1
|
Pereira SC, Coeli-Lacchini FB, Pereira DA, Ferezin LP, Menezes IC, Baes CVW, Luizon MR, Juruena MF, Cleare AJ, Young AH, Lacchini R. Early life stress unravels epistatic genetic associations of cortisol pathway genes with depression. J Psychiatr Res 2024; 175:323-332. [PMID: 38759498 DOI: 10.1016/j.jpsychires.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/26/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis represents one of the most consistent pathophysiological findings in depressive disorders. Cortisol signaling is affected by proteins that mediate its cellular responses or alters its availability to mineralocorticoid and glucocorticoid receptors. In our study, we evaluated candidate genes that may influence the risk for depression and suicide due to its involvement in cortisol signaling. The aim of the study was to assess whether the genotypes of these genes are associated with the risk for depression, severity of depressive symptoms, suicidal ideation, and suicide attempts. And whether there is interaction between genes and early-life stress. In this study, 100 healthy controls and 140 individuals with depression were included. The subjects were clinically assessed using the 21-item GRID-Hamilton questionnaires (GRID-HAMD-21), Beck Scale for Suicidal Ideation (BSI), and the Childhood Trauma Questionnaire (CTQ). A robust multifactorial dimensionality reduction analysis was used to characterize the interactions between the genes HSD11B1, NR3C1, NR3C2, and MDR1 and early-life stress. It was found a significant association of the heterozygous genotype of the MDR1 gene rs1128503 polymorphism with reduced risk of at least one suicide attempt (OR: 0.08, p = 0.003*) and a reduction in the number of suicide attempts (β = -0.79, p = 0.006*). Furthermore, it was found that the MDR1 rs1228503 and NR3C2 rs2070951 genes interact with early-life stress resulting in a strong association with depression (p = 0.001). Our findings suggest that polymorphisms in the MDR1 and NR3C2 genes and their interaction with childhood trauma may be important biomarkers for depression and suicidal behaviors.
Collapse
Affiliation(s)
- Sherliane Carla Pereira
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | - Daniela Alves Pereira
- Department of Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Letícia Perticarrara Ferezin
- Department of Public Health Nursing, Ribeirão Preto Nursing School, University of São Paulo, Ribeirão Preto, Brazil
| | - Itiana Castro Menezes
- Department of Neuroscience and Behavior, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Cristiane von Werne Baes
- Department of Neuroscience and Behavior, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Marcelo Rizzatti Luizon
- Department of Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mario F Juruena
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London & South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham, Kent, BR3 3BX, United Kingdom
| | - Anthony J Cleare
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London & South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham, Kent, BR3 3BX, United Kingdom
| | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London & South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham, Kent, BR3 3BX, United Kingdom
| | - Riccardo Lacchini
- Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Ribeirao Preto, Brazil.
| |
Collapse
|
2
|
Wang G, Du J, Ma J, Liu P, Xing S, Xia J, Dong S, Li Z. Discovery of Novel Tryptanthrin Derivatives with Benzenesulfonamide Substituents as Multi-Target-Directed Ligands for the Treatment of Alzheimer's Disease. Pharmaceuticals (Basel) 2023; 16:1468. [PMID: 37895939 PMCID: PMC10610214 DOI: 10.3390/ph16101468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Based on the multi-target-directed ligands (MTDLs) approach, two series of tryptanthrin derivatives with benzenesulfonamide substituents were evaluated as multifunctional agents for the treatment of Alzheimer's disease (AD). In vitro biological assays indicated most of the derivatives had good cholinesterase inhibitory activity and neuroprotective properties. Among them, the target compound 4h was considered as a mixed reversible dual inhibitor of acetylcholinesterase (AChE, IC50 = 0.13 ± 0.04 μM) and butyrylcholinesterase (BuChE, IC50 = 6.11 ± 0.15 μM). And it could also potentially prevent the generation of amyloid plaques by inhibiting self-induced Aβ aggregation (63.16 ± 2.33%). Molecular docking studies were used to explore the interactions of AChE, BuChE, and Aβ. Furthermore, possessing significant anti-neuroinflammatory potency (NO, IL-1β, TNF-α; IC50 = 0.62 ± 0.07 μM, 1.78 ± 0.21 μM, 1.31 ± 0.28 μM, respectively) reduced ROS production, and chelated biometals were also found in compound 4h. Further studies showed that 4h had proper blood-brain barrier (BBB) permeability and suitable in vitro metabolic stability. In in vivo study, 4h effectively ameliorated the learning and memory impairment of the scopolamine-induced AD mice model. These findings suggested that 4h may be a promising compound for further development as a multifunctional agent for the treatment of AD.
Collapse
Affiliation(s)
- Guoxing Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (G.W.); (J.D.); (P.L.); (S.X.); (J.X.); (S.D.)
- Anhui BioX-Vision Biological Technology Co., Ltd., Hefei 230032, China
| | - Jiyu Du
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (G.W.); (J.D.); (P.L.); (S.X.); (J.X.); (S.D.)
| | - Jie Ma
- Neurosurgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Peipei Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (G.W.); (J.D.); (P.L.); (S.X.); (J.X.); (S.D.)
- Anhui BioX-Vision Biological Technology Co., Ltd., Hefei 230032, China
| | - Siqi Xing
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (G.W.); (J.D.); (P.L.); (S.X.); (J.X.); (S.D.)
| | - Jucheng Xia
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (G.W.); (J.D.); (P.L.); (S.X.); (J.X.); (S.D.)
| | - Shuanghong Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (G.W.); (J.D.); (P.L.); (S.X.); (J.X.); (S.D.)
| | - Zeng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (G.W.); (J.D.); (P.L.); (S.X.); (J.X.); (S.D.)
| |
Collapse
|
3
|
Liu T, Chen S, Du J, Xing S, Li R, Li Z. Design, synthesis, and biological evaluation of novel (4-(1,2,4-oxadiazol-5-yl)phenyl)-2-aminoacetamide derivatives as multifunctional agents for the treatment of Alzheimer's disease. Eur J Med Chem 2022; 227:113973. [PMID: 34752955 DOI: 10.1016/j.ejmech.2021.113973] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022]
Abstract
On the basis of our previous work, a novel series of (4-(1,2,4-oxadiazol-5-yl)phenyl)-2-aminoacetamide derivatives were synthesized and evaluated as multifunctional ligands for the treatment of Alzheimer's disease (AD). Biological evaluations indicated that the derivatives can be used as anti-AD drugs that have multifunctional properties, inhibit the activity of butyrylcholinesterase (BuChE), inhibit neuroinflammation, have neuroprotective properties, and inhibit the self-aggregation of Aβ. Compound f9 showed good potency in BuChE inhibition (IC50: 1.28 ± 0.18 μM), anti-neuroinflammatory potency (NO, IL-1β, TNF-α; IC50: 0.67 ± 0.14, 1.61 ± 0.21, 4.15 ± 0.44 μM, respectively), and inhibited of Aβ self-aggregation (51.91 ± 3.90%). Preliminary anti-inflammatory mechanism studies indicated that the representative compound f9 blocked the activation of the NF-κB signaling pathway. Moreover, f9 exhibited 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging effect, and an inhibitory effect on the production of intracellular reactive oxygen species (ROS). In the bi-directional transport assay, f9 displayed proper blood-brain barrier (BBB) permeability. In addition, the title compound improved memory and cognitive functions in a mouse model induced by scopolamine. Hence, the compound f9 can be considered as a promising lead compound for further investigation in the treatment of AD.
Collapse
Affiliation(s)
- Tongtong Liu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Shiming Chen
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Jiyu Du
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Siqi Xing
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Rong Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China.
| | - Zeng Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
4
|
Kadakia E, Harpude P, Parayath N, Bottino D, Amiji M. Challenging the CNS Targeting Potential of Systemically Administered Nanoemulsion Delivery Systems: a Case Study with Rapamycin-Containing Fish Oil Nanoemulsions in Mice. Pharm Res 2019; 36:134. [DOI: 10.1007/s11095-019-2667-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022]
|
5
|
Teruel AH, Pérez-Esteve É, González-Álvarez I, González-Álvarez M, Costero AM, Ferri D, Gaviña P, Merino V, Martínez-Máñez R, Sancenón F. Double Drug Delivery Using Capped Mesoporous Silica Microparticles for the Effective Treatment of Inflammatory Bowel Disease. Mol Pharm 2019; 16:2418-2429. [DOI: 10.1021/acs.molpharmaceut.9b00041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Adrián H. Teruel
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat
de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Édgar Pérez-Esteve
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat
de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Isabel González-Álvarez
- Departamento de Ingeniería, Sección de Farmacia y Tecnología Farmacéutica, Universidad Miguel Hernandez, 03550, Alicante, Spain
| | - Marta González-Álvarez
- Departamento de Ingeniería, Sección de Farmacia y Tecnología Farmacéutica, Universidad Miguel Hernandez, 03550, Alicante, Spain
| | - Ana M. Costero
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat
de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
- Departamento de Química Orgánica, Universitat de València, Doctor Moliner 50, Burjassot, Valencia 46100, Spain
| | - Daniel Ferri
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat
de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
- Departamento de Química Orgánica, Universitat de València, Doctor Moliner 50, Burjassot, Valencia 46100, Spain
| | - Pablo Gaviña
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat
de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
- Departamento de Química Orgánica, Universitat de València, Doctor Moliner 50, Burjassot, Valencia 46100, Spain
| | - Virginia Merino
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat
de València, Camino de Vera s/n, 46022 Valencia, Spain
- Departamento de Farmacia y Tecnologia Farmacéutica, Universitat de València 46100 Valencia, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat
de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
- Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, València, Universitat Politècnica de València, Centro de
Investigación Príncipe Felipe, Valencia, Spain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat
de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
- Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, València, Universitat Politècnica de València, Centro de
Investigación Príncipe Felipe, Valencia, Spain
| |
Collapse
|
6
|
Nanoemulsions in CNS drug delivery: recent developments, impacts and challenges. Drug Discov Today 2019; 24:1104-1115. [PMID: 30914298 DOI: 10.1016/j.drudis.2019.03.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/03/2019] [Accepted: 03/20/2019] [Indexed: 02/06/2023]
Abstract
Despite enormous efforts, treatment of CNS diseases remains challenging. One of the main issues causing this situation is limited CNS access for the majority of drugs used as part of the therapeutic regimens against life-threatening CNS diseases. Regarding the inarguable position of the nanocarrier systems in neuropharmacokinetic enhancement of the CNS drugs, this review discusses the latest findings on nanoemulsions (NEs) as one of the most promising candidates of this type, to overcome the challenges of CNS drug delivery. Future development of NE-based CNS drug delivery needs to consider so many aspects not only from a physicochemical point of view but also related to the biointerface of these very small droplets before achieving clinical value.
Collapse
|
7
|
Teruel AH, Pérez-Esteve É, González-Álvarez I, González-Álvarez M, Costero AM, Ferri D, Parra M, Gaviña P, Merino V, Martínez-Mañez R, Sancenón F. Smart gated magnetic silica mesoporous particles for targeted colon drug delivery: New approaches for inflammatory bowel diseases treatment. J Control Release 2018; 281:58-69. [PMID: 29753956 DOI: 10.1016/j.jconrel.2018.05.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/24/2022]
Abstract
Magnetic mesoporous silica microparticles were loaded with safranin O (S1) and with hydrocortisone (S2) and the outer surface functionalized with a bulky azo derivative bearing urea moieties. Aqueous suspensions of both solids at pH 7.4 showed negligible payload release whereas a marked delivery was observed in the presence of sodium dithionite due to the rupture of the azo bonds. Besides, a moderate cargo release was observed at acidic pH due to the hydrolysis of the urea bonds that linked the azo derivative onto the external surface of the inorganic scaffolds. In vitro digestion models showed that S1 and S2 microparticles could be used for the controlled release of payload in the reducing colon environment (in which azoreductase enzymes are present). On the other hand, in vivo pharmacokinetic studies in rats showed that safranine O release from S1 microparticles was concentrated in colon. The performance of S2 microparticles for the treatment of colitis in rats (induced by oral administration of a 2,4,6-trinitrobenzenesulfonic acid solution) was tested. The controlled release of hydrocortisone from S2 in the colon of injured rats induced marked reduction in colon/body weight ratio and in clinical activity score. Also, histological studies showed a marked decrease in inflammation followed by intensive regeneration and almost normal mucosal structure of the individuals treated with S2. Besides, the use of a magnetic belt increased the therapeutic performances of S2 due to an enhanced retention time of the particles in the colon.
Collapse
Affiliation(s)
- Adrián H Teruel
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Édgar Pérez-Esteve
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain
| | - Isabel González-Álvarez
- Departamento de Ingeniería, Sección de Farmacia y Tecnología Farmacéutica, Universidad Miguel Hernandez, Alicante 03550, Spain
| | - Marta González-Álvarez
- Departamento de Ingeniería, Sección de Farmacia y Tecnología Farmacéutica, Universidad Miguel Hernandez, Alicante 03550, Spain
| | - Ana M Costero
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Departamento de Química Orgánica, Universitat de València, Doctor Moliner 50, Valencia 46100, Spain
| | - Daniel Ferri
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain; Departamento de Química Orgánica, Universitat de València, Doctor Moliner 50, Valencia 46100, Spain
| | - Margarita Parra
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Departamento de Química Orgánica, Universitat de València, Doctor Moliner 50, Valencia 46100, Spain
| | - Pablo Gaviña
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Departamento de Química Orgánica, Universitat de València, Doctor Moliner 50, Valencia 46100, Spain
| | - Virginia Merino
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain; Departamento de Farmacia y Tecnologia Farmacéutica, Universitat de València, Valencia 46100, Spain
| | - Ramón Martínez-Mañez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Instituto de Investigación Sanitaria La Fe, Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, Valencia, Spain.
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Instituto de Investigación Sanitaria La Fe, Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
8
|
Zheng Q, Tang Y, Hu PY, Liu D, Zhang D, Yue P, Guo Y, Yang M. The influence and mechanism of ligustilide, senkyunolide I, and senkyunolide A on echinacoside transport through MDCK-MDR1 cells as blood-brain barrier in vitro model. Phytother Res 2017; 32:426-435. [DOI: 10.1002/ptr.5985] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 10/08/2017] [Accepted: 10/19/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Qin Zheng
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education; Jiangxi University of Traditional Chinese Medicine; Nanchang 330004 China
| | - Yu Tang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education; Jiangxi University of Traditional Chinese Medicine; Nanchang 330004 China
| | - Peng-Yi Hu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education; Jiangxi University of Traditional Chinese Medicine; Nanchang 330004 China
| | - Dan Liu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education; Jiangxi University of Traditional Chinese Medicine; Nanchang 330004 China
| | - Delin Zhang
- Jiangxi University of Traditional Chinese Medicine; Nanchang 330004 China
| | - Pengfei Yue
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education; Jiangxi University of Traditional Chinese Medicine; Nanchang 330004 China
| | - Yuanyuan Guo
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education; Jiangxi University of Traditional Chinese Medicine; Nanchang 330004 China
| | - Ming Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education; Jiangxi University of Traditional Chinese Medicine; Nanchang 330004 China
| |
Collapse
|
9
|
Elucidation of Transport Mechanism of Paeoniflorin and the Influence of Ligustilide, Senkyunolide I and Senkyunolide A on Paeoniflorin Transport through Mdck-Mdr1 Cells as Blood-Brain Barrier in Vitro Model. Molecules 2016; 21:300. [PMID: 26950101 PMCID: PMC6273373 DOI: 10.3390/molecules21030300] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 02/02/2023] Open
Abstract
The objectives of the present investigation were to: (1) elucidate the transport mechanism of paeoniflorin (PF) across MDCK-MDR1 monolayers; and (2) evaluate the effect of ligustilide (LIG), senkyunolide I (SENI) and senkyunolide A (SENA) on the transport of PF through blood–brain barrier so as to explore the enhancement mechanism. Transport studies of PF were performed in both directions, from apical to basolateral side (A→B) and from basolateral to apical sides (B→A). Drug concentrations were analyzed by LC-MS/MS. PF showed relatively poor absorption in MDCK-MDR1 cells, apparent permeability coefficients (Papp) ranging from 0.587 × 10−6 to 0.705 × 10−6 cm/s. In vitro experiments showed that the transport of PF in both directions was concentration dependent and not saturable. The B→A/A→B permeability ER of PF was more than 2 in the MDCK-MDR1 cells, which indicated that the transport mechanism of PF might be passive diffusion as the dominating process with the active transportation mediated mechanism involved. The increased Papp of PF in A→B direction by EDTA-Na2 suggested that PF was absorbed via the paracellular route. The P-gp inhibitor verapamil could significantly increase the transport of PF in A→B direction, and ER decreased from 2.210 to 0.690, which indicated that PF was P-gp substance. The transport of PF in A→B direction significantly increased when co-administrated with increasing concentrations of LIG, SENI and SENA. An increased cellular accumulation of Rho 123 and Western blot analysis indicated that LIG, SENI and SENA had increased the transport of PF in the BBB models attribute to down-regulate P-gp expression. A decrease in transepithelial electrical resistance (TEER) during the permeation experiment can be explained by the modulation and opening of the tight junctions caused by the permeation enhancer LIG, SENI and SENA.
Collapse
|
10
|
Oltra-Noguera D, Mangas-Sanjuan V, Centelles-Sangüesa A, Gonzalez-Garcia I, Sanchez-Castaño G, Gonzalez-Alvarez M, Casabo VG, Merino V, Gonzalez-Alvarez I, Bermejo M. Variability of permeability estimation from different protocols of subculture and transport experiments in cell monolayers. J Pharmacol Toxicol Methods 2015; 71:21-32. [DOI: 10.1016/j.vascn.2014.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/13/2014] [Accepted: 11/13/2014] [Indexed: 10/24/2022]
|
11
|
Grosso G, Galvano F, Marventano S, Malaguarnera M, Bucolo C, Drago F, Caraci F. Omega-3 fatty acids and depression: scientific evidence and biological mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:313570. [PMID: 24757497 PMCID: PMC3976923 DOI: 10.1155/2014/313570] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 02/07/2014] [Indexed: 02/06/2023]
Abstract
The changing of omega-6/omega-3 polyunsaturated fatty acids (PUFA) in the food supply of Western societies occurred over the last 150 years is thought to promote the pathogenesis of many inflammatory-related diseases, including depressive disorders. Several epidemiological studies reported a significant inverse correlation between intake of oily fish and depression or bipolar disorders. Studies conducted specifically on the association between omega-3 intake and depression reported contrasting results, suggesting that the preventive role of omega-3 PUFA may depend also on other factors, such as overall diet quality and the social environment. Accordingly, tertiary prevention with omega-3 PUFA supplement in depressed patients has reached greater effectiveness during the last recent years, although definitive statements on their use in depression therapy cannot be yet freely asserted. Among the biological properties of omega-3 PUFA, their anti-inflammatory effects and their important role on the structural changing of the brain should be taken into account to better understand the possible pathway through which they can be effective both in preventing or treating depression. However, the problem of how to correct the inadequate supply of omega-3 PUFA in the Westernized countries' diet is a priority in order to set food and health policies and also dietary recommendations for individuals and population groups.
Collapse
Affiliation(s)
- Giuseppe Grosso
- Department of Clinical and Molecular Biomedicine, Section of Pharmacology and Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Fabio Galvano
- Department of Clinical and Molecular Biomedicine, Section of Pharmacology and Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Stefano Marventano
- Department of "G.F. Ingrassia", Section of Hygiene and Public Health, University of Catania, Via S. Sofia 85, 95123 Catania, Italy
| | - Michele Malaguarnera
- Department of Clinical and Molecular Biomedicine, Section of Pharmacology and Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Claudio Bucolo
- Department of Clinical and Molecular Biomedicine, Section of Pharmacology and Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Filippo Drago
- Department of Clinical and Molecular Biomedicine, Section of Pharmacology and Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Filippo Caraci
- Department of Educational Sciences, University of Catania, Via Teatro Greco 84, 95124 Catania, Italy ; IRCCS Associazione Oasi Maria S.S.-Institute for Research on Mental Retardation and Brain Aging, Via Conte Ruggiero 73, Enna, 94018 Troina, Italy
| |
Collapse
|
12
|
Wu K, Wang ZZ, Liu D, Qi XR. Pharmacokinetics, brain distribution, release and blood-brain barrier transport of Shunaoxin pills. JOURNAL OF ETHNOPHARMACOLOGY 2014; 151:1133-1140. [PMID: 24373808 DOI: 10.1016/j.jep.2013.12.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 11/29/2013] [Accepted: 12/18/2013] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shunaoxin pills, a traditional Chinese medicine (TCM) product, have been used to treat cerebrovascular diseases in China since 2005. The main active components of Shunaoxin pills are ferulic acid and ligustilide from Chuanxiong (Ligusticum chuanxiong Hort, Umbelliferae) and Danggui (Angelica sinensis radix, Umbelliferae). As Shunaoxin shows excellent activity in the central nervous system (CNS), the extent to which the major constituents of Shunaoxin reach the CNS should be investigated. Moreover, the in vivo-in vitro correlations (IVIVC) of the formulation should be studied to elucidate the mechanisms of action of TCM in the CNS. However, these data have not previously been available. Thus we intended to investigate what the extent when these constituents of Shunaoxin pills reach the CNS, and evaluate the IVIVC of release and pharmacokinetics. MATERIALS AND METHODS In this study, we evaluated the release of ferulic acid and ligustilide from Shunaoxin pills, and their transport across an in vitro model of the BBB. We also evaluated their pharmacokinetics and brain distribution in vivo. High-performance liquid chromatography (HPLC) was used to quantify both compounds simultaneously. Based on the release in vitro and absorption of ferulic acid and ligustilide in vivo, IVIVC permitted prediction of the pharmacokinetics of these compounds. RESULTS The release of ferulic acid and ligustilide reached a platform phase within 1h. Ferulic acid and ligustilide rapidly crossed the BBB in different patterns; the transport ratio increased over time. After intragastric (i.g.) administration of Shunaoxin pills, ferulic acid and ligustilide were rapidly absorbed and distributed into brain, which may result in a rapid onset of action. CONCLUSIONS Ferulic acid and ligustilide were transported across a model BBB. After i.g. administration of Shunaoxin pills, ferulic acid and ligustilide were rapidly absorbed and distributed in brain; this may lead to rapid pharmacological onset. The IVIVC can be used to predict in vivo pharmacokinetics from in vitro experimental results. These results provide support for the clinical use of Shunaoxin pills.
Collapse
Affiliation(s)
- Kai Wu
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhan-Zhang Wang
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Dan Liu
- Tianjin No. 6 Traditional Chinese Medicine Factory of Zhongxin Pharmaceuticals Group Co., Ltd. Tianjin 300401, China
| | - Xian-Rong Qi
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
13
|
Hennebelle M, Champeil-Potokar G, Lavialle M, Vancassel S, Denis I. Omega-3 polyunsaturated fatty acids and chronic stress-induced modulations of glutamatergic neurotransmission in the hippocampus. Nutr Rev 2014; 72:99-112. [DOI: 10.1111/nure.12088] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Marie Hennebelle
- Department of Physiology and Biophysics; University of Sherbrooke; Sherbrooke Quebec Canada
| | - Gaëlle Champeil-Potokar
- INRA; Unité de Nutrition et Régulation Lipidiques des Fonctions Cérébrales; NuRéLiCe; UR909; Jouy en Josas France
| | - Monique Lavialle
- INRA; Unité de Nutrition et Régulation Lipidiques des Fonctions Cérébrales; NuRéLiCe; UR909; Jouy en Josas France
| | - Sylvie Vancassel
- INRA; Unité de Nutrition et Neurobiologie Intégrée; UMR1286; Bordeaux France
| | - Isabelle Denis
- INRA; Unité de Nutrition et Régulation Lipidiques des Fonctions Cérébrales; NuRéLiCe; UR909; Jouy en Josas France
| |
Collapse
|
14
|
Shah L, Gattacceca F, Amiji MM. CNS delivery and pharmacokinetic evaluations of DALDA analgesic peptide analog administered in Nano-sized oil-in-water emulsion formulation. Pharm Res 2013; 31:1315-24. [PMID: 24297071 DOI: 10.1007/s11095-013-1252-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/10/2013] [Indexed: 12/18/2022]
Abstract
PURPOSE Although neuro-active peptides are highly potent as central nervous system (CNS) therapeutics, their systemic delivery across the blood-brain barrier (BBB) is limited due to lack of permeability in the brain and rapid systemic metabolism. In this study, we aimed at enhancing the brain delivery and stability of chemically modified [D-Arg(2), Lys(4)]-dermorphin-(1-4)-amide)] (DALDA) peptide to achieve prolonged analgesic effects. METHODS The C8-DALDA peptide analog was encapsulated in an oil-in-water nanoemulsion formulation made specifically with oils rich in omega-3 rich polyunsaturated fatty acid (PUFA) to enhance CNS availability. The nanoemulsion formulation was administered systemically in CD-1 mice and qualitative and quantitative biodistribution was evaluated. We have also examined the effect of curcumin, which is known to down-regulate efflux transporters and inhibit systemic metabolism, on the pharmacokinetic properties of the peptide. RESULTS Qualitative and quantitative biodistribution and pharmacokinetic studies in mice clearly demonstrated improved plasma and brain exposure of modified DALDA when administered in nanoemulsion, thereby providing an exciting opportunity towards improved efficacy and/or lowered dose of the peptide. The various dosing regimens tested for modified DALDA solution and curcumin nanoemulsion directed towards a novel combination strategy for improved systemic delivery of peptides across the BBB. CONCLUSIONS Encapsulation of the drug in PUFA nanoemulsion is an effective strategy for delivery of peptides. This work provides a novel combination strategy for improved delivery of peptides to the brain.
Collapse
Affiliation(s)
- Lipa Shah
- Department of Pharmaceutical Sciences, School of Pharmacy Bouvé College of Health Sciences, Northeastern University, Boston, MA, 02115, USA
| | | | | |
Collapse
|
15
|
Chen ZZ, Lu Y, Du SY, Shang KX, Cai CB. Influence of borneol and muscone on geniposide transport through MDCK and MDCK-MDR1 cells as blood-brain barrier in vitro model. Int J Pharm 2013; 456:73-9. [PMID: 23973509 DOI: 10.1016/j.ijpharm.2013.08.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/25/2013] [Accepted: 08/08/2013] [Indexed: 02/06/2023]
Abstract
The objective of this study was (1) to characterize geniposide transport through MDCK and MDCK-MDR1 cell lines to confirm its transport mechanism and (2) to evaluate the effect of borneol and muscone as enhancers of geniposide transport in the BBB models so as to explore the enhancement mechanism. Transport studies of geniposide were performed in both directions, from apical to basolateral and from basolateral to apical sides. Drug concentrations were analyzed by HPLC. Geniposide showed relatively poor absorption in MDCK and MDCK-MDR1 cells, apparent permeability coefficients ranging from 0.323×10(-6) to 0.422×10(-6) cm/s. The in vitro experiments showed that geniposide transport in both directions was not concentration dependent and saturable, indicating purely passive diffusion. The efflux ratio of geniposide was less than 2 in the two cell models, which suggested that geniposide was not P-gp substrates. Geniposide transport in both directions significantly increased when co-administrated with increasing concentrations of borneol and muscone. Actin staining results indicated that borneol and muscone increased geniposide transport in the BBB models may attribute to disassembly effect on tight junction integrity.
Collapse
Affiliation(s)
- Zhen-Zhen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 6, Zhonghuan South Road, Wangjing, Chaoyang District, Beijing 100102, China.
| | | | | | | | | |
Collapse
|
16
|
Renukuntla J, Vadlapudi AD, Patel A, Boddu SHS, Mitra AK. Approaches for enhancing oral bioavailability of peptides and proteins. Int J Pharm 2013; 447:75-93. [PMID: 23428883 DOI: 10.1016/j.ijpharm.2013.02.030] [Citation(s) in RCA: 414] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 12/28/2012] [Accepted: 02/12/2013] [Indexed: 12/20/2022]
Abstract
Oral delivery of peptide and protein drugs faces immense challenge partially due to the gastrointestinal (GI) environment. In spite of considerable efforts by industrial and academic laboratories, no major breakthrough in the effective oral delivery of polypeptides and proteins has been accomplished. Upon oral administration, gastrointestinal epithelium acts as a physical and biochemical barrier for absorption of proteins resulting in low bioavailability (typically less than 1-2%). An ideal oral drug delivery system should be capable of (a) maintaining the integrity of protein molecules until it reaches the site of absorption, (b) releasing the drug at the target absorption site, where the delivery system appends to that site by virtue of specific interaction, and (c) retaining inside the gastrointestinal tract irrespective of its transitory constraints. Various technologies have been explored to overcome the problems associated with the oral delivery of macromolecules such as insulin, gonadotropin-releasing hormones, calcitonin, human growth factor, vaccines, enkephalins, and interferons, all of which met with limited success. This review article intends to summarize the physiological barriers to oral delivery of peptides and proteins and novel pharmaceutical approaches to circumvent these barriers and enhance oral bioavailability of these macromolecules.
Collapse
Affiliation(s)
- Jwala Renukuntla
- Division of Pharmaceutical Sciences, South College School of Pharmacy, 400 Goody's Lane, Knoxville, TN 37931, USA
| | | | | | | | | |
Collapse
|
17
|
Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Pharm Res 2013; 30:2512-22. [PMID: 23314933 DOI: 10.1007/s11095-012-0958-3] [Citation(s) in RCA: 470] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Accepted: 12/07/2012] [Indexed: 10/27/2022]
Abstract
PURPOSE To investigate the effects of the particle size and surface coating on the cellular uptake of the polymeric nanoparticles for drug delivery across the physiological drug barrier with emphasis on the gastrointestinal (GI) barrier for oral chemotherapy and the blood-brain barrier (BBB) for imaging and therapy of brain cancer. METHODS Various sizes of commercial fluorescent polystyrene nanoparticles (PS NPs) (viz 20 50, 100, 200 and 500 nm) were modified with the d-α-tocopheryl polyethylene glycol 1,000 succinate (vitamin E TPGS or TPGS). The size, surface charge and surface morphology of PS NPs before and after TPGS modification were characterized. The Caco-2 and MDCK cells were employed as an in vitro model of the GI barrier for oral and the BBB for drug delivery into the central nerve system respectively. The distribution of fluorescent NPs after i.v. administration to rats was analyzed by the high performance liquid chromatography (HPLC). RESULTS The in vitro investigation showed enhanced cellular uptake efficiency for PS NPs in both of Caco-2 and MDCK cells after TPGS surface coating. In vivo investigation showed that the particle size and surface coating are the two parameters which can dramatically influence the NPs biodistribution after intravenous administration. The TPGS coated NPs of smaller size (< 200 nm) can escape from recognition by the reticuloendothelial system (RES) and thus prolong the half-life of the NPs in the blood system. CONCLUSIONS TPGS-coated PS NPs of 100 and 200 nm sizes have potential to deliver the drug across the GI barrier and the BBB.
Collapse
|
18
|
Broccatelli F. QSAR Models for P-Glycoprotein Transport Based on a Highly Consistent Data Set. J Chem Inf Model 2012; 52:2462-70. [DOI: 10.1021/ci3002809] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Fabio Broccatelli
- Laboratory of Chemometrics, Department of Chemistry, University of Perugia, Via Elce di Sotto 10, I-60123 Perugia, Italy
| |
Collapse
|
19
|
Crupi R, Cambiaghi M, Deckelbaum R, Hansen I, Mindes J, Spina E, Battaglia F. n-3 fatty acids prevent impairment of neurogenesis and synaptic plasticity in B-cell activating factor (BAFF) transgenic mice. Prev Med 2012; 54 Suppl:S103-8. [PMID: 22227286 DOI: 10.1016/j.ypmed.2011.12.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 12/12/2011] [Accepted: 12/20/2011] [Indexed: 10/14/2022]
Abstract
OBJECTIVE Autoimmune-prone B-cell activating factor transgenic mice, a mouse model of systemic lupus erythematosus and Sjögren's syndrome exhibit neuroinflammation, anxiety-like phenotype, deficit in adult hippocampal neurogenesis and impaired neurogenesis-dependent and neurogenesis-independent dentate gyrus long-term potentiation. Given that n-3 polyunsaturated fatty acids regulate hippocampal plasticity and inflammatory responses, we investigated whether n-3 polyunsaturated fatty acids-enriched diet might prevent age-dependent hippocampal changes in B-cell activating factor transgenic mice. METHODS B-cell activating factor transgenic mice were fed for 12 weeks with either n-3 polyunsaturated fatty acids-enriched or control diet and we tested the effect of this dietary supplementation on hippocampal inflammation, progenitor cell proliferation and neurogenesis-dependent and neurogenesis-independent long-term potentiation. RESULTS Dietary supplementation with n-3 polyunsaturated fatty acids significantly decreased hippocampal microglial activation and increased the density of bromodeoxyuridine and doublecortin-positive newly-formed cells in the subventricular zone of hippocampus. Furthermore, B-cell activating factor transgenic mice fed with n-3 polyunsaturated fatty acids-enriched diet displayed normal long-term potentiation at the medial perforant pathway/dentate gyrus connections. CONCLUSIONS The results indicate that n-3 fatty acids prevent neuroinflammation and deficits of hippocampal plasticity in B-cell activating factor transgenic mice and suggest that increased n-3 fatty acids intake might represent a potential therapeutic option to prevent neuropsychiatric symptoms associated with autoimmune diseases.
Collapse
Affiliation(s)
- Rosalia Crupi
- Department of Physiology and Pharmacology, CUNY Medical School, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Koklic T, Trancar J. Lysolipid containing liposomes for transendothelial drug delivery. BMC Res Notes 2012; 5:179. [PMID: 22490670 PMCID: PMC3403881 DOI: 10.1186/1756-0500-5-179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 04/10/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Designing efficient 'vectors', to deliver therapeutics across endothelial barriers, in a controlled manner, remains one of the key goals of drug development. Recently, transcytosis of liposome encapsulated fluorescence marker calcein across a tight cell barrier was studied. The most efficient liposomes were found to be liposomes containing sufficient amount of alkyl phospholipid (APL) perifosine. APLs have similar structure as lysophosphatidyl choline (LPC), since APLs were synthesized as metabolically stable analogues of LPC, which increases endothelial permeability directly by inducing endothelial cell contraction, resulting in formation of gaps between endothelial cells. Since one of the unique properties of lysolipid, containing liposomal formulations is dynamic equilibrium of lysolipids, which are distributed among liposomes, micelles, and free form, such liposomes represent a reservoir of free lysolipids. On the other hand lysolipid containing liposomes also represent a reservoir of an encapsulated hydrophilic drug. PRESENTATION OF THE HYPOTHESIS We hypothesize that free lysolipids, with highest concentration in vicinity of drug carrying liposomes, compromise endothelial integrity, primarily where concentrations of liposomes is the highest, in a similar manner as LPC, by formation of gaps between endothelial cells. Liposome encapsulated drug, which leaks from liposomes, due to liposome destabilization, caused by lysolipid depletion, can therefore be efficiently transported across the locally compromised endothelial barrier. TESTING THE HYPOTHESIS This hypothesis could be verified: by measuring binding of perifosine and other lysolipids to albumin and to lysophospholipid receptor (LPL-R) group; formation of stress fibers and subsequent cell contraction; activation of RhoA, and endothelial barrier dysfunction; by a synthesis of other LPC analogues with high critical micellar concentration and measuring their effect on transendothelial permeability in presence and absence of albumin. IMPLICATIONS OF THE HYPOTHESIS We propose that lysolipid containing liposomal formulations might be used as nonspecific transendothelial transport vector, since leakage of liposome encapsulated active drug occurs simultaneously with the release of the lysolipids. The concentration of the active drug is therefore expected to be the highest at the site of compromised endothelial barrier. By appropriate choice of the lysolipids an endothelial barrier would stay open only for a short time. Use of such liposomes would potentially maximize the delivery of the drug while limiting the passage of toxic substances and pathogens across the endothelial barrier. Combining lysolipid containing liposomes with superparamagnetic iron oxide nanoparticles or a targeting ligand might be required to efficiently localize drug delivery to a disease affected tissue and to avoid endothelial disruption over the entire body.
Collapse
Affiliation(s)
- Tilen Koklic
- Laboratory of Biophysics, Condensed Matter Physics F5, Joef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| | | |
Collapse
|
21
|
Brainpeps: the blood-brain barrier peptide database. Brain Struct Funct 2011; 217:687-718. [PMID: 22205159 DOI: 10.1007/s00429-011-0375-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 12/12/2011] [Indexed: 01/13/2023]
Abstract
Peptides are able to cross the blood-brain barrier (BBB) through various mechanisms, opening new diagnostic and therapeutic avenues. However, their BBB transport data are scattered in the literature over different disciplines, using different methodologies reporting different influx or efflux aspects. Therefore, a comprehensive BBB peptide database (Brainpeps) was constructed to collect the BBB data available in the literature. Brainpeps currently contains BBB transport information with positive as well as negative results. The database is a useful tool to prioritize peptide choices for evaluating different BBB responses or studying quantitative structure-property (BBB behaviour) relationships of peptides. Because a multitude of methods have been used to assess the BBB behaviour of compounds, we classified these methods and their responses. Moreover, the relationships between the different BBB transport methods have been clarified and visualized.
Collapse
|