1
|
Chen JH, Lin IH, Hsueh TY, Dalley JW, Tsai TH. Pharmacokinetics and transplacental transfer of codeine and codeine metabolites from Papaver somniferum L. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115623. [PMID: 36007718 DOI: 10.1016/j.jep.2022.115623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/04/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Papaveris Pericarpium, which is the dried husk of Papaver somniferum L., has been used as a phytomedicine to relieve cough, diarrhea and pain. The alkaloid codeine contained therein via biotransformation converts to morphine and potentially produces addictive and toxic effects. Due to the healthy concern for a pregnant woman, our hypothesis is that codeine and its metabolites can penetrate the placental barrier to reach the foetus and amniotic fluid, and these processes may be modulated by the transporter. AIM OF THE STUDY Because codeine is also considered a prodrug of morphine, it has a good analgesic effect. It is often used by pregnant women but may expose the foetus to the risk of morphine harm. The aim of this study is to investigate the metabolic rate, distribution and transplacental transfer mechanism of codeine and its metabolites morphine and morphine-3-glucuronide (M3G) in pregnant rats and to assess the risk of medication for pregnant women. MATERIALS AND METHODS Ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) combined with a microdialysis system was developed to monitor codeine, morphine and M3G in multiple sites of maternal blood, placenta, foetus and amniotic fluid after codeine administration. A compartmental model was used to calculate the pharmacokinetic parameters of codeine in blood after codeine administration (10 mg/kg, i.v.). The area under the concentration (AUC) ratio of AUCmetabolite/AUCcodeine and AUCtissue/AUCblood was used to represent the metabolic biotransformation ratio and the drug from blood-to-tissue transfer ratio, respectively. RESULTS The pharmacokinetic results demonstrated that codeine fit well with a two-compartment model and went through rapid metabolism to morphine and M3G in pregnant rats after codeine administration (10 mg/kg, i.v.). The biotransformation ratios of AUCmorphine/AUCcodeine, AUCM3G/AUCmorphine and AUCM3G/AUCcodeine were 0.12 ± 0.03, 54.45 ± 20.61 and 6.53 ± 2.47, respectively, after codeine administration (10 mg/kg, i.v.), which suggested that codeine was easily metabolized into M3G through morphine. The tissue distribution results demonstrated that all of the analytes penetrated into the foetus through the placenta; however, the blood-to-tissue transfer ratio (AUCtissue/AUCblood) of morphine and M3G was relatively lower than that of codeine after codeine administration (10 mg/kg, i.v.), which suggested that the blood-placenta barrier blocks the penetration of morphine and M3G into the foetus. Thus, the tissue transfer of morphine in the placenta and foetus was significantly enhanced by treatment with corticosterone, an inhibitor of organic cation transporter (OCT). CONCLUSION Based on microdialysis coupled to a validated UHPLC-MS/MS system, the pharmacokinetics and metabolic biotransformation of codeine and its metabolites were analyzed and clarified. The potential mechanism of morphine placental transfer was modulated by OCT transporters.
Collapse
Affiliation(s)
- Jung-Hung Chen
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - I-Hsin Lin
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Thomas Y Hsueh
- Division of Urology, Department of Surgery, Taipei City Hospital Renai Branch, Taipei, 106, Taiwan; Department of Urology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Jeffrey W Dalley
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK; Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Tung-Hu Tsai
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan; Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK.
| |
Collapse
|
2
|
Montemitro C, Angebrandt A, Wang TY, Pettorruso M, Abulseoud OA. Mechanistic insights into the efficacy of memantine in treating certain drug addictions. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110409. [PMID: 34324921 DOI: 10.1016/j.pnpbp.2021.110409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 06/23/2021] [Accepted: 07/22/2021] [Indexed: 01/11/2023]
Abstract
The deleterious effects of the drug addiction epidemic are compounded by treatment strategies that are only marginally efficacious. Memantine is a unique glutamatergic medication with proven ability to attenuate drug addiction in preclinical models. However, clinical translational studies are inconsistent. In this review, we summarize preclinical evidences and clinical trials that investigated the efficacy of memantine in treating patients with alcohol, opiate, cocaine, and nicotine use disorders and discuss the results from a mechanistic point of view. Memantine has shown efficacy in reducing alcohol and opiate craving, consumption, and withdrawal severity. However, in cocaine and nicotine use disorders, memantine did not have significant effect on cravings or consumption. Additionally, memantine was associated with increased subjective effects of alcohol, cocaine, and nicotine. We discuss possible mechanisms behind this variability. Since memantine transiently blocks NMDA receptors and protects neurons from overstimulation by excessive synaptic glutamate, its efficacy should be observed in drug phases that cause hyperglutamatergic states, while hypoglutamatergic drug use states would not resolve with blocking NMDA receptors. Second, memantine pharmacokinetic studies have been done in rodents and healthy volunteers, but not in patients with substance use disorder. Memantine, opiates, cocaine, and nicotine share the same transporter family at the blood brain barrier. This shared transport mechanism could impact brain concentrations of memantine and its effects. In conclusion, memantine remains an intriguing compound in our pharmacopeia with controversial results in treating certain aspects of drug addiction. Further studies are needed to understand the clinical and biological correlates of its efficacy.
Collapse
Affiliation(s)
- Chiara Montemitro
- Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA; Department of Neuroscience & Imaging, Università degli Studi G. d'Annunzio Chieti e Pescara, Italy.
| | - Alexandra Angebrandt
- Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Tzu-Yun Wang
- Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA; Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Mauro Pettorruso
- Department of Neuroscience & Imaging, Università degli Studi G. d'Annunzio Chieti e Pescara, Italy
| | - Osama A Abulseoud
- Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA; Department of Psychiatry and Psychology, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ, USA.
| |
Collapse
|
3
|
Essam HM, Bassuoni YF, Elzanfaly ES, Zaazaa HES, Kelani KM. Potentiometric sensing platform for selective determination and monitoring of codeine phosphate in presence of ibuprofen in pharmaceutical and biological matrices. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
4
|
Cremers TIFH, Flik G, Folgering JHA, Rollema H, Stratford RE. Development of a Rat Plasma and Brain Extracellular Fluid Pharmacokinetic Model for Bupropion and Hydroxybupropion Based on Microdialysis Sampling, and Application to Predict Human Brain Concentrations. ACTA ACUST UNITED AC 2016; 44:624-33. [PMID: 26916207 DOI: 10.1124/dmd.115.068932] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/24/2016] [Indexed: 11/22/2022]
Abstract
Administration of bupropion [(±)-2-(tert-butylamino)-1-(3-chlorophenyl)propan-1-one] and its preformed active metabolite, hydroxybupropion [(±)-1-(3-chlorophenyl)-2-[(1-hydroxy-2-methyl-2-propanyl)amino]-1-propanone], to rats with measurement of unbound concentrations by quantitative microdialysis sampling of plasma and brain extracellular fluid was used to develop a compartmental pharmacokinetics model to describe the blood-brain barrier transport of both substances. The population model revealed rapid equilibration of both entities across the blood-brain barrier, with resultant steady-state brain extracellular fluid/plasma unbound concentration ratio estimates of 1.9 and 1.7 for bupropion and hydroxybupropion, respectively, which is thus indicative of a net uptake asymmetry. An overshoot of the brain extracellular fluid/plasma unbound concentration ratio at early time points was observed with bupropion; this was modeled as a time-dependent uptake clearance of the drug across the blood-brain barrier. Translation of the model was used to predict bupropion and hydroxybupropion exposure in human brain extracellular fluid after twice-daily administration of 150 mg bupropion. Predicted concentrations indicate that preferential inhibition of the dopamine and norepinephrine transporters by the metabolite, with little to no contribution by bupropion, would be expected at this therapeutic dose. Therefore, these results extend nuclear imaging studies on dopamine transporter occupancy and suggest that inhibition of both transporters contributes significantly to bupropion's therapeutic efficacy.
Collapse
Affiliation(s)
- Thomas I F H Cremers
- Brains On-Line BV, Groningen, The Netherlands (T.I.F.H.C., G.F. J.H.A.F.); Rollema Biomedical Consulting, Mystic, Connecticut (H.R.); and Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (R.E.S.)
| | - Gunnar Flik
- Brains On-Line BV, Groningen, The Netherlands (T.I.F.H.C., G.F. J.H.A.F.); Rollema Biomedical Consulting, Mystic, Connecticut (H.R.); and Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (R.E.S.)
| | - Joost H A Folgering
- Brains On-Line BV, Groningen, The Netherlands (T.I.F.H.C., G.F. J.H.A.F.); Rollema Biomedical Consulting, Mystic, Connecticut (H.R.); and Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (R.E.S.)
| | - Hans Rollema
- Brains On-Line BV, Groningen, The Netherlands (T.I.F.H.C., G.F. J.H.A.F.); Rollema Biomedical Consulting, Mystic, Connecticut (H.R.); and Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (R.E.S.)
| | - Robert E Stratford
- Brains On-Line BV, Groningen, The Netherlands (T.I.F.H.C., G.F. J.H.A.F.); Rollema Biomedical Consulting, Mystic, Connecticut (H.R.); and Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (R.E.S.)
| |
Collapse
|
5
|
Chapy H, Goracci L, Vayer P, Parmentier Y, Carrupt PA, Declèves X, Scherrmann JM, Cisternino S, Cruciani G. Pharmacophore-based discovery of inhibitors of a novel drug/proton antiporter in human brain endothelial hCMEC/D3 cell line. Br J Pharmacol 2015. [PMID: 26220580 DOI: 10.1111/bph.13258] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE An influx drug/proton antiporter of unknown structure has been functionally demonstrated at the blood-brain barrier. This transporter, which handles some psychoactive drugs like diphenhydramine, clonidine, oxycodone, nicotine and cocaine, could represent a new pharmacological target in drug addiction therapy. However, at present there are no known drugs/inhibitors that effectively inhibit/modulate this transporter in vivo. EXPERIMENTAL APPROACH The FLAPpharm approach was used to establish a pharmacophore model for inhibitors of this transporter. The inhibitory potency of 44 selected compounds was determined against the specific substrate, [(3)H]-clonidine, in the human cerebral endothelial cell line hCMEC/D3 and ranked as good, medium, weak or non-inhibitor. KEY RESULTS The pharmacophore model obtained was used as a template to screen xenobiotic and endogenous compounds from databases [Specs, Recon2, Human Metabolome Database (HMDB), human intestinal transporter database], and hypothetical candidates were tested in vitro to determine their inhibitory capacity with [(3)H]-clonidine. According to the transporter database, 80% of the proton antiporter inhibitor candidates could inhibit P-glycoprotein/MDR1/ABCB1 and specificity is improved by reducing inhibitor size/shape and increasing water solubility. Virtual screening results using HMDB and Recon2 for endogenous compounds appropriately scored tryptamine as an inhibitor. CONCLUSIONS AND IMPLICATIONS The pharmacophore model for the proton-antiporter inhibitors was a good predictor of known inhibitors and allowed us to identify new good inhibitors. This model marks a new step towards the discovery of this drug/proton antiporter and will be of great use for the discovery and design of potent inhibitors that could potentially help to assess and validate its pharmacological role in drug addiction in vivo.
Collapse
Affiliation(s)
- Hélène Chapy
- INSERM U1144, Variabilité de réponse aux psychotropes, Paris, 75006, France.,UMR-S 1144, Université Paris Descartes, Paris, 75006, France.,UMR-S 1144, Université Paris Diderot, Paris, 75013, France
| | - Laura Goracci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, 06123, Italy
| | - Philippe Vayer
- Département de recherche biopharmaceutique, Technologie Servier, Orléans, 45000, France
| | - Yannick Parmentier
- Département de recherche biopharmaceutique, Technologie Servier, Orléans, 45000, France
| | - Pierre-Alain Carrupt
- Laboratoire de Pharmacochimie, Université de Genève, Genève, CH-1211, Switzerland
| | - Xavier Declèves
- INSERM U1144, Variabilité de réponse aux psychotropes, Paris, 75006, France.,UMR-S 1144, Université Paris Descartes, Paris, 75006, France.,UMR-S 1144, Université Paris Diderot, Paris, 75013, France.,Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France
| | - Jean-Michel Scherrmann
- INSERM U1144, Variabilité de réponse aux psychotropes, Paris, 75006, France.,UMR-S 1144, Université Paris Descartes, Paris, 75006, France.,UMR-S 1144, Université Paris Diderot, Paris, 75013, France.,Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France
| | - Salvatore Cisternino
- INSERM U1144, Variabilité de réponse aux psychotropes, Paris, 75006, France.,UMR-S 1144, Université Paris Descartes, Paris, 75006, France.,UMR-S 1144, Université Paris Diderot, Paris, 75013, France.,Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, 06123, Italy
| |
Collapse
|
6
|
Gharavi R, Hedrich W, Wang H, Hassan HE. Transporter-Mediated Disposition of Opioids: Implications for Clinical Drug Interactions. Pharm Res 2015; 32:2477-502. [PMID: 25972096 DOI: 10.1007/s11095-015-1711-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/06/2015] [Indexed: 01/08/2023]
Abstract
Opioid-related deaths, abuse, and drug interactions are growing epidemic problems that have medical, social, and economic implications. Drug transporters play a major role in the disposition of many drugs, including opioids; hence they can modulate their pharmacokinetics, pharmacodynamics and their associated drug-drug interactions (DDIs). Our understanding of the interaction of transporters with many therapeutic agents is improving; however, investigating such interactions with opioids is progressing relatively slowly despite the alarming number of opioids-mediated DDIs that may be related to transporters. This review presents a comprehensive report of the current literature relating to opioids and their drug transporter interactions. Additionally, it highlights the emergence of transporters that are yet to be fully identified but may play prominent roles in the disposition of opioids, the growing interest in transporter genomics for opioids, and the potential implications of opioid-drug transporter interactions for cancer treatments. A better understanding of drug transporters interactions with opioids will provide greater insight into potential clinical DDIs and could help improve opioids safety and efficacy.
Collapse
Affiliation(s)
- Robert Gharavi
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N Pine Street, Rooms: N525 (Office), Baltimore, Maryland, 21201, USA
| | | | | | | |
Collapse
|
7
|
Chapy H, Smirnova M, André P, Schlatter J, Chiadmi F, Couraud PO, Scherrmann JM, Declèves X, Cisternino S. Carrier-mediated cocaine transport at the blood-brain barrier as a putative mechanism in addiction liability. Int J Neuropsychopharmacol 2014; 18:pyu001. [PMID: 25539501 PMCID: PMC4368859 DOI: 10.1093/ijnp/pyu001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The rate of entry of cocaine into the brain is a critical factor that influences neuronal plasticity and the development of cocaine addiction. Until now, passive diffusion has been considered the unique mechanism known by which cocaine crosses the blood-brain barrier. METHODS We reassessed mechanisms of transport of cocaine at the blood-brain barrier using a human cerebral capillary endothelial cell line (hCMEC/D3) and in situ mouse carotid perfusion. RESULTS Both in vivo and in vitro cocaine transport studies demonstrated the coexistence of a carrier-mediated process with passive diffusion. At pharmacological exposure level, passive diffusion of cocaine accounted for only 22.5% of the total cocaine influx in mice and 5.9% in hCMEC/D3 cells, whereas the carrier-mediated influx rate was 3.4 times greater than its passive diffusion rate in vivo. The functional identification of this carrier-mediated transport demonstrated the involvement of a proton antiporter that shared the properties of the previously characterized clonidine and nicotine transporter. The functionnal characterization suggests that the solute carrier (SLC) transporters Oct (Slc22a1-3), Mate (Slc47a1) and Octn (Slc22a4-5) are not involved in the cocaine transport in vivo and in vitro. Diphenhydramine, heroin, tramadol, cocaethylene, and norcocaine all strongly inhibited cocaine transport, unlike benzoylecgonine. Trans-stimulation studies indicated that diphenhydramine, nicotine, 3,4-methylenedioxyamphetamine (ecstasy) and the cathinone compound 3,4-methylenedioxypyrovalerone (MDPV) were also substrates of the cocaine transporter. CONCLUSIONS Cocaine transport at the BBB involves a proton-antiporter flux that is quantitatively much more important than its passive diffusion. The molecular identification and characterization of this transporter will provide new tools to understand its role in addictive mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Salvatore Cisternino
- Variabilité de réponse aux psychotropes, INSERM, U1144, 75006 Paris, France (Drs. Chapy, Smirnova, André, Scherrmann, Declèves, Cisternino); Université Paris Descartes, UMR-S 1144, Paris, F-75006, France (Drs. Chapy, Smirnova, André, Scherrmann, Declèves, Cisternino); Université Paris Diderot, UMR-S 1144, Paris, F-75013, France (Drs. Chapy, Smirnova, André, Scherrmann, Declèves, Cisternino); Assistance publique hôpitaux de Paris, AP-HP, Jean Verdier, Bondy, F-93140, France (Drs. Schlatter, Chiadmi, Cisternino); INSERM, U1016, Institut Cochin, 75014, Paris, France (Dr. Couraud); CNRS, UMR8104, Paris, France (Dr. Couraud); Université Paris Descartes, Sorbonne Paris Cité, Paris, France (Dr. Couraud).
| |
Collapse
|
8
|
Jocković N, Fischer W, Brandsch M, Brandt W, Dräger B. Inhibition of human intestinal α-glucosidases by calystegines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:5550-5557. [PMID: 23697377 DOI: 10.1021/jf4010737] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Calystegines are polyhydroxylated nortropane alkaloids found in Convolvulaceae, Solanaceae, and other plant families. These plants produce common fruits and vegetables. The calystegine structures resemble sugars and suggest interaction with enzymes of carbohydrate metabolism. Maltase and sucrase are α-glucosidases contributing to human carbohydrate degradation in the small intestine. Inhibition of these enzymes by orally administered drugs is one option for treatment of diabetes mellitus type 2. In this study, inhibition of maltase and sucrase by calystegines A3 and B2 purified from potatoes was investigated. In silico docking studies confirmed binding of both calystegines to the active sites of the enzymes. Calystegine A3 showed low in vitro enzyme inhibition; calystegine B2 inhibited mainly sucrose activity. Both compounds were not transported by Caco-2 cells indicating low systemic availability. Vegetables rich in calystegine B2 should be further investigated as possible components of a diet preventing a steep increase in blood glucose after a carbohydrate-rich meal.
Collapse
Affiliation(s)
- Nebojša Jocković
- Institute of Pharmacy, Faculty of Sciences I, Martin-Luther-University Halle-Wittenberg , Hoher Weg 8, 06120 Halle (Saale), Germany
| | | | | | | | | |
Collapse
|
9
|
Švorc Ľ, Sochr J, Svítková J, Rievaj M, Bustin D. Rapid and sensitive electrochemical determination of codeine in pharmaceutical formulations and human urine using a boron-doped diamond film electrode. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2012.09.111] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Cisternino S, Chapy H, André P, Smirnova M, Debray M, Scherrmann JM. Coexistence of passive and proton antiporter-mediated processes in nicotine transport at the mouse blood-brain barrier. AAPS JOURNAL 2012; 15:299-307. [PMID: 23212563 DOI: 10.1208/s12248-012-9434-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 10/25/2012] [Indexed: 01/04/2023]
Abstract
Nicotine, the main tobacco alkaloid leading to smoking dependence, rapidly crosses the blood-brain barrier (BBB) to become concentrated in the brain. Recently, it has been shown that nicotine interacts with some organic cation transporters (OCT), but their influence at the BBB has not yet been assessed in vivo. In this study, we characterized the transport of nicotine at the mouse luminal BBB by in situ brain perfusion. Its influx was saturable and followed the Michaelis-Menten kinetics (K(m)=2.60 mM, V(max)=37.60 nmol/s/g at pH 7.40). At its usual micromolar concentrations in the plasma, most (79%) of the net transport of nicotine at the BBB was carrier-mediated, while passive diffusion accounted for 21%. Studies on knockout mice showed that the OCT Oct1-3, P-gp, and Bcrp did not alter [(3)H]-nicotine transport at the BBB. Neither did inhibiting the transporters Mate1, Octn, or Pmat. The in vivo manipulation of intracellular and/or extracellular pH, the chemical inhibition profile, and the trans-stimulation experiments demonstrated that the nicotine transporter at the BBB shared the properties of the clonidine/proton antiporter. The molecular features of this proton-coupled antiporter have not yet been identified, but it also transports diphenhydramine and tramadol and helps nicotine cross the BBB at a faster rate and to a greater extent. The pharmacological inhibition of this nicotine/proton antiporter could represent a new strategy to reduce nicotine uptake by the brain and thus help curb addiction to smoking.
Collapse
Affiliation(s)
- Salvatore Cisternino
- INSERM U705, CNRS UMR 8206, Pharmacocinétique, Faculté de Pharmacie, Sorbonne Paris Cité, Université Paris Diderot, Université Paris Descartes, 4, Avenue de l'Observatoire, 75006 Paris, France.
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
This paper is the thirty-fourth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2011 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
12
|
Affiliation(s)
- Toyofumi SUZUKI
- Laboratory of Pharmaceutics, School of Pharmacy, Nihon University
| |
Collapse
|
13
|
Ronaldson PT, Davis TP. Targeting blood-brain barrier changes during inflammatory pain: an opportunity for optimizing CNS drug delivery. Ther Deliv 2011; 2:1015-41. [PMID: 22468221 PMCID: PMC3313594 DOI: 10.4155/tde.11.67] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The blood-brain barrier (BBB) is the most significant obstacle to effective CNS drug delivery. It possesses structural and biochemical features (i.e., tight-junction protein complexes and, influx and efflux transporters) that restrict xenobiotic permeation. Pathophysiological stressors (i.e., peripheral inflammatory pain) can alter BBB tight junctions and transporters, which leads to drug-permeation changes. This is especially critical for opioids, which require precise CNS concentrations to be safe and effective analgesics. Recent studies have identified molecular targets (i.e., endogenous transporters and intracellular signaling systems) that can be exploited for optimization of CNS drug delivery. This article summarizes current knowledge in this area and emphasizes those targets that present the greatest opportunity for controlling drug permeation and/or drug transport across the BBB in an effort to achieve optimal CNS opioid delivery.
Collapse
Affiliation(s)
- Patrick T Ronaldson
- Department of Medical Pharmacology, College of Medicine, University of Arizona, 1501 N Campbell Avenue, PO Box 245050, Tucso, AZ, USA.
| | | |
Collapse
|