore, the thin film developed in this study can be safely and effectively used for intranasal drug application.
Collapse
|
12
|
Development and Characterizations of Pullulan and Maltodextrin-Based Oral Fast-Dissolving Films Employing a Box-Behnken Experimental Design. MATERIALS 2022; 15:ma15103591. [PMID: 35629620 PMCID: PMC9146677 DOI: 10.3390/ma15103591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 01/27/2023]
Abstract
Migraine is a neurological disorder characterized by severe headaches, visual aversions, auditory, and olfactory disorders, accompanied by nausea and vomiting. Zolmitriptan (ZMT®) is a potent 5HT1B/1D serotonin receptor agonist frequently used for the treatment of migraine. It has erratic absorption from the gastrointestinal tract (GIT), but its oral bioavailability is low (40-45%) due to the hepatic metabolism. This makes it an ideal candidate for oral fast dissolving formulations. Hence, the current study was undertaken to design and develop oral fast-dissolving films (OFDFs) containing ZMT for migraine treatment. The OFDFs were formulated by the solvent casting method (SCM) using Pullulan (PU) and maltodextrin (MDX) as film-forming agents and propylene glycol (PG) as a plasticizer. The strategy was designed using Box-Behnken experimental design considering the proportion of PU:MDX and percentage of PG as independent variables. The effectiveness of the OFDF's was measured based on the following responses: drug release at five min, disintegration time (D-time), and tensile strength (TS). The influence of formulation factors, including percent elongation (%E), thickness, water content, moisture absorption, and folding endurance on ZMT-OFDFs, were also studied. The results showed a successful fabrication of stable ZMT-OFDFs, with surface uniformity and amorphous shape of ZMT in fabricated films. The optimized formulation showed a remarkable rapid dissolution, over 90% within the first 5 min, a fast D-time of 18 s, and excellent mechanical characteristics. Improved maximum plasma concentration (C max) and area under the curve (AUC 0-t) in animals (rats) treated with ZMT-OFDFs compared to those treated with an intra-gastric (i-g) suspension of ZMT were also observed. Copolymer OFDFs with ZMT is an exciting proposition with great potential for the treatment of migraine headache. This study offers a promising strategy for developing ZMT-OFDFs using SCM. ZMT-OFDFs showed remarkable rapid dissolution and fast D-time, which might endeavor ZMT-OFDFs as an auspicious alternative approach to improve patient compliance and shorten the onset time of ZMT in migraine treatment.
Collapse
|
13
|
Henriques P, Fortuna A, Doktorovová S. Spray dried powders for nasal delivery: Process and formulation considerations. Eur J Pharm Biopharm 2022; 176:1-20. [PMID: 35568256 DOI: 10.1016/j.ejpb.2022.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 11/18/2022]
Abstract
Powders for nasal delivery have been recognized as advantageous dosage forms over liquids due to increased stability and residence time on nasal mucosa, with improved bioavailability. They can be manufactured by spray-drying, allowing the optimization of the particle properties that are critical to guarantee nasal deposition, as size and shape. It is also a scalable and flexible method already explored extensively in the pharmaceutical industry. However, it is important to understand how process parameters, particle physical properties and formulation considerations affect the product performance. Hence, this review aims to provide an overview of nasal powder formulation and processing through spray drying, with an emphasis on the variables that impact on performance. To this purpose, we describe the physical, biological and pharmacological phenomena prior to drug absorption as well as the most relevant powder properties. Formulation considerations including qualitative and quantitative composition are then reviewed, as well as manufacturing considerations including spray drying relevant parameters.
Collapse
Affiliation(s)
- Patrícia Henriques
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; R&D, Drug Product Development, Hovione FarmaCiencia SA, Lisbon, Portugal
| | - Ana Fortuna
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | | |
Collapse
|
14
|
Jha S, Mishra D. Evaluation of Brain Targeting Potential of Zolmitriptan Mucoadhesive Nanoparticles for Intranasal Drug Delivery. Pharm Nanotechnol 2022; 10:113-124. [PMID: 35240970 DOI: 10.2174/2211738510666220303160414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/13/2021] [Accepted: 12/30/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Hydrophilic drugs are poor applicants of brain targeting via oral route due to the presence of blood-brain barrier that allows only small lipophilic molecules to freely access the brain. Due to unique anatomical connections between the nasal cavity and the brain, intranasal administration can be explored for drug delivery to the brain directly that circumvents blood-brain barrier too. OBJECTIVES Zolmitriptan is a widely used antimigraine drug and its brain targeting by nasal route in form of mucoadhesive nanoparticles is more effective in migraine treatment as it provide fast relief and good bioavailability as compared to its oral drug delivery. In the present study zolmitriptan mucoadhesive nanoparticles were prepared to improve the bioavailability and brain targeting for the better management of Migraine attacks. METHODS The mucoadhesive polymeric nanoparticles of zolmitriptan were formulated by modified ionic gelation method using thiolated chitosan. The pharmacokinetic parameters were counted in male Wistar rats by intranasal and oral delivery of anti-migraine drug zolmitriptan and compared statistically. The concentration of zolmitriptan in the blood plasma and brain samples was determined by using liquid-liquid extraction method followed by a reversed- phase high performance liquid chromatography (RP-HPLC) analysis. The pharmacodynamic analysis was done in adult male Swiss albino mice by behavioral models, light/dark box model, and acetic acid- induced writhing (abdominal stretching or constriction). These tests were used to reproduce the important associated symptoms of migraine viz. hyperalgesia (nociceptive sensitization) and photophobia for the assessment of the therapeutic potential of intranasal delivery of nanoparticles for anti-migraine activity. RESULTS The absolute bioavailability accessed for Zolmitriptan nanoparticles by IN route was found to be very high (193%), suggested that the sufficient amount drug transported by nanoparticles and DTE ratio was calculated 2.8, revealed better nose to brain transport by zolmitriptan nanoparticles as compared to oral delivery in male Wistar rats. A Significant increase in tolerance capacity of animals to bright light and fall in the numbers of stretching in mice suggested that the better management of migraine-associated symptoms by the zolmitriptan nanoparticles. CONCLUSION Thus present study confers the significance of nasal drug delivery for brain targeting of zolmitriptan nanoparticles for the treatment of migraine.
Collapse
Affiliation(s)
- Sunena Jha
- Baba MastNath University Faculty of Pharmacy India
| | | |
Collapse
|
15
|
Varga P, Ambrus R, Szabó-Révész P, Kókai D, Burián K, Bella Z, Fenyvesi F, Bartos C. Physico-Chemical, In Vitro and Ex Vivo Characterization of Meloxicam Potassium-Cyclodextrin Nanospheres. Pharmaceutics 2021; 13:pharmaceutics13111883. [PMID: 34834298 PMCID: PMC8617959 DOI: 10.3390/pharmaceutics13111883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 01/02/2023] Open
Abstract
Nasal drug delivery has many beneficial properties, such as avoiding the first pass metabolism and rapid onset of action. However, the limited residence time on the mucosa and limited absorption of certain molecules make the use of various excipients necessary to achieve high bioavailability. The application of mucoadhesive polymers can increase the contact time with the nasal mucosa, and permeation enhancers can enhance the absorption of the drug. We aimed to produce nanoparticles containing meloxicam potassium (MEL-P) by spray drying intended for nasal application. Various cyclodextrins (hydroxypropyl-β-cyclodextrin, α-cyclodextrin) and biocompatible polymers (hyaluronic acid, poly(vinylalcohol)) were used as excipients to increase the permeation of the drug and to prepare mucoadhesive products. Physico-chemical, in vitro and ex vivo biopharmaceutical characterization of the formulations were performed. As a result of spray drying, mucoadhesive nanospheres (average particle size <1 µm) were prepared which contained amorphous MEL-P. Cyclodextrin-MEL-P complexes were formed and the applied excipients increased the in vitro and ex vivo permeability of MEL-P. The highest amount of MEL-P permeated from the α-cyclodextrin-based poly(vinylalcohol)-containing samples in vitro (209 μg/cm2) and ex vivo (1.47 μg/mm2) as well. After further optimization, the resulting formulations may be promising for eliciting a rapid analgesic effect through the nasal route.
Collapse
Affiliation(s)
- Patrícia Varga
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6720 Szeged, Hungary; (P.V.); (R.A.); (P.S.-R.)
| | - Rita Ambrus
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6720 Szeged, Hungary; (P.V.); (R.A.); (P.S.-R.)
| | - Piroska Szabó-Révész
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6720 Szeged, Hungary; (P.V.); (R.A.); (P.S.-R.)
| | - Dávid Kókai
- Department of Medical Microbiology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary; (D.K.); (K.B.)
| | - Katalin Burián
- Department of Medical Microbiology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary; (D.K.); (K.B.)
| | - Zsolt Bella
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, University of Szeged, 6725 Szeged, Hungary;
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary;
| | - Csilla Bartos
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6720 Szeged, Hungary; (P.V.); (R.A.); (P.S.-R.)
- Correspondence:
| |
Collapse
|
16
|
Abd El-Halim SM, Mamdouh MA, Eid SM, Ibrahim BMM, Aly Labib DA, Soliman SM. The Potential Synergistic Activity of Zolmitriptan Combined in New Self-Nanoemulsifying Drug Delivery Systems: ATR-FTIR Real-Time Fast Dissolution Monitoring and Pharmacodynamic Assessment. Int J Nanomedicine 2021; 16:6395-6412. [PMID: 34566412 PMCID: PMC8456549 DOI: 10.2147/ijn.s325697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/05/2021] [Indexed: 12/21/2022] Open
Abstract
Purpose The current work aimed to overcome the poor permeability and undesirable adverse effects of Zolmitriptan (ZMT) and to increase its efficacy in the treatment of acute migraine by exploiting the synergistic effect of the essential oil, lavender, to fabricate ZMT self-nanoemulsifying drug delivery systems (ZMT-SNEDDS). Methods ZMT-SNEDDS were fabricated based on full factorial design (32) to statistically assess the impact of oil and surfactant concentrations on the nanoemulsion globule size, zeta potential and percentage drug dissolution efficiency. An ATR-FTIR method was developed and validated for continuous real-time monitoring of ZMT dissolution and permeation. The dose of the optimized ZMT-SNEDDS used in the efficacy study was selected according to the acute toxicity study. The efficacy study was performed on migraineous rats induced by nitroglycerin and was evaluated by the activity cage and thermal tests, electroencephalogram, electroconvulsive stimulation, and biochemical analysis of brain tissue. Finally, histopathological and immunohistochemical examinations of the cerebra were carried out. Results Upon dilution, the optimized ZMT-SNEDDS (F5) exhibited nanosized spherical droplets of 19.59±0.17 nm with narrow size distribution, zeta potential (-23.5±1.17mV) and rapid emulsification characteristics. ATR-FTIR spectra elucidated the complete time course of dissolution and permeation, confirming F5 superior performance. Moreover, ZMT-SNEDDS (F5) showed safety in an acute toxicity study. ZMT concentration in rat brain tissues derived from F5 was lower compared to that of ZMT solution, yet its effect was better on the psychological state, algesia, as well as maintaining normal brain electrical activity and delayed convulsions. It counteracted the cerebral biochemical alternations induced by nitroglycerin, which was confirmed by histopathological examination. Conclusion In a nutshell, these findings corroborated the remarkable synergistic efficacy and the high potency of lavender oil-based ZMT-SNEDDS in migraine management compared to the traditional zolmitriptan solution.
Collapse
Affiliation(s)
- Shady M Abd El-Halim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza, 12585, Egypt
| | - Mohamed A Mamdouh
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza, 12585, Egypt
| | - Sherif M Eid
- Analytical Chemistry, Faculty of Pharmacy, October 6 University, 6th of October City, Giza, 12585, Egypt
| | - Bassant M M Ibrahim
- Department of Pharmacology, Medical Research Division, National Research Centre, Giza, 12622, Egypt
| | - Dina A Aly Labib
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Cairo, 11559, Egypt
| | - Sara M Soliman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza, 12585, Egypt
| |
Collapse
|
17
|
Physico-Chemical and In Vitro Characterization of Chitosan-Based Microspheres Intended for Nasal Administration. Pharmaceutics 2021; 13:pharmaceutics13050608. [PMID: 33922172 PMCID: PMC8146120 DOI: 10.3390/pharmaceutics13050608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/05/2022] Open
Abstract
The absorption of non-steroidal anti-inflammatory drugs (NSAIDs) through the nasal epithelium offers an innovative opportunity in the field of pain therapy. Thanks to the bonding of chitosan to the nasal mucosa and its permeability-enhancing effect, it is an excellent choice to formulate microspheres for the increase of drug bioavailability. The aim of our work includes the preparation of spray-dried cross-linked and non-cross-linked chitosan-based drug delivery systems for intranasal application, the optimization of spray-drying process parameters (inlet air temperature, pump rate), and the composition of samples. Cross-linked products were prepared by using different amounts of sodium tripolyphosphate. On top of these, the micrometric properties, the structural characteristics, the in vitro drug release, and the in vitro permeability of the products were studied. Spray-drying resulted in micronized chitosan particles (2–4 μm) regardless of the process parameters. The meloxicam (MEL)-containing microspheres showed nearly spherical habit, while MEL was present in a molecularly dispersed state. The highest dissolved (>90%) and permeated (~45 µg/cm2) MEL amount was detected from the non-cross-linked sample. Our results indicate that spray-dried MEL-containing chitosan microparticles may be recommended for the development of a novel drug delivery system to decrease acute pain or enhance analgesia by intranasal application.
Collapse
|
18
|
Shreya AB, Pandey A, Nikam AN, Patil PO, Sonawane R, Deshmukh PK, Mutalik S. One- pot development of spray dried cationic proliposomal dry powder insufflation: Optimization, characterization and bio-interactions. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
19
|
Surti N, Mahajan AN, Patel D, Patel A, Surti Z. Spray dried solid dispersion of repaglinide using hypromellose acetate succinate: in vitro and in vivo characterization. Drug Dev Ind Pharm 2020; 46:1622-1631. [PMID: 32816575 DOI: 10.1080/03639045.2020.1812631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE This research study attempted to develop spray-dried solid dispersion, to enhance the solubility of repaglinide, an antidiabetic drug. SIGNIFICANCE Aqueous solubility plays a major role in drug delivery because any chemical entity has to be in a dissolved state at the site of absorption, in order to get absorbed. Solid dispersion (SD) is one of the widely used techniques to enhance solubility and hence dissolution rate of poorly soluble drugs. METHODS Repagnilide, in hypromellose acetate succinate (HPMCAS) solution, was dried by spray drying to obtain spray-dried solid dispersion (SDSD). Plackett-Burman and Box-Behnken designs were used for screening formulation as well as process parameters, and optimization respectively. DSC, XRD, SEM were carried out to confirm the preparation of solid dispersion. SDSD was evaluated for in vitro dissolution, flow properties, Percentage yield and in vivo oral glucose tolerance test. RESULT Spray dried solid dispersion comprising (w/w) drug:polymer ratio of 1:3.82, 2.56% of aerosil and inlet temperature of 90 °C, corresponded to the best formulation obtained in this work. It showed t 85% of less than 15 min and a significant reduction in blood glucose level in rats as compared to pure drug and marketed formulation. CONCLUSION Thus, it can be concluded that spray-dried solid dispersion prepared using HPMCAS is a useful technique for solubility and dissolution enhancement of repaglinide.
Collapse
Affiliation(s)
- Naazneen Surti
- Department of Pharmaceutics, Babaria Institute of Pharmacy, Vadodara, India
| | | | - Dhruvi Patel
- Department of Pharmaceutics, Babaria Institute of Pharmacy, Vadodara, India
| | - Ashwini Patel
- Department of Pharmaceutics, Babaria Institute of Pharmacy, Vadodara, India
| | - Zubiya Surti
- Department of Pharmaceutics, Babaria Institute of Pharmacy, Vadodara, India
| |
Collapse
|
20
|
von Mentzer B, Russo AF, Zhang Z, Kuburas A, Killoran PM, D'Aloisio V, Nizic L, Capel V, Kendall DA, Coxon CR, Hutcheon GA. A CGRP receptor antagonist peptide formulated for nasal administration to treat migraine. J Pharm Pharmacol 2020; 72:1352-1360. [PMID: 32588458 PMCID: PMC7486274 DOI: 10.1111/jphp.13317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/12/2020] [Accepted: 05/23/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To investigate the formulation of the peptide-based antagonist (34 Pro,35 Phe)CGRP27-37 , of the human calcitonin gene-related peptide (CGRP) receptor as a potential nasally delivered migraine treatment. METHODS Peptide sequences were prepared using automated methods and purified by preparative HPLC. Their structure and stability were determined by LC-MS. Antagonist potency was assessed by measuring CGRP-stimulated cAMP accumulation in SK-N-MC, cells and in CHO cells overexpressing the human CGRP receptor. In vivo activity was tested in plasma protein extravasation (PPE) studies using Evans blue dye accumulation. Peptide-containing chitosan microparticles were prepared by spray drying. KEY FINDINGS (34 Pro,35 Phe)CGRP27-37 exhibited a 10-fold increased affinity compared to αCGRP27-37 . Administration of (34 Pro,35 Phe)CGRP27-37 to mice led to a significant decrease in CGRP-induced PPE confirming antagonistic properties in vivo. There was no degradation of (34 Pro,35 Phe)CGRP27-37 and no loss of antagonist potency during formulation and release from chitosan microparticles. CONCLUSIONS (34 Pro,35 Phe)CGRP27-37 is a potent CGRP receptor antagonist both in vitro and in vivo, and it can be formulated as a dry powder with no loss of activity indicating its potential as a nasally formulated anti-migraine medicine.
Collapse
Affiliation(s)
| | - Andrew F Russo
- Department of Molecular Physiology and Biophysics, Center for Prevention and Treatment of Visual Loss, Veterans Administration Health Center, University of Iowa, Iowa City, IA, USA
| | - Zhongming Zhang
- College of Medicine, Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Adisa Kuburas
- Department of Molecular Physiology and Biophysics, Center for Prevention and Treatment of Visual Loss, Veterans Administration Health Center, University of Iowa, Iowa City, IA, USA
| | - Patrick M Killoran
- Division of Structural Biology (STRUBI), Harwell Campus, University of Oxford, Didcot, UK
| | - Vera D'Aloisio
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Laura Nizic
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | | | - David A Kendall
- Innovipharm Limited, West Kirby, UK.,School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Christopher R Coxon
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Gillian A Hutcheon
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
21
|
Pastor Y, Ting I, Martínez AL, Irache JM, Gamazo C. Intranasal delivery system of bacterial antigen using thermosensitive hydrogels based on a Pluronic-Gantrez conjugate. Int J Pharm 2020; 579:119154. [PMID: 32081801 DOI: 10.1016/j.ijpharm.2020.119154] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/12/2020] [Accepted: 02/15/2020] [Indexed: 02/07/2023]
Abstract
Thermosensitive hydrogels have been studied as feasible needle-avoidance alternative to vaccine delivery. In this work, we report the development of a new thermal-sensitive hydrogel for intranasal vaccine delivery. This delivery system was formulated with a combination of the polymer Gantrez® AN119 and the surfactant Pluronic® F127 (PF127), with a high biocompatibility, biodegradability and immunoadjuvant properties. Shigella flexneri outer membrane vesicles were used as the antigen model. A stable and easy-to-produce thermosensitive hydrogel which allowed the incorporation of the OMV-antigenic complex was successfully synthetized. A rapid gel formation was achieved at body temperature, which prolonged the OMV-antigens residence time in the nasal cavity of BALB/c mice when compared to intranasal delivery of free-OMVs. In addition, the bacterial antigens showed a fast release profile from the hydrogel in vitro, with a peak at 30 min of incubation at 37 °C. Hydrogels appeared to be non-cytotoxic in the human epithelial HeLa cell line and nose epithelium as well, as indicated by the absence of histopathological features. Immunohistochemical studies revealed that after intranasal administration the OMVs reached the nasal associated lymphoid tissue. These results support the use of here described thermosensitive hydrogels as a potential platform for intranasal vaccination.
Collapse
Affiliation(s)
- Yadira Pastor
- Department of Microbiology and Parasitology, Institute of Tropical Health University of Navarra, 31008 Pamplona, Spain
| | - Isaiah Ting
- Department of Microbiology and Parasitology, Institute of Tropical Health University of Navarra, 31008 Pamplona, Spain
| | - Ana Luisa Martínez
- Department of Technology and Pharmaceutical Chemistry, University of Navarra, Spain
| | - Juan Manuel Irache
- Department of Technology and Pharmaceutical Chemistry, University of Navarra, Spain
| | - Carlos Gamazo
- Department of Microbiology and Parasitology, Institute of Tropical Health University of Navarra, 31008 Pamplona, Spain.
| |
Collapse
|
22
|
Hameed HA, Khan S, Shahid M, Ullah R, Bari A, Ali SS, Hussain Z, Sohail M, Khan SU, Htar TT. Engineering of Naproxen Loaded Polymer Hybrid Enteric Microspheres for Modified Release Tablets: Development, Characterization, in silico Modelling and in vivo Evaluation. Drug Des Devel Ther 2020; 14:27-41. [PMID: 32021089 PMCID: PMC6954845 DOI: 10.2147/dddt.s232111] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/13/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Naproxen (NP) is a non-steroidal anti-inflammatory drug with poor aqueous solubility and low oral bioavailability, which may lead to therapeutic failure. NP causes crucial GIT irritation, bleeding, and peptic and duodenal ulcers. PURPOSE OF THE STUDY This study aimed to engineer and characterize polymer hybrid enteric microspheres using an integrated (experimental and molecular modelling) approach with further development to solid dosage form with modified drug release kinetics and improved bioavailability. MATERIALS AND METHODS NP loaded polymer hybrid enteric microspheres (PHE-Ms) were fabricated by using a modified solvent evaporation technique coupled with molecular modelling (MM) approach. The PHE-Ms were characterized by particle size, distribution, morphology, crystallinity, EE, drug-polymer compatibility, and DSC. The optimized NP loaded PHE-Ms were further subjected to downstream procedures including tablet dosage form development, stability studies and comparative in vitro-in vivo evaluation. RESULTS The hydrophobic polymer EUD-L100 and hydrophilic polymer HPMC-E5 delayed and modified drug release at intestinal pH while imparting retardation of NP release at gastric pH to diminish the gastric side effects. The crystallinity of the NP loaded PHE-Ms was established through DSC and P (XRD). The particle size for the developed formulations of PEH-Ms (M1-M5) was in the range from 29.06 ±7.3-74.31 ± 17.7 μm with Span index values of 0.491-0.69, respectively. The produced NP hybrid microspheres demonstrated retarded drug release at pH 1.2 and improved dissolution at pH 6.8. The in vitro drug release patterns were fitted to various release kinetic models and the best-followed model was the Higuchi model with a release exponent "n" value > 0.5. Stability studies at different storage conditions confirmed stability of the NP loaded PHE-Ms based tablets (P<0.05). The molecular modelling (MM) study resulted in adequate binding energy of co-polymer complex SLS-Eudragit-HPMC-Naproxen (-3.9 kcal/mol). In contrast to the NP (unprocessed) and marketed formulations, a significant increase in the Cmax of PHE-MT1 (44.41±4.43) was observed. CONCLUSION The current study concludes that developing NP loaded PHE-Ms based tablets could effectively reduce GIT consequences with restored therapeutic effects. The modified release pattern could improve the dissolution rate and enhancement of oral bioavailability. The MM study strengthens the polymer-drug relationship in microspheres.
Collapse
Affiliation(s)
- Hajra Afeera Hameed
- Department of Pharmacy, University of Malakand, Chakdara, Khyber Pakhtunkhwa18800, Pakistan
| | - Shahzeb Khan
- Department of Pharmacy, University of Malakand, Chakdara, Khyber Pakhtunkhwa18800, Pakistan
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban4000, South Africa
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Muhammad Shahid
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Riaz Ullah
- Medicinal, Aromatic & Poisonous Plants Research Center (MAPPRC), College of Pharmacy, King Saud University, Riyadh11451, Saudi Arabia
| | - Ahmed Bari
- Central Laboratory, College of Pharmacy, King Saud University, Riyadh11451, Saudi Arabia
| | - Syed Saeed Ali
- Central Laboratory, College of Pharmacy, King Saud University, Riyadh11451, Saudi Arabia
| | - Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah27272, United Arab Emirates
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad22060, Pakistan
| | - Shafi Ullah Khan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya47500, Malaysia
| | - Thet Thet Htar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya47500, Malaysia
| |
Collapse
|
23
|
Niu R, Yang Y, Wang S, Zhou X, Luo S, Zhang C, Wang Y. Chitosan microparticle-based immunoaffinity chromatography supports prepared by membrane emulsification technique: Characterization and application. Int J Biol Macromol 2019; 131:1147-1154. [DOI: 10.1016/j.ijbiomac.2019.04.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/01/2019] [Accepted: 04/10/2019] [Indexed: 11/30/2022]
|
24
|
Chatterjee B, Gorain B, Mohananaidu K, Sengupta P, Mandal UK, Choudhury H. Targeted drug delivery to the brain via intranasal nanoemulsion: Available proof of concept and existing challenges. Int J Pharm 2019; 565:258-268. [PMID: 31095983 DOI: 10.1016/j.ijpharm.2019.05.032] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/10/2019] [Accepted: 05/11/2019] [Indexed: 12/15/2022]
Abstract
Intranasal delivery has shown to circumvent blood-brain-barrier (BBB) and deliver the drugs into the CNS at a higher rate and extent than other conventional routes. The mechanism of drug transport from nose-to-brain is not fully understood yet, but several neuronal pathways are considered to be involved. Intranasal nanoemulsion for brain targeting is investigated extensively. Higher brain distribution of drug after administering intranasal nanoemulsion was established by many researchers. Issues with nasomucosal clearance are solved by formulating modified nanoemulsion; for instance, mucoadhesive nanoemulsion or in situ nanoemulgel. However, no intranasal nanoemulsion for brain targeted drug delivery has been able to cross the way from 'benches to bed-side' of patients. Possibilities of toxicity by repeated administration, irregular nasal absorption during the diseased condition, use of a high amount of surfactants are few of the persisting challenges that need to overcome in coming days. Understanding the ways how current developments has solved some challenges is necessary. At the same time, the future direction of the research on intranasal nanoemulsion should be figured out based on existing challenges. This review is focused on the current developments of intranasal nanoemulsion with special emphasis on the existing challenges that would help to set future research direction.
Collapse
Affiliation(s)
- Bappaditya Chatterjee
- Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia.
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor 47500, Malaysia.
| | - Keithanchali Mohananaidu
- Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India.
| | - Uttam Kumar Mandal
- Department of Pharmaceutical Science & Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, India.
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa, Bukit Jalil, 57000 Kuala Lumpur, Malaysia.
| |
Collapse
|
25
|
Huang S, Williams RO. Effects of the Preparation Process on the Properties of Amorphous Solid Dispersions. AAPS PharmSciTech 2018; 19:1971-1984. [PMID: 28924730 DOI: 10.1208/s12249-017-0861-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/11/2017] [Indexed: 11/30/2022] Open
Abstract
The use of amorphous solid dispersions to improve the bioavailability of active ingredients from the BCS II and IV classifications continues to gain interest in the pharmaceutical industry. Over the last decade, methods for generating amorphous solid dispersions have been well established in commercially available products and in the literature. However, the amorphous solid dispersions manufactured by different technologies differ in many aspects, primarily chemical stability, physical stability, and performance, both in vitro and in vivo. This review analyzes the impact of manufacturing methods on those properties of amorphous solid dispersions. For example, the chemical stability of drugs and polymers can be influenced by differences in the level of thermal exposure during fusion-based and solvent-based processes. The physical stability of amorphous content varies according to the thermal history, particle morphology, and nucleation process of amorphous solid dispersions produced by different methods. The in vitro and in vivo performance of amorphous formulations are also affected by differences in particle morphology and in the molecular interactions caused by the manufacturing method. Additionally, we describe the mechanism of manufacturing methods and the thermodynamic theories that relate to amorphous formulations.
Collapse
|
26
|
Prajapati VD, Chaudhari AM, Gandhi AK, Maheriya P. Pullulan based oral thin film formulation of zolmitriptan: Development and optimization using factorial design. Int J Biol Macromol 2018; 107:2075-2085. [DOI: 10.1016/j.ijbiomac.2017.10.082] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/13/2017] [Indexed: 11/25/2022]
|
27
|
Cai J, Zhang W, Xu J, Xue W, Liu Z. Evaluation of N-phosphonium chitosan as a novel vaccine carrier for intramuscular immunization. J Biomater Appl 2017; 32:677-685. [PMID: 28992775 DOI: 10.1177/0885328217735221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chitosan, as a potential vaccine delivery material, has obtained much attention for immunization prevention and therapy. However, its poor water solubility brings inconvenience for the practical applications. To address this issue, researchers have carried out many chemical modifications to prepare water-soluble chitosan derivatives for vaccine delivery. In this work, we prepared a chitosan derivative N-phosphonium chitosan with excellent water solubility and explored its potential as an intramuscular vaccine delivery system by using ovalbumin as a model antigen. Different vaccine formulations were intramuscularly injected into test mice. Through an immunohistochemistry assay, N-phosphonium chitosan-based antigen formulation could promote antigen arrival from injection site to the secondary lymph organ spleen. Further immunization results showed that 1 mg/ml N-phosphonium chitosan-based vaccine formulation could contribute to significantly higher level of antigen-specific immune responses, including higher antigen-specific IgG antibody titer, splenocyte proliferation, and cytokines secretion (interferon-γ, interleukin-10, and interleukin-4) by the splenocytes of the immunized mice. From the results, the water-soluble chitosan derivative N-phosphonium chitosan could be developed as a potential antigen carrier for immunization prevention and therapy.
Collapse
Affiliation(s)
- Jianzhou Cai
- 1 Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Wu Zhang
- 2 Department of Stomatology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Jiake Xu
- 3 The School of Pathology and Laboratory Medicine, 2720 University of Western Australia , Perth, Australia
| | - Wei Xue
- 1 Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Zonghua Liu
- 1 Department of Biomedical Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
28
|
Li W, Qing S, Zhi W, Yao H, Fu C, Niu X. The pharmacokinetics and anti-inflammatory effects of chelerythrine solid dispersions in vivo. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Martignoni I, Trotta V, Lee WH, Loo CY, Pozzoli M, Young PM, Scalia S, Traini D. Resveratrol solid lipid microparticles as dry powder formulation for nasal delivery, characterization and in vitro deposition study. J Microencapsul 2016; 33:735-742. [PMID: 27841060 DOI: 10.1080/02652048.2016.1260659] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study focuses on development and in vitro characterisation of a nasal delivery system based on uncoated or chitosan-coated solid lipid microparticles (SLMs) containing resveratrol, a natural anti-inflammatory molecule, as an effective alternative to the conventional steroidal drugs. The physico-chemical characteristics of the SLMs loaded with resveratrol were evaluated in terms of morphology, size, thermal behaviour and moisture sorption. The SLMs appeared as aggregates larger than 20 μm. In vitro nasal deposition was evaluated using a USP specification Apparatus E 7-stage cascade impactor equipped with a standard or a modified nasal deposition apparatus. More than 95% of resveratrol was recovered onto the nasal deposition chamber and stage 1 of impactor, suggesting that the SLMs mostly deposited in the nasal cavity. Additionally, the SLMs were not toxic on RPMI 2650 nasal cell line up to a concentration of approximately 40 μM of resveratrol.
Collapse
Affiliation(s)
- Isabella Martignoni
- a Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| | - Valentina Trotta
- a Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| | - Wing-Hin Lee
- b Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School , The University of Sydney , NSW , Australia
| | - Ching-Yee Loo
- b Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School , The University of Sydney , NSW , Australia
| | - Michele Pozzoli
- b Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School , The University of Sydney , NSW , Australia.,c Graduate School of Health-Pharmacy , University of Technology Sydney , NSW , Australia
| | - Paul M Young
- b Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School , The University of Sydney , NSW , Australia
| | - Santo Scalia
- a Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| | - Daniela Traini
- b Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School , The University of Sydney , NSW , Australia
| |
Collapse
|
30
|
Outuki PM, de Francisco LMB, Hoscheid J, Bonifácio KL, Barbosa DS, Cardoso MLC. Development of arabic and xanthan gum microparticles loaded with an extract of Eschweilera nana Miers leaves with antioxidant capacity. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Abd-Elal RMA, Shamma RN, Rashed HM, Bendas ER. Trans-nasal zolmitriptan novasomes: in-vitro preparation, optimization and in-vivo evaluation of brain targeting efficiency. Drug Deliv 2016; 23:3374-3386. [PMID: 27128792 DOI: 10.1080/10717544.2016.1183721] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Migraine attack is a troublesome physiological condition associated with throbbing, intense headache, in one half of the head. Zolmitriptan is a potent second-generation triptan, prescribed for patients with migraine attacks, with or without an aura, and cluster headaches. The absolute bioavailability of zolmitriptan is about 40% for oral administration; due to hepatic first metabolism. Nasal administration would circumvent the pre-systemic metabolism thus increasing the bioavailability of zolmitriptan. In addition, due to the presence of microvilli and high vasculature, the absorption is expected to be faster compared to oral route. However, the bioavailability of nasal administered drugs is particularly restricted by poor membrane penetration. Thus, the aim of this work is to explore the potential of novel nanovesicular fatty acid enriched structures (novasomes) for effective and enhanced nasal delivery of zolmitriptan and investigate their nose to brain targeting potential. Novasomes were prepared using nonionic surfactant, cholesterol in addition to a free fatty acid. A 23 full factorial design was adopted to study the influence of the type of surfactant, type of free fatty acid and ratio between the free fatty acid and the surfactant on novasomes properties. The particle size, entrapment efficiency, polydispersity index, zeta potential and % zolmitriptan released after 2 h were selected as dependent variables. Novasomes were further optimized using Design Expert® software (version 7; Stat-Ease Inc., Minneapolis, MN), and an optimized formulation composed of Span® 80:Cholesterol:stearic acid (in the ratio 1:1:1) was selected. This formulation showed zolmitriptan entrapment of 92.94%, particle size of 149.9 nm, zeta potential of -55.57 mV, and released 48.43% zolmitriptan after 2 h. The optimized formulation was further examined using transmission electron microscope, which revealed non-aggregating multi-lamellar nanovesicles with narrow size distribution. DSC, XRD examination of the optimized formulation confirmed that the drug have been homogeneously dispersed throughout the novasomes in an amorphous state. In-vivo bio-distribution studies of 99mTc radio-labeled intranasal zolmitriptan loaded novasomes were done on mice, the pharmacokinetic parameters were compared with those following administration of intravenous 99mTc-zolmitriptan solution. Results revealed the great enhancement in zolmitriptan targeting to the brain, with drug targeting potential of about 99% following intranasal administration of novasomes compared with the intravenous drug solution. Zolmitriptan loaded novasomes administered via the nasal route may therefore constitute an advance in the management of acute migraine attacks.
Collapse
Affiliation(s)
- Radwa M A Abd-Elal
- a Department of Pharmaceutics and Industrial Pharmacy , Modern University for Technology & Information (MTI) , Cairo , Egypt
| | - Rehab N Shamma
- b Department of Pharmaceutics and Industrial Pharmacy , Cairo University , Cairo , Egypt
| | - Hassan M Rashed
- c Labeled Compounds Department, Hot Laboratories Center, Egyptian Atomic Energy Authority , Cairo , Egypt , and
| | - Ehab R Bendas
- d Clinical Pharmacy Department, Future University in Egypt , New Cairo , Egypt
| |
Collapse
|
32
|
Sharma N, Tyagi S, Gupta SK, Kulkarni GT, Bhatnagar A, Kumar N. Development and gamma-scintigraphy study of Hibiscus rosasinensis polysaccharide-based microspheres for nasal drug delivery. Drug Dev Ind Pharm 2016; 42:1763-71. [PMID: 27032438 DOI: 10.3109/03639045.2016.1173050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE This work describes the application of natural plant polysaccharide as pharmaceutical mucoadhesive excipients in delivery systems to reduce the clearance rate through nasal cavity. METHODS Novel natural polysaccharide (Hibiscus rosasinensis)-based mucoadhesive microspheres were prepared by using emulsion crosslinking method for the delivery of rizatriptan benzoate (RB) through nasal route. Mucoadhesive microspheres were characterized for different parameters and nasal clearance of technetium-99m ((99m)Tc)-radiolabeled microspheres was determined by using gamma-scintigraphy. RESULTS Their Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) studies showed that the drug was stable during preparation of microspheres. Aerodynamic diameter of microspheres was in the range 13.23 ± 1.83-33.57 ± 3.69 µm. Change in drug and polysaccharide ratio influenced the mucoadhesion, encapsulation efficiency and in-vitro release property. Scintigraphs taken at regular interval indicate that control solution was cleared rapidly from nasal cavity, whereas microspheres showed slower clearance (p < 0.005) with half-life of 160 min. CONCLUSION Natural polysaccharide-based microspheres achieved extended residence by minimizing effect of mucociliary clearance with opportunity of sustained delivery for longer duration.
Collapse
Affiliation(s)
- Nitin Sharma
- a Department of Pharmaceutical Sciences , Jawaharlal Nehru Technological University , Kukatpalli , Hyderabad , India ;,b Department of Pharmaceutical Technology , Meerut Institute of Engineering and Technology , Meerut , Uttar Pradesh , India
| | - Shanu Tyagi
- b Department of Pharmaceutical Technology , Meerut Institute of Engineering and Technology , Meerut , Uttar Pradesh , India
| | - Satish Kumar Gupta
- b Department of Pharmaceutical Technology , Meerut Institute of Engineering and Technology , Meerut , Uttar Pradesh , India
| | | | - Aseem Bhatnagar
- d Department of Nuclear Medicine , Institute of Nuclear Medicine and Allied Sciences , Timarpur , Delhi , India
| | - Neeraj Kumar
- d Department of Nuclear Medicine , Institute of Nuclear Medicine and Allied Sciences , Timarpur , Delhi , India
| |
Collapse
|
33
|
Rassu G, Soddu E, Cossu M, Gavini E, Giunchedi P, Dalpiaz A. Particulate formulations based on chitosan for nose-to-brain delivery of drugs. A review. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2015.05.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Omidvar N, Ganji F, Eslaminejad MB. In vitro
osteogenic induction of human marrow-derived mesenchymal stem cells by PCL fibrous scaffolds containing dexamethazone-loaded chitosan microspheres. J Biomed Mater Res A 2016; 104:1657-67. [DOI: 10.1002/jbm.a.35695] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 02/09/2016] [Accepted: 02/19/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Noushin Omidvar
- Biomedical Engineering Group, Chemical Engineering Faculty, Tarbiat Modares University; Tehran Iran
| | - Fariba Ganji
- Biomedical Engineering Group, Chemical Engineering Faculty, Tarbiat Modares University; Tehran Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology; Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
| |
Collapse
|
35
|
Varshosaz J, Minayian M, Ahmadi M, Ghassami E. Enhancement of solubility and antidiabetic effects of Repaglinide using spray drying technique in STZ-induced diabetic rats. Pharm Dev Technol 2016; 22:754-763. [DOI: 10.3109/10837450.2016.1143001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran and
| | - Mohsen Minayian
- Department of Pharmacology, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
| | - Mahdieh Ahmadi
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran and
| | - Erfaneh Ghassami
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran and
| |
Collapse
|
36
|
In vitro, ex vivo and in vivo performance of chitosan-based spray-dried nasal mucoadhesive microspheres of diltiazem hydrochloride. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2015.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
37
|
|
38
|
Ahmed TA, Aljaeid BM. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:483-507. [PMID: 26869768 PMCID: PMC4734734 DOI: 10.2147/dddt.s99651] [Citation(s) in RCA: 344] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Naturally occurring polymers, particularly of the polysaccharide type, have been used pharmaceutically for the delivery of a wide variety of therapeutic agents. Chitosan, the second abundant naturally occurring polysaccharide next to cellulose, is a biocompatible and biodegradable mucoadhesive polymer that has been extensively used in the preparation of micro-as well as nanoparticles. The prepared particles have been exploited as a potential carrier for different therapeutic agents such as peptides, proteins, vaccines, DNA, and drugs for parenteral and nonparenteral administration. Therapeutic agent-loaded chitosan micro- or nanoparticles were found to be more stable, permeable, and bioactive. In this review, we are highlighting the different methods of preparation and characterization of chitosan micro- and nanoparticles, while reviewing the pharmaceutical applications of these particles in drug delivery. Moreover, the roles of chitosan derivatives and chitosan metal nanoparticles in drug delivery have been illustrated.
Collapse
Affiliation(s)
- Tarek A Ahmed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Bader M Aljaeid
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
39
|
Ceschan NE, Bucalá V, Ramírez-Rigo MV. Polymeric microparticles containing indomethacin for inhalatory administration. POWDER TECHNOL 2015. [DOI: 10.1016/j.powtec.2015.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Ortiz M, Jornada DS, Pohlmann AR, Guterres SS. Development of Novel Chitosan Microcapsules for Pulmonary Delivery of Dapsone: Characterization, Aerosol Performance, and In Vivo Toxicity Evaluation. AAPS PharmSciTech 2015; 16:1033-40. [PMID: 25652730 DOI: 10.1208/s12249-015-0283-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 01/05/2015] [Indexed: 02/01/2023] Open
Abstract
Pneumocystis carinii pneumonia (PCP) is a major opportunistic infection that affects patients with human immunodeficiency virus. Although orally administered dapsone leads to high hepatic metabolism, decreasing the therapeutic index and causing severe side effects, this drug is an effective alternative for the treatment of PCP. In this context, microencapsulation for pulmonary administration can offer an alternative to increase the bioavailability of dapsone, reducing its adverse effects. The aim of this work was to develop novel dapsone-loaded chitosan microcapsules intended for deep-lung aerosolized drug delivery. The geometric particle size (D 4,3) was approximately 7 μm, the calculated aerodynamic diameter (d aero) was approximately 4.5 μm, and the mass median aerodynamic diameter from an Andersen cascade impactor was 4.7 μm. The in vitro dissolution profile showed an efficient dapsone encapsulation, demonstrating the sustained release of the drug. The in vitro deposition (measured by the Andersen cascade impactor) showed an adequate distribution and a high fine particles fraction (FPF = 50%). Scanning electron microscopy of the pulmonary tissues demonstrated an adequate deposition of these particles in the deepest part of the lung. An in vivo toxicity experiment showed the low toxicity of the drug-loaded microcapsules, indicating a protective effect of the microencapsulation process when the particles are microencapsulated. In conclusion, the pulmonary administration of the novel dapsone-loaded microcapsules could be a promising alternative for PCP treatment.
Collapse
|
41
|
Lusina Kregar M, Dürrigl M, Rožman A, Jelčić Ž, Cetina-Čižmek B, Filipović-Grčić J. Development and validation of an in vitro release method for topical particulate delivery systems. Int J Pharm 2015; 485:202-14. [PMID: 25772416 DOI: 10.1016/j.ijpharm.2015.03.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/07/2015] [Accepted: 03/10/2015] [Indexed: 10/23/2022]
Abstract
The aim of this study was to develop an in vitro release method for topical particulate delivery systems using the immersion cell in combination with paddle dissolution apparatus. Chitosan- and methacrylate-based microparticles with mupirocin were prepared and used as model topical delivery systems for method development. Diffusion of the drug occurred across a mixed cellulose ester membrane, which demonstrated low drug adsorption and low diffusional resistance. After an initial lag phase the amount of drug released became proportional to the square root of time. The method was discriminative toward differences in formulation, as well as toward differences in drug concentration inside the sample compartment. The method was further used to confirm sameness between batches of the same composition prepared by the same process. Variations in paddle rotation speed (25 rpm, 50 rpm, 100 rpm), paddle height (1cm, 2.5 cm) and volume of release medium (100ml, 200 ml) did not significantly alter the release rates. The method of analysis was validated according to ICH guidelines. Currently there are no compendial or standard methods and apparatuses for in vitro release testing of topical microparticles. The developed method can be a useful guide in formulation development of such delivery systems.
Collapse
Affiliation(s)
| | - Marjana Dürrigl
- PLIVA Croatia Ltd., Prilaz baruna Filipovića 25, 10000 Zagreb, Croatia.
| | - Andrea Rožman
- PLIVA Croatia Ltd., Prilaz baruna Filipovića 25, 10000 Zagreb, Croatia.
| | - Želimir Jelčić
- PLIVA Croatia Ltd., Prilaz baruna Filipovića 25, 10000 Zagreb, Croatia.
| | | | - Jelena Filipović-Grčić
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Technology, A. Kovačića 1, 10000 Zagreb, Croatia.
| |
Collapse
|
42
|
Yang J, Han S, Zheng H, Dong H, Liu J. Preparation and application of micro/nanoparticles based on natural polysaccharides. Carbohydr Polym 2015; 123:53-66. [PMID: 25843834 DOI: 10.1016/j.carbpol.2015.01.029] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 12/13/2014] [Accepted: 01/16/2015] [Indexed: 02/08/2023]
Abstract
Polysaccharides have attracted more and more attentions and been recognized to be the most promising materials in recent years because of their outstanding merits such as easily available, non-toxic, biocompatible, biodegradable, and easily modified. Considerable research efforts have been directed toward developing polysaccharides-based micro/nanoparticles (PM/NPs). The new major studies of PM/NPs over the past few years are outlined in this review. Methods of preparation, including self-assembly, ionic-gelation, complex coacervation, emulsification, and desolvation method and some others, are summarized. Different applications of PM/NPs in the field of drug-delivery system are highlighted. Besides, another novel application of PM/NPs that are used as emulsifiers to stabilize Pickering emulsion is also introduced. These environmental-friendly particle emulsifiers have received reasonable attention due to their novel applications, especially in food, cosmetics, and pharmaceutics. From literature surveys, we realized that studies on PM/NP systems for different applications have increased rapidly. Hence, the present review is timely.
Collapse
Affiliation(s)
- Jisheng Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Suya Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Haicheng Zheng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Hongbiao Dong
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jiubing Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
43
|
Chitosan in nasal delivery systems for therapeutic drugs. J Control Release 2014; 190:189-200. [DOI: 10.1016/j.jconrel.2014.05.003] [Citation(s) in RCA: 273] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 04/25/2014] [Accepted: 05/02/2014] [Indexed: 01/07/2023]
|
44
|
Neelakandan K, Manikandan H, Santosha N, Prabhakaran B. Convenient and Industrially Viable Process for Preparation of Zolmitriptan. J Heterocycl Chem 2014. [DOI: 10.1002/jhet.1916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- K. Neelakandan
- Department of Chemistry; Annamalai University; Annamalainagar 608002 Tamilnadu India
- Emcure Pharmaceuticals; Pune 411057 Maharashtra India
| | - H. Manikandan
- Department of Chemistry; Annamalai University; Annamalainagar 608002 Tamilnadu India
| | - N. Santosha
- Emcure Pharmaceuticals; Pune 411057 Maharashtra India
| | | |
Collapse
|
45
|
Elmowafy E, Osman R, El-Shamy AEHA, Awad GAS. Nasal polysaccharides-glucose regulator microparticles: optimization, tolerability and antidiabetic activity in rats. Carbohydr Polym 2014; 108:257-65. [PMID: 24751272 DOI: 10.1016/j.carbpol.2014.02.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/18/2014] [Accepted: 02/19/2014] [Indexed: 12/22/2022]
Abstract
The aim of the present study was to load the post-prandial glucose regulator, repaglinide (REP), on spray dried mucoadhesive microparticles (MPs) comprising anionic polysaccharides. The formulation parameters of the polysaccharides-REP spray dried powders (SDP) namely, polysaccharide type and drug to polymer (D/P) ratio, were optimized for % release after 5 min (R%5 min) and time required for 80% release (T80%). The suitability of the selected formulae for nasal application was evaluated by ex vivo mucoadhesion, in vitro cytocompatability and tolerability studies. A pharmacodynamic study in diabetic rats was conducted. Results showed that both polysaccharide type and amount greatly influenced the chosen responses. REP was highly incorporated in mucoadhesive MPs with proven safety on the rat nasal mucosa. The selected REP loaded powders exhibited a significant two to threefold increase in total decrease in blood glucose compared to the nasal and intravenous solutions.
Collapse
Affiliation(s)
- Enas Elmowafy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Egypt
| | - Rihab Osman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Egypt.
| | - Abd El-Hameed A El-Shamy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Egypt
| | - Gehanne A S Awad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Egypt
| |
Collapse
|
46
|
Mansour HF, F. Aly U. In vitroevaluation andin vivoperformance of lyophilized gliclazide. Drug Dev Ind Pharm 2014; 41:650-7. [DOI: 10.3109/03639045.2014.891131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
47
|
Formulation and in vitro evaluation of xanthan gum-based bilayered mucoadhesive buccal patches of zolmitriptan. Carbohydr Polym 2014; 101:1234-42. [DOI: 10.1016/j.carbpol.2013.10.072] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/14/2013] [Accepted: 10/21/2013] [Indexed: 11/24/2022]
|
48
|
Kamel R, Basha M, El Awdan S. Development and evaluation of long-acting epidural “smart” thermoreversible injection loaded with spray-dried polymeric nanospheres using experimental design. J Drug Target 2013; 21:277-290. [DOI: 10.3109/1061186x.2012.747527] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Estevinho BMAN, Rocha FAN, Santos LMDS, Alves MAC. Using water-soluble chitosan for flavour microencapsulation in food industry. J Microencapsul 2013; 30:571-9. [DOI: 10.3109/02652048.2013.764939] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
50
|
Sharma N, Kulkarni GT, Sharma A, Bhatnagar A, Kumar N. Natural mucoadhesive microspheres of Abelmoschus esculentus polysaccharide as a new carrier for nasal drug delivery. J Microencapsul 2013; 30:589-98. [PMID: 23379506 DOI: 10.3109/02652048.2013.764941] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This work describes the preparation and evaluation of mucoadhesive microspheres, using Abelmoschus esculentus polysaccharide as a novel carrier for safe and effective delivery of rizatriptan benzoate into nasal cavity. The polysaccharide was extracted from the fruit of A. esculentus and mucoadhesive microspheres were prepared by emulsification, followed by crosslinking using epichlorohydrin. Prepared microspheres were evaluated for size, morphology, swelling properties, mucoadhesive strength, encapsulation efficiency and drug release. Microspheres were found to release 50% of drug within 15 min and rest of the drug was released within 60 min. The drug release was found to decrease with increasing concentration of polysaccharide. To determine the retention time of the microspheres in the nasal cavity of rabbits, the microspheres were radiolabelled with (99m)Tc and subjected to gamma scintigraphy. The results showed a significant improvement in the nasal retention of the microspheres as compared to the aqueous solution of radiolabelled free-drug.
Collapse
Affiliation(s)
- Nitin Sharma
- Department of Pharmaceutical Sciences, Jawaharlal Nehru Technological University, Kukatpalli, Hyderabad, India.
| | | | | | | | | |
Collapse
|