1
|
Bällgren F, Bergfast T, Ginosyan A, Mahajan J, Lipcsey M, Hammarlund-Udenaes M, Syvänen S, Loryan I. Active CNS delivery of oxycodone in healthy and endotoxemic pigs. Fluids Barriers CNS 2024; 21:86. [PMID: 39443944 PMCID: PMC11515623 DOI: 10.1186/s12987-024-00583-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND The primary objective of this study was to advance our understanding of active drug uptake at brain barriers in higher species than rodents, by examining oxycodone brain concentrations in pigs. METHODS This was investigated by a microdialysis study in healthy and endotoxemic conditions to increase the understanding of inter-species translation of putative proton-coupled organic cation (H+/OC) antiporter-mediated central nervous system (CNS) drug delivery in health and pathology, and facilitate the extrapolation to humans for improved CNS drug treatment in patients. Additionally, we sought to evaluate the efficacy of lumbar cerebrospinal fluid (CSF) exposure readout as a proxy for brain unbound interstitial fluid (ISF) concentrations. By simultaneously monitoring unbound concentrations in blood, the frontal cortical area, the lateral ventricle (LV), and the lumbar intrathecal space in healthy and lipopolysaccharide (LPS)-induced inflammation states within the same animal, we achieved exceptional spatiotemporal resolution in mapping oxycodone transport across CNS barriers. RESULTS Our findings provide novel evidence of higher unbound oxycodone concentrations in brain ISF compared to blood, yielding an unbound brain-to-plasma concentration ratio (Kp,uu,brain) of 2.5. This supports the hypothesis of the presence of the H+/OC antiporter system at the blood-brain barrier (BBB) in pigs. Despite significant physiological changes, reflected in pig Sequential Organ Failure Assessment, pSOFA scores, oxycodone blood concentrations and its active net uptake across the BBB remained nearly unchanged during three hours of i.v. infusion of 4 µg/kg/h LPS from Escherichia coli (O111:B4). Mean Kp,uu,LV values indicated active uptake also at the blood-CSF barrier in healthy and endotoxemic pigs. Lumbar CSF concentrations showed minimal inter-individual variability during the experiment, with a mean Kp,uu,lumbarCSF of 1.5. LPS challenge caused a slight decrease in Kp,uu,LV, while Kp,uu,lumbarCSF remained unaffected. CONCLUSIONS This study enhances our understanding of oxycodone pharmacokinetics and CNS drug delivery in both healthy and inflamed conditions, providing crucial insights for translating these findings to clinical settings.
Collapse
Affiliation(s)
- Frida Bällgren
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden.
| | - Tilda Bergfast
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden
| | - Aghavni Ginosyan
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden
| | - Jessica Mahajan
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden
- School of Applied Sciences, Abertay University, Bell Street, Dundee, DD1 1HG, Scotland, UK
| | - Miklós Lipcsey
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset, 751 85, Uppsala, Sweden
| | - Margareta Hammarlund-Udenaes
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden
| | - Stina Syvänen
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Rudbecklaboratoriet, Dag Hammarskjölds Väg 20, 751 85, Uppsala, Sweden
| | - Irena Loryan
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden.
| |
Collapse
|
2
|
Stevens LJ, van de Steeg E, Doppenberg JB, Alwayn IPJ, Knibbe CAJ, Dubbeld J. Ex vivo gut-hepato-biliary organ perfusion model to characterize oral absorption, gut-wall metabolism, pre-systemic hepatic metabolism and biliary excretion; application to midazolam. Eur J Pharm Sci 2024; 196:106760. [PMID: 38574899 DOI: 10.1016/j.ejps.2024.106760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/03/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
To date, characterization of the first-pass effect of orally administered drugs consisting of local intestinal absorption and metabolism, portal vein transport and hepatobiliary processes remains challenging. Aim of this study was to explore the applicability of a porcine ex-vivo perfusion model to study oral absorption, gut-hepatobiliary metabolism and biliary excretion of midazolam. Slaughterhouse procured porcine en bloc organs (n = 4), were perfused via the aorta and portal vein. After 120 min of perfusion, midazolam, atenolol, antipyrine and FD4 were dosed via the duodenum and samples were taken from the systemic- and portal vein perfusate, intestinal faecal effluent and bile to determine drug and metabolite concentrations. Stable arterial and portal vein flow was obtained and viability of the perfused organs was confirmed. After intraduodenal administration, midazolam was rapidly detected in the portal vein together with 1-OH midazolam (EG-pv of 0.16±0.1) resulting from gut wall metabolism through oxidation. In the intestinal faecal effluent, 1-OH midazolam and 1-OH midazolam glucuronide (EG-intestine 0.051±0.03) was observed resulting from local gut glucuronidation. Biliary elimination of midazolam (0.04±0.01 %) and its glucuronide (0.01±0.01 %) only minimally contributed to the enterohepatic circulation. More extensive hepatic metabolism (FH 0.35±0.07) over intestinal metabolism (FG 0.78±0.11) was shown, resulting in oral bioavailability of 0.27±0.05. Ex vivo perfusion demonstrated to be a novel approach to characterize pre-systemic extraction of midazolam by measuring intestinal as well as hepatic extraction. The model can generate valuable insights into the absorption and metabolism of new drugs.
Collapse
Affiliation(s)
- L J Stevens
- Department of Surgery, Leiden University Medical Center (LUMC), Leiden, the Netherlands; LUMC Transplant Center, Leiden University Medical Center (LUMC), Leiden, the Netherlands; Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - E van de Steeg
- Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - J B Doppenberg
- LUMC Transplant Center, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - I P J Alwayn
- Department of Surgery, Leiden University Medical Center (LUMC), Leiden, the Netherlands; LUMC Transplant Center, Leiden University Medical Center (LUMC), Leiden, the Netherlands.
| | - C A J Knibbe
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug Research (LACDR), Leiden & Department of Clinical Pharmacy, St. Antonius Hospital Nieuwegein & Utrecht, Leiden University, the Netherlands
| | - J Dubbeld
- Department of Surgery, Leiden University Medical Center (LUMC), Leiden, the Netherlands; LUMC Transplant Center, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| |
Collapse
|
3
|
Bhuiyan TS, Said MA, Bulbul MZH, Ahmed S, Bhat AR, Chalkha M, Kawsar SMA. Synthesis, antimicrobial, and in silico studies of C5'- O-substituted cytidine derivatives: cinnamoylation leads to improvement of antimicrobial activity. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 43:1472-1510. [PMID: 38547445 DOI: 10.1080/15257770.2024.2333495] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 12/12/2024]
Abstract
Nucleoside derivatives are important therapeutic drugs that have drawn significant attention recently. In this study, cytidine (1) was first exposed to react with cinnamoyl chloride in N,N-dimethylformamide, and trimethylamine to obtain 5'-O-(cinnamoyl)cytidine, which was further treated with several acylating agents to obtain a series of 2',3'-di-O-acyl derivatives. The chemical structures of the synthesized compounds were established through spectral, analytical, and physicochemical techniques. In vitro antimicrobial efficacy was evaluated, and the antimicrobial effect was greater than that of the precursor compound; in particular, compound 3 exhibited the most promising activity. Cytotoxicity measurements revealed that the compounds demonstrated a decreased degree of toxicity. A structure-activity relationship (SAR) study showed that the ribose moiety combined with the acyl chains (C-12/C13) and (C6H5CH = CHCO) had enhanced effects on bacteria and fungi. Molecular docking was applied for the potential inhibitors (3, 4, and 6) to predict their mode of action and confirm their efficacy against isozymes, tubulin-like protein TubZ, Bacillus cereus [PDB: 4ei9], and dihydrofolate reductase of Aspergillus flavus [PDB: 6dtc]. A molecular dynamics simulation study was performed to evaluate the deformability, flexibility, and stiffness of the target enzyme residues. Density functional theory (DFT) indicates the high polarizability and chemical reactivity of the synthesized compounds. The ADMET (absorption, distribution, mechanism, excretion, and toxicity) study suggested that all the designed molecules have moderate human intestinal absorption and good distribution values in addition to the absence of CNS side effects and structural toxicity. Above all else, these cytidine derivatives possess potential antimicrobial behavior, thereby rendering them suitable drug candidate(s) for additional exploration.
Collapse
Affiliation(s)
- Tahmida Sultana Bhuiyan
- Laboratory of Carbohydrate and Nucleoside Chemistry (LCNC), Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong, Bangladesh
| | - Mohamed A Said
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Badr City, Egypt
| | - Md Z H Bulbul
- Laboratory of Carbohydrate and Nucleoside Chemistry (LCNC), Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong, Bangladesh
| | - Sumeer Ahmed
- Postgraduate and Research Department of Chemistry, The New College (Autonomous), University of Madras, Chennai, India
| | - Ajmal R Bhat
- Department of Chemistry, RTM Nagpur University, Nagpur, India
| | - Mohammed Chalkha
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Sarkar M A Kawsar
- Laboratory of Carbohydrate and Nucleoside Chemistry (LCNC), Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong, Bangladesh
| |
Collapse
|
4
|
Langthaler K, Jones CR, Christensen RB, Eneberg E, Brodin B, Bundgaard C. Characterization of intravenous pharmacokinetics in Göttingen minipig and clearance prediction using established in vitro to in vivo extrapolation methodologies. Xenobiotica 2022; 52:591-607. [PMID: 36000364 DOI: 10.1080/00498254.2022.2115425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
1. The use of the Göttingen minipig as an animal model for drug safety testing and prediction of human pharmacokinetics (PK) continues to gain momentum in pharmaceutical research and development. The aim of this study was to evaluate in vitro to in vivo extrapolation (IVIVE) methodologies for prediction of hepatic, metabolic clearance (CLhep,met) in Göttingen minipig, using a comprehensive set of compounds.2. In vivo clearance was determined in Göttingen minipig by intravenous cassette dosing and hepatocyte intrinsic clearance, plasma protein binding and non-specific incubation binding were determined in vitro. Prediction of CLhep,met was performed by IVIVE using conventional and adapted formats of the well-stirred liver model.3. The best prediction of in vivo CLhep,met from scaled in vitro kinetic data was achieved using an empirical correction factor based on a 'regression offset' of the IVIV relationship.4. In summary, these results expand the in vitro and in vivo PK knowledge in Göttingen minipig. We show regression corrected IVIVE provides superior prediction of in vivo CLhep,met in minipig offering a practical, unified scaling approach to address systematic under-predictions. Finally, we propose a reference set for researchers to establish their own 'lab-specific' regression correction for IVIVE in minipig.
Collapse
Affiliation(s)
- K Langthaler
- Translational DMPK, H. Lundbeck A/S, Copenhagen, Denmark.,CNS Drug Delivery and Barrier Modelling, University of Copenhagen, Copenhagen, Denmark
| | - C R Jones
- Translational DMPK, H. Lundbeck A/S, Copenhagen, Denmark
| | | | - E Eneberg
- Translational DMPK, H. Lundbeck A/S, Copenhagen, Denmark
| | - B Brodin
- CNS Drug Delivery and Barrier Modelling, University of Copenhagen, Copenhagen, Denmark
| | - C Bundgaard
- Translational DMPK, H. Lundbeck A/S, Copenhagen, Denmark
| |
Collapse
|
5
|
Xu Y, Shrestha N, Préat V, Beloqui A. An overview of in vitro, ex vivo and in vivo models for studying the transport of drugs across intestinal barriers. Adv Drug Deliv Rev 2021; 175:113795. [PMID: 33989702 DOI: 10.1016/j.addr.2021.05.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022]
Abstract
Oral administration is the most commonly used route for drug delivery owing to its cost-effectiveness, ease of administration, and high patient compliance. However, the absorption of orally delivered compounds is a complex process that greatly depends on the interplay between the characteristics of the drug/formulation and the gastrointestinal tract. In this contribution, we review the different preclinical models (in vitro, ex vivo and in vivo) from their development to application for studying the transport of drugs across intestinal barriers. This review also discusses the advantages and disadvantages of each model. Furthermore, the authors have reviewed the selection and validation of these models and how the limitations of the models can be addressed in future investigations. The correlation and predictability of the intestinal transport data from the preclinical models and human data are also explored. With the increasing popularity and prevalence of orally delivered drugs/formulations, sophisticated preclinical models with higher predictive capacity for absorption of oral formulations used in clinical studies will be needed.
Collapse
Affiliation(s)
- Yining Xu
- University of Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium.
| | - Neha Shrestha
- University of Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium.
| | - Véronique Préat
- University of Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium.
| | - Ana Beloqui
- University of Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium.
| |
Collapse
|
6
|
Buyssens L, De Clerck L, Schelstraete W, Dhaenens M, Deforce D, Ayuso M, Van Ginneken C, Van Cruchten S. Hepatic Cytochrome P450 Abundance and Activity in the Developing and Adult Göttingen Minipig: Pivotal Data for PBPK Modeling. Front Pharmacol 2021; 12:665644. [PMID: 33935788 PMCID: PMC8082684 DOI: 10.3389/fphar.2021.665644] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/26/2021] [Indexed: 12/28/2022] Open
Abstract
The Göttingen Minipig is gaining ground as nonrodent species in safety testing of drugs for pediatric indications. Due to developmental changes in pharmacokinetics and pharmacodynamics, physiologically based pharmacokinetic (PBPK) models are built to better predict drug exposure in children and to aid species selection for nonclinical safety studies. These PBPK models require high quality physiological and ADME data such as protein abundance of drug metabolizing enzymes. These data are available for man and rat, but scarce for the Göttingen Minipig. The aim of this study was to assess hepatic cytochrome P450 (CYP) protein abundance in the developing Göttingen Minipig by using mass spectrometry. In addition, sex-related differences in CYP protein abundance and correlation of CYP enzyme activity with CYP protein abundance were assessed. The following age groups were included: gestational day (GD) 84–86 (n = 8), GD 108 (n = 6), postnatal day (PND) 1 (n = 8), PND 3 (n = 8), PND 7 (n = 8), PND 28 (n = 8) and adult (n = 8). Liver microsomes were extracted and protein abundance was compared to that in adult animals. Next, the CYP protein abundance was correlated to CYP enzyme activity in the same biological samples. In general, CYP protein abundance gradually increased during development. However, we observed a stable protein expression over time for CYP4A24 and CYP20A1 and for CYP51A1, a high protein expression during the fetal stages was followed by a decrease during the first month of life and an increase toward adulthood. Sex-related differences were observed for CYP4V2_2a and CYP20A1 at PND 1 with highest expression in females for both isoforms. In the adult samples, sex-related differences were detected for CYP1A1, CYP1A2, CYP2A19, CYP2E1_2, CYP3A22, CYP4V2_2a and CYP4V2_2b with higher values in female compared to male Göttingen Minipigs. The correlation analysis between CYP protein abundance and CYP enzyme activity showed that CYP3A22 protein abundance correlated clearly with the metabolism of midazolam at PND 7. These data are remarkably comparable to human data and provide a valuable step forward in the construction of a neonatal and juvenile Göttingen Minipig PBPK model.
Collapse
Affiliation(s)
- Laura Buyssens
- Comparative Perinatal Development, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Laura De Clerck
- Laboratory of Pharmaceutical Biotechnology, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Wim Schelstraete
- Laboratory of Pharmacology and Toxicology, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Maarten Dhaenens
- Laboratory of Pharmaceutical Biotechnology, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Miriam Ayuso
- Comparative Perinatal Development, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Chris Van Ginneken
- Comparative Perinatal Development, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Steven Van Cruchten
- Comparative Perinatal Development, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
7
|
Gerbal-Chaloin S, Briolotti P, Daujat-Chavanieu M, Rasmussen MK. Primary hepatocytes isolated from human and porcine donors display similar patterns of cytochrome p450 expression following exposure to prototypical activators of AhR, CAR and PXR. Curr Res Toxicol 2021; 2:149-158. [PMID: 34345857 PMCID: PMC8320632 DOI: 10.1016/j.crtox.2021.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 01/13/2023] Open
Abstract
CYP mRNA induction were compared between human and porcine primary hepatocytes. Both human and porcine primary hepatocytes responded to prototypical CYP inducers. CYP mRNA induction displayed similar patterns in human and porcine primary hepatocytes.
The hepatic cytochrome p450’s (CYP) are of major importance for the metabolism of xenobiotics and knowledge about their regulation is crucial. This knowledge often originates from cell models; primary human hepatocytes (PHH) being the gold standard. However, due to limited availability of high-quality human donor organs, basic knowledge on alternative models are needed. Primary porcine hepatocytes (PPH) have been suggested as an alternative to PHH. Unfortunately, data comparing the response in gene-transcription to standard CYP inducers between PHH and PPH are missing. In the present study we, cultured PHH and PPH under the same conditions, treated them with standard inducers of the CYP1-3 and determined the response in gene and protein expression. The results demonstrated that in both species TCDD and omeprazole caused an increase in CYP1A/B expression. In PPH, CITCO increased the content of CYP1A/B. For the CYP2B/C/D’s, phenobarbital and rifampicin caused increases in expression. For the CYP2D’s, TCDD and omeprazole caused increased gene expression in PPH, which were not the case for PHH. Both phenobarbital, rifampicin and omeprazole increased CYP3A expression in PHH and PPH. Moreover, TCDD increased the gene expression of CYP3A in PPH; this was not the case for PHH. Multivariate data analysis found no difference in gene expression between PHH and PPH for phenobarbital, rifampicin and CITCO. However, differential clustering was observed for TCDD and omeprazole. In conclusion, despite model specificity, there are a high number of similar responses, and experiments investigating mRNA regulation made in PPH permits for a reliable translation into human setting.
Collapse
Affiliation(s)
| | - Philippe Briolotti
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | | | - Martin Krøyer Rasmussen
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200 Aarhus N, Denmark
- Corresponding author at: Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200 Aarhus N, Denmark.
| |
Collapse
|
8
|
Zarezadeh M, Saedisomeolia A, Shekarabi M, Khorshidi M, Emami MR, Müller DJ. The effect of obesity, macronutrients, fasting and nutritional status on drug-metabolizing cytochrome P450s: a systematic review of current evidence on human studies. Eur J Nutr 2020; 60:2905-2921. [PMID: 33141242 DOI: 10.1007/s00394-020-02421-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 10/19/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Cytochrome P450s (CYPs) are a class of hemoproteins involved in drug metabolism. It has been reported that body composition, proportion of dietary macronutrients, fasting and nutritional status can interfere with the activity of drug-metabolizing CYPs. OBJECTIVES The present systematic review was conducted to summarize the effect of obesity, weight reduction, macronutrients, fasting and malnutrition on the CYP-mediated drug metabolism. METHODS PubMed (Medline), Scopus, Embase and Cochrane Library databases and Google Scholar were searched up to June 2020 to obtain relevant studies. The PRISMA guidelines were employed during all steps. Two reviewers independently extracted the information from the included studies. Studies investigating CYPs activity directly or indirectly through pharmacokinetics of probe drugs, were included. Increase in clearance (CL) or decrease in elimination half-life (t½) and area under the curve (AUC) of probe drugs were considered as increase in CYPs activity. RESULTS A total of 6545 articles were obtained through searching databases among which 69 studies with 126 datasets fully met the inclusion criteria. The results indicated that obesity might decrease the activity of CYP3A4/5, CYP1A2 and CYP2C9 and increase the activity of CYP2E1. The effect of obesity on CYP2D6 is controversial. Also, weight loss increased CYP3A4 activity. Moreover, CYP1A2 activity was decreased by high carbohydrate diet, increased by high protein diet and fasting and unchanged by malnutrition. The activity of CYP2C19 was less susceptible to alterations compared to other CYPs. CONCLUSION The activity of drug-metabolizing CYPs are altered by body composition, dietary intake and nutritional status. This relationship might contribute to drug toxicity or reduce treatment efficacy and influence cost-effectiveness of medical care.
Collapse
Affiliation(s)
- Meysam Zarezadeh
- Department of Clinical Nutrition, Student Research Committee, Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Science, Tabriz, Iran
| | - Ahmad Saedisomeolia
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran. .,School of Medicine, Western Sydney University, Sydney, NSW, 2560, Australia.
| | - Mahoor Shekarabi
- Faculty of Medical Sciences and Technologies, Science and Research Branch, Azad University, Tehran, Iran
| | - Masoud Khorshidi
- Student's Research Committee, Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Emami
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Daniel J Müller
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Pharmacogenetic Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
9
|
Rasmussen MK. Porcine cytochrome P450 3A: current status on expression and regulation. Arch Toxicol 2020; 94:1899-1914. [PMID: 32172306 DOI: 10.1007/s00204-020-02710-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022]
Abstract
The cytochrome P450s (CYPs) constitute a family of enzymes maintaining vital functions in the body and are mostly recognized for their significant role in detoxification. Of the CYP subfamilies, CYP3A, is one of the most active in the clearance of drugs and other xenobiotics. During the last decades, much focus has been on exploring different models for human CYP3A regulation, expression and activity. In that respect, the growing knowledge of the porcine CYP3As is of great interest. Although many aspects of porcine CYP3A regulation and activity are still unknown, the current literature provides a basic understanding of the porcine CYP3As that can be used e.g., when translating results from studies done in the porcine model into human settings. In this review, the current knowledge about porcine CYP3A expression, regulation, activity and metabolic significance are highlighted. Future research needs are also identified.
Collapse
|
10
|
Functional impact of cytochrome P450 3A (CYP3A) missense variants in cattle. Sci Rep 2019; 9:19672. [PMID: 31873175 PMCID: PMC6927969 DOI: 10.1038/s41598-019-56271-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/09/2019] [Indexed: 12/26/2022] Open
Abstract
Cytochrome P450 3A is the most important CYP subfamily in humans, and CYP3A4/CYP3A5 genetic variants contribute to inter-individual variability in drug metabolism. However, no information is available for bovine CYP3A (bCYP3A). Here we described bCYP3A missense single nucleotide variants (SNVs) and evaluated their functional effects. CYP3A28, CYP3A38 and CYP3A48 missense SNVs were identified in 300 bulls of Piedmontese breed through targeted sequencing. Wild-type and mutant bCYP3A cDNAs were cloned and expressed in V79 cells. CYP3A-dependent oxidative metabolism of testosterone (TST) and nifedipine (NIF) was assessed by LC-MS/MS. Finally, SNVs functional impact on TST hydroxylation was measured ex vivo in liver microsomes from individually genotyped animals. Thirteen missense SNVs were identified and validated. Five variants showed differences in CYP3A catalytic activity: three CYP3A28 SNVs reduced TST 6β-hydroxylation; one CYP3A38 variant increased TST 16β-hydroxylation, while a CYP3A48 SNV showed enhanced NIF oxidation. Individuals homozygous for rs384467435 SNV showed a reduced TST 6β-hydroxylation. Molecular modelling showed that most of SNVs were distal to CYP3A active site, suggesting indirect effects on the catalytic activity. Collectively, these findings demonstrate the importance of pharmacogenetics studies in veterinary species and suggest bCYP3A genotype variation might affect the fate of xenobiotics in food-producing species such as cattle.
Collapse
|
11
|
Wan JJ, Lin CH, Ren ED, Su Y, Zhu WY. Effects of Early Intervention With Maternal Fecal Bacteria and Antibiotics on Liver Metabolome and Transcription in Neonatal Pigs. Front Physiol 2019; 10:171. [PMID: 30890952 PMCID: PMC6413716 DOI: 10.3389/fphys.2019.00171] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/12/2019] [Indexed: 01/20/2023] Open
Abstract
The establishment of a stable bacterial flora in early life is associated with host metabolism. Studies of fecal microbiota transplantation (FMT) and antibiotics on neonatal pig mainly focused on intestinal development and mucosal immunity, but the information on metabolism is lacking. The objective of this study was to investigate the responses of metabolome and transcriptome in the livers of neonatal piglets that were orally inoculated with maternal fecal bacteria suspension and amoxicillin (AM) solution. Five litters of Duroc × Landrace × Yorkshire neonatal piglets were used as five replicates and nine piglets in each litter were randomly assigned to the control (CO), AM or FMT groups. Neonatal piglets in three groups were fed with 3 mL saline (0.9%), AM solution (6.94 mg/mL) or fecal bacteria suspension (>109/mL), respectively, on days 1-6. At the age of 7 and 21 days, one piglet from each group in each litter was sacrificed, and the serum and liver were collected for analysis. The RNA sequencing analysis showed that the mRNA expressions of arachidonate 12-lipoxygenase (ALOX12), acetyl-CoA acyltransferase 2 (ACAA2), cytochrome P450 family 1 subfamily A member 2 (CYP1A2), glutamic-pyruvic transaminase 2 (GPT2) and argininosuccinate synthase 1 (ASS1) were downregulated (P < 0.05) by AM on day 7, and that the mRNA expressions of arachidonate 15-lipoxygenase (ALOX15), CYP1A2 and GPT2 were downregulated (P < 0.05) by FMT on day 7. GC-MS analysis showed that AM and FMT treatments mainly affected fatty acid metabolism and amino acid metabolism on days 7 and 21. AM and FMT both reduced (P < 0.05) the blood levels of triglycerides and low density lipoprotein cholesterol (LDL-C) on day 7. AM reduced (P < 0.05) the blood level of cholesterol on day 21, and FMT reduced the blood levels of cholesterol, triglycerides and LDL-C on day 21. These results indicate that early intervention with FMT or AM can reduce fatty acid oxidative catabolism and amino acid biosynthesis of neonatal piglets, which provides a reference for regulation host metabolism through early intervention in animal production and even human health.
Collapse
Affiliation(s)
- Jia-Jia Wan
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Chun-Hui Lin
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Er-Du Ren
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Yong Su
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Wei-Yun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
12
|
Transcriptional Profiling of Leucocyte Count Variation from Porcine Peripheral Blood Reveals Differential Gene Expression. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1496536. [PMID: 30581844 PMCID: PMC6276489 DOI: 10.1155/2018/1496536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 09/08/2018] [Accepted: 10/15/2018] [Indexed: 12/23/2022]
Abstract
Leucocytes have tremendous health-check importance related to the individual antiviral capacity of pigs and other mammals. However, the molecular mechanism of the immune response of blood leucocytes in pigs is not completely known. This study investigated the leucocyte-count variation before and after poly I:C stimulation in a Duroc–Erhualian F2 population. Pigs with increased and decreased differences in leucocyte counts were coded as increased responder (IR) and decreased responder (DR), respectively. Then, we used microarray technology to compare the gene-expression profiles of both groups of pigs. Transcriptomic analysis identified 129 differentially expressed genes (DEGs) in IR pigs and 136 DEGs in DR pigs. Forty-one common DEGs showed that both groups had similar expression patterns of immune responses. These results illustrated a differential expression in both groups. Furthermore, qPCR experiment was performed to verify the differential-expression profile. Functional annotation of the DEGs indicated that both IR and DR pigs were similar in several biological processes, including innate immune response, and also exhibited distinct differences in biological processes, molecular function, and pathways. These results provided insights into the mechanism underlying the antiviral capacity of pigs. Trial registration number is CAS Registry Number 24939-03-5.
Collapse
|
13
|
Tang H, Mayersohn M. Porcine Prediction of Pharmacokinetic Parameters in People: A Pig in a Poke? Drug Metab Dispos 2018; 46:1712-1724. [PMID: 30171162 DOI: 10.1124/dmd.118.083311] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022] Open
Abstract
The minipig has become an animal of considerable interest in preclinical drug development. It has been used in toxicology research and in examining/establishing regulatory guidelines as a nonrodent animal model. We have reviewed some basic issues that one would want to consider in the development and testing of any animal model for humans. The pig is a reasonable alternative to the dog, but there are some clear limitations and unexplained disparities in the literature, which require further study; primary among these is the need for standardization in choice of breed and sex and routine protocols. The minipig offers numerous advantages over other established animal models, and it has similarities to the human with regard to anatomy, physiology, and biochemistry. The gastrointestinal tract is structurally and functionally similar to humans. This appears to be true for enzymes and transporters in the gut as well, but more study is needed. One major concern is assessment of oral drug absorption, especially with regard to potential food effects due to gastric emptying differences, yet this does not appear to be a consistent observation. Hepatic metabolism seems to reflect enzymatic patterns in humans, with some differences. Kidney function seems similar to humans but requires further study. We have analyzed literature data that suggest the pig would offer a reasonable model for human oral bioavailability and for allometric predictions of clearance. The minipig appears to be the model for dermal absorption in humans, and we discuss this in terms of literature data and our own in-house experience.
Collapse
Affiliation(s)
- Huadong Tang
- Guangzhou Dazhou Biomedicine, Guangzhou, China (H.T., M.M.); and Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, Arizona (M.M.)
| | - Michael Mayersohn
- Guangzhou Dazhou Biomedicine, Guangzhou, China (H.T., M.M.); and Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, Arizona (M.M.)
| |
Collapse
|
14
|
Hibbins AR, Govender M, Indermun S, Kumar P, du Toit LC, Choonara YE, Pillay V. In Vitro–In Vivo Evaluation of an Oral Ghost Drug Delivery Device for the Delivery of Salmon Calcitonin. J Pharm Sci 2018; 107:1605-1614. [DOI: 10.1016/j.xphs.2018.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/27/2018] [Accepted: 02/06/2018] [Indexed: 11/29/2022]
|
15
|
Henze LJ, Koehl NJ, O'Shea JP, Kostewicz ES, Holm R, Griffin BT. The pig as a preclinical model for predicting oral bioavailability and in vivo performance of pharmaceutical oral dosage forms: a PEARRL review. ACTA ACUST UNITED AC 2018; 71:581-602. [PMID: 29635685 DOI: 10.1111/jphp.12912] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/03/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVES In pharmaceutical drug development, preclinical tests in animal models are essential to demonstrate whether the new drug is orally bioavailable and to gain a first insight into in vivo pharmacokinetic parameters that can subsequently be used to predict human values. Despite significant advances in the development of bio-predictive in vitro models and increasing ethical expectations for reducing the number of animals used for research purposes, there is still a need for appropriately selected pre-clinical in vivo testing to provide guidance on the decision to progress to testing in humans. The selection of the appropriate animal models is essential both to maximise the learning that can be obtained from such experiments and to avoid unnecessary testing in a range of species. KEY FINDINGS The present review, provides an insight into the suitability of the pig model for predicting oral bioavailability in humans, by comparing the conditions in the GIT. It also contains a comparison between the bioavailability of compounds dosed to both humans and pigs, to provide an insight into the relative correlation and examples on why a lack of correlation may be observed. SUMMARY While there is a general trend towards predicting human bioavailability from pig data, there is considerable variability in the data set, most likely reflecting species specific differences in individual drug metabolism. Nonetheless, the correlation between pigs vs. humans was comparable to that reported for dogs vs. humans. The presented data demonstrate the suitability of the pig as a preclinical model to predict bioavailability in human.
Collapse
Affiliation(s)
- Laura J Henze
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Niklas J Koehl
- School of Pharmacy, University College Cork, Cork, Ireland
| | | | - Edmund S Kostewicz
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt am Main, Germany
| | - René Holm
- Drug Product Development, Janssen Research and Development, Johnson & Johnson, Beerse, Belgium
| | | |
Collapse
|
16
|
Xie L, He Y, Zhou X, Li X, Jin X, Wang X, Shi D. Porcine interleukin-6 enhances the expression of CYP2C33 through a constitutive androstane receptor/retinoid X receptor-mediated pathway. Xenobiotica 2018; 49:257-264. [DOI: 10.1080/00498254.2018.1438686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Lixia Xie
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Yucheng He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Xiaoqiao Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Xiaowen Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Xiue Jin
- Hubei Provincial Institute of Veterinary Drug Control, Wuhan, People’s Republic of China
| | - Xiliang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Deshi Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| |
Collapse
|
17
|
Segatto NV, Remião MH, Schachtschneider KM, Seixas FK, Schook LB, Collares T. The Oncopig Cancer Model as a Complementary Tool for Phenotypic Drug Discovery. Front Pharmacol 2017; 8:894. [PMID: 29259556 PMCID: PMC5723300 DOI: 10.3389/fphar.2017.00894] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/22/2017] [Indexed: 12/14/2022] Open
Abstract
The screening of potential therapeutic compounds using phenotypic drug discovery (PDD) is being embraced once again by researchers and pharmaceutical companies as an approach to enhance the development of new effective therapeutics. Before the genomics and molecular biology era and the consecutive emergence of targeted-drug discovery approaches, PDD was the most common platform used for drug discovery. PDD, also known as phenotypic screening, consists of screening potential compounds in either in vitro cellular or in vivo animal models to identify compounds resulting in a desirable phenotypic change. Using this approach, the biological targets of the compounds are not taken into consideration. Suitable animal models are crucial for the continued validation and discovery of new drugs, as compounds displaying promising results in phenotypic in vitro cell-based and in vivo small animal model screenings often fail in clinical trials. Indeed, this is mainly a result of differential anatomy, physiology, metabolism, immunology, and genetics between humans and currently used pre-clinical small animal models. In contrast, pigs are more predictive of therapeutic treatment outcomes in humans than rodents. In addition, pigs provide an ideal platform to study cancer due to their similarities with humans at the anatomical, physiological, metabolic, and genetic levels. Here we provide a mini-review on the reemergence of PDD in drug development, highlighting the potential of porcine cancer models for improving pre-clinical drug discovery and testing. We also present precision medicine based genetically defined swine cancer models developed to date and their potential as biomedical models.
Collapse
Affiliation(s)
- Natalia V. Segatto
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Mariana H. Remião
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | | | - Fabiana K. Seixas
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Lawrence B. Schook
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States
- Department of Animal Sciences, University of Illinois at Urbana–Champaign, Champaign, IL, United States
| | - Tiago Collares
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
18
|
Stenger M, Behr-Rasmussen C, Klein K, Grønnemose RB, Andersen TE, Klitgaard JK, Kolmos HJ, Lindholt JS. Systemic thioridazine in combination with dicloxacillin against early aortic graft infections caused by Staphylococcus aureus in a porcine model: In vivo results do not reproduce the in vitro synergistic activity. PLoS One 2017; 12:e0173362. [PMID: 28278183 PMCID: PMC5344393 DOI: 10.1371/journal.pone.0173362] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/20/2017] [Indexed: 11/19/2022] Open
Abstract
Introduction Conservative treatment solutions against aortic prosthetic vascular graft infection (APVGI) for inoperable patients are limited. The combination of antibiotics with antibacterial helper compounds, such as the neuroleptic drug thioridazine (TDZ), should be explored. Aim To investigate the efficacy of conservative systemic treatment with dicloxacillin (DCX) in combination with TDZ (DCX+TDZ), compared to DCX alone, against early APVGI caused by methicillin-sensitive Staphylococcus aureus (MSSA) in a porcine model. Methods The synergism of DCX+TDZ against MSSA was initially assessed in vitro by viability assay. Thereafter, thirty-two pigs had polyester grafts implanted in the infrarenal aorta, followed by inoculation with 106 CFU of MSSA, and were randomly administered oral systemic treatment with either 1) DCX or 2) DCX+TDZ. Treatment was initiated one week postoperatively and continued for a further 21 days. Weight, temperature, and blood samples were collected at predefined intervals. By termination, bacterial quantities from the graft surface, graft material, and perigraft tissue were obtained. Results Despite in vitro synergism, the porcine experiment revealed no statistical differences for bacteriological endpoints between the two treatment groups, and none of the treatments eradicated the APVGI. Accordingly, the mixed model analyses of weight, temperature, and blood samples revealed no statistical differences. Conclusion Conservative systemic treatment with DCX+TDZ did not reproduce in vitro results against APVGI caused by MSSA in this porcine model. However, unexpected severe adverse effects related to the planned dose of TDZ required a considerable reduction to the administered dose of TDZ, which may have compromised the results.
Collapse
Affiliation(s)
- Michael Stenger
- Research Unit of Clinical Microbiology, University of Southern Denmark, Odense, Denmark
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, Odense, Denmark
- * E-mail:
| | | | - Kasper Klein
- Research Unit of Clinical Microbiology, University of Southern Denmark, Odense, Denmark
| | - Rasmus B. Grønnemose
- Research Unit of Clinical Microbiology, University of Southern Denmark, Odense, Denmark
| | - Thomas Emil Andersen
- Research Unit of Clinical Microbiology, University of Southern Denmark, Odense, Denmark
| | - Janne K. Klitgaard
- Research Unit of Clinical Microbiology, University of Southern Denmark, Odense, Denmark
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Hans Jørn Kolmos
- Research Unit of Clinical Microbiology, University of Southern Denmark, Odense, Denmark
| | - Jes S. Lindholt
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, Odense, Denmark
| |
Collapse
|
19
|
Kojima M, Degawa M. Sex differences in constitutive mRNA levels of CYP2B22, CYP2C33, CYP2C49, CYP3A22, CYP3A29 and CYP3A46 in the pig liver: Comparison between Meishan and Landrace pigs. Drug Metab Pharmacokinet 2016; 31:185-92. [DOI: 10.1016/j.dmpk.2016.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/24/2015] [Accepted: 02/09/2016] [Indexed: 01/05/2023]
|
20
|
Schook LB, Collares TV, Darfour-Oduro KA, De AK, Rund LA, Schachtschneider KM, Seixas FK. Unraveling the swine genome: implications for human health. Annu Rev Anim Biosci 2016; 3:219-44. [PMID: 25689318 DOI: 10.1146/annurev-animal-022114-110815] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pig was first used in biomedical research in ancient Greece and over the past few decades has quickly grown into an important biomedical research tool. Pigs have genetic and physiological traits similar to humans, which make them one of the most useful and versatile animal models. Owing to these similarities, data generated from porcine models are more likely to lead to viable human treatments than those from murine work. In addition, the similarity in size and physiology to humans allows pigs to be used for many experimental approaches not feasible in mice. Research areas that employ pigs range from neonatal development to translational models for cancer therapy. Increasing numbers of porcine models are being developed since the release of the swine genome sequence, and the development of additional porcine genomic and epigenetic resources will further their use in biomedical research.
Collapse
Affiliation(s)
- Lawrence B Schook
- Department of Animal Sciences, University of Illinois, Urbana, Illinois 61801; , , , ,
| | | | | | | | | | | | | |
Collapse
|
21
|
Cytochrome P450 3 A expression in pigs livers after 24-hour preservation in Biolasol solution depending on the type of transgenesis. Transplant Proc 2015; 46:2548-51. [PMID: 25380862 DOI: 10.1016/j.transproceed.2014.09.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND An insufficient number of organs for transplantation shows the need for the development of new technologies. Xenotransplantation might be the answer. OBJECTIVE To determine if the type of transgenesis influences the level of CYP3A4, which takes an active part in xenobiotics metabolism in livers after 24-hour storage, depending on the kind of solution used for preservation. MATERIALS AND METHODS The experiment was carried out on 30 livers of Polish White Landrace divided into 5 groups depending on transgene type. The following human genes were transferred: α1,2-fucosyltransferase (groups I and II), α-galactosidase (III), combined α1,2-fucosyltransferase/α-galactosidase transgene (IV), and livers without modification (V). The livers were perfused and subsequently stored for 24 hours in Ringer's solution (group I) or Biolasol solution (II-V). Reperfusion/reflush was performed. CYP3A29 isomer concentration was analyzed in liver specimens collected twice: 30 minutes after perfusion and 30 minutes after reperfusion/reflush. Expression of mRNA CYP3A29 was marked using RT-PCR analysis and of protein CYP3A29 using Western blotting technique. RESULTS The most significant decrease in protein CYP3A29 expression after 24-hour preservation was observed in group I (55.88% decrease), while the least significant was observed in group IV (10.44% decrease). mRNA expression evaluation was similar: the most significant decrease was observed in group I (87.8% decrease) and the least significant in group III (4.6% decrease). CONCLUSION α1,2-Fcosyltransferase transgene seems to influence mRNA and protein CYP3A expression in case of liver grafting and preservation for transplantation. CYP3A expression was also influenced by the kind of preservation solution used.
Collapse
|
22
|
Bian Y, Yao Q, Shang H, Lei J, Hu H, Guo K, Jiang H, Yu L, Wei H, Zeng S. Expression of Bama Minipig and Human CYP3A Enzymes: Comparison of the Catalytic Characteristics with Each Other and Their Liver Microsomes. Drug Metab Dispos 2015; 43:1336-1340. [PMID: 26070839 DOI: 10.1124/dmd.115.064717] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/12/2015] [Indexed: 01/03/2025] Open
Abstract
Minipigs represent a good animal model because of the physiologic and anatomic similarities they share with humans. Three cytochrome P450 (CYP) 3A isozymes, CYP3A22, CYP3A29, and CYP3A46, have recently been reported to be expressed in Bama minipigs, which have limited data relating to their metabolic characteristics. In the present study, Bama minipig CYP3A22, CYP3A29, and CYP3A46 were recombinantly expressed and their metabolic manners were compared with those of human CYP3A4 and CYP3A5 and also human and Bama minipig liver microsomes. The results indicated Bama minipigs and human CYP3A enzymes showed similar metabolic kinetics and metabolite profiles using testosterone, midazolam, and nifedipine as substrates. However, the differences in amino acid sequences change the elimination velocity and metabolic preference of CYP3A enzymes to their substrates. It was demonstrated that CYP3A29, CYP3A4, and CYP3A5 were the most active enzymes for all reactions, whereas CYP3A46 was the least active enzyme. Substrate-dependent metabolism characteristics between human and Bama minipig CYP3A isoenzymes exist.
Collapse
Affiliation(s)
- Yicong Bian
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China (Y.B., Q.Y., J.L., H.H., H.J., L.Y., S.Z.); Clinical Pharmacology Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, P.R. China (Y.B.); and Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, P.R. China (H.S., K.G., H.W.)
| | - Qingqing Yao
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China (Y.B., Q.Y., J.L., H.H., H.J., L.Y., S.Z.); Clinical Pharmacology Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, P.R. China (Y.B.); and Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, P.R. China (H.S., K.G., H.W.)
| | - Haitao Shang
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China (Y.B., Q.Y., J.L., H.H., H.J., L.Y., S.Z.); Clinical Pharmacology Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, P.R. China (Y.B.); and Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, P.R. China (H.S., K.G., H.W.)
| | - Jinxiu Lei
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China (Y.B., Q.Y., J.L., H.H., H.J., L.Y., S.Z.); Clinical Pharmacology Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, P.R. China (Y.B.); and Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, P.R. China (H.S., K.G., H.W.)
| | - Haihong Hu
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China (Y.B., Q.Y., J.L., H.H., H.J., L.Y., S.Z.); Clinical Pharmacology Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, P.R. China (Y.B.); and Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, P.R. China (H.S., K.G., H.W.)
| | - Kenan Guo
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China (Y.B., Q.Y., J.L., H.H., H.J., L.Y., S.Z.); Clinical Pharmacology Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, P.R. China (Y.B.); and Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, P.R. China (H.S., K.G., H.W.)
| | - Huidi Jiang
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China (Y.B., Q.Y., J.L., H.H., H.J., L.Y., S.Z.); Clinical Pharmacology Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, P.R. China (Y.B.); and Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, P.R. China (H.S., K.G., H.W.)
| | - Lushan Yu
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China (Y.B., Q.Y., J.L., H.H., H.J., L.Y., S.Z.); Clinical Pharmacology Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, P.R. China (Y.B.); and Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, P.R. China (H.S., K.G., H.W.)
| | - Hong Wei
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China (Y.B., Q.Y., J.L., H.H., H.J., L.Y., S.Z.); Clinical Pharmacology Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, P.R. China (Y.B.); and Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, P.R. China (H.S., K.G., H.W.)
| | - Su Zeng
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China (Y.B., Q.Y., J.L., H.H., H.J., L.Y., S.Z.); Clinical Pharmacology Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, P.R. China (Y.B.); and Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, P.R. China (H.S., K.G., H.W.)
| |
Collapse
|
23
|
Comparison of minipig, dog, monkey and human drug metabolism and disposition. J Pharmacol Toxicol Methods 2014; 74:80-92. [PMID: 25545337 DOI: 10.1016/j.vascn.2014.12.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/02/2014] [Accepted: 12/16/2014] [Indexed: 02/06/2023]
Abstract
INTRODUCTION This article gives an overview of the drug metabolism and disposition (ADME) characteristics of the most common non-rodent species used in toxicity testing of drugs (minipigs, dogs, and monkeys) and compares these to human characteristics with regard to enzymes mediating the metabolism of drugs and the transport proteins which contribute to the absorption, distribution and excretion of drugs. METHODS Literature on ADME and regulatory guidelines of relevance in drug development of small molecules has been gathered. RESULTS Non-human primates (monkeys) are the species that is closest to humans in terms of genetic homology. Dogs have an advantage due to the ready availability of comprehensive background data for toxicological safety assessment and dogs are easy to handle. Pigs have been used less than dogs and monkeys as a model in safety assessment of drug candidates. However, when a drug candidate is metabolised by aldehyde oxidase (AOX1), N-acetyltransferases (NAT1 and NAT2) or cytochrome (CYP2C9-like) enzymes which are not expressed in dogs, but are present in pigs, this species may be a better choice than dogs, provided that adequate exposure can be obtained in pigs. Conversely, pigs might not be the right choice if sulfation, involving 3-phospho-adenosyl-5-phosphosulphate sulphotransferase (PAPS) is an important pathway in the human metabolism of a drug candidate. DISCUSSION In general, the species selection should be based on comparison between in vitro studies with human cell-based systems and animal-cell-based systems. Results from pharmacokinetic studies are also important for decision-making by establishing the obtainable exposure level in the species. Access to genetically humanized mouse models and highly sensitive analytical methods (accelerator mass spectrometry) makes it possible to improve the chance of finding all metabolites relevant for humans before clinical trials have been initiated and, if necessary, to include another animal species before long term toxicity studies are initiated. In conclusion, safety testing can be optimized by applying knowledge about species ADME differences and utilising advanced analytical techniques.
Collapse
|
24
|
Li X, Hu X, Jin X, Zhou X, Wang X, Shi D, Bi D. IFN-γ regulates cytochrome 3A29 through pregnane X receptor in pigs. Xenobiotica 2014; 45:373-9. [PMID: 25413352 DOI: 10.3109/00498254.2014.985761] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1. The expression and the activity of cytochromes P450 (CYPs) can be elevated by the activation of nuclear receptors. The pregnane X receptor (PXR, or nuclear receptor NR1I2) is a ligand-activated transcription factor that mediates responses to diverse xenobiotics and endogenous chemicals. Here we investigated the regulatory role of PXR in IFN-γ-mediated CYP3A29 expression in pig liver microsomes, primary porcine hepatocytes, and a cultured hepatocyte cell line. 2. IFN-γ significantly up-regulated CYP3A29 and PXR expressions at mRNA and protein levels in a dose-dependent manner. IFN-γ treatment significantly increased the metabolism of nifedipine. PXR and IFN-γ treatments significantly enhanced the activity of CYP3A29 promoter and the upstream region from -1473 to -1021 of CYP3A29 might be PXR-binding site. Moreover, the IFN-γ-induced CYP3A29 expression was blocked by PXR knockdown, whereas CYP3A29 mRNA and protein expression levels were dramatically elevated by PXR overexpression. 3. The regulatory effect of IFN-γ on CYP3A29 expression is mediated via PXR.
Collapse
Affiliation(s)
- Xiaowen Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan , PR China
| | | | | | | | | | | | | |
Collapse
|
25
|
Westerhout J, Steeg EVD, Grossouw D, Zeijdner EE, Krul CA, Verwei M, Wortelboer HM. A new approach to predict human intestinal absorption using porcine intestinal tissue and biorelevant matrices. Eur J Pharm Sci 2014; 63:167-77. [DOI: 10.1016/j.ejps.2014.07.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/12/2014] [Accepted: 07/09/2014] [Indexed: 11/16/2022]
|
26
|
Hu SX. Impact of age on hepatic cytochrome P450 of domestic male Camborough-29 pigs. J Vet Pharmacol Ther 2014; 38:150-9. [DOI: 10.1111/jvp.12163] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/07/2014] [Indexed: 01/19/2023]
Affiliation(s)
- S. X. Hu
- Zoetis Inc; Veterinary Medicine Research and Development; Kalamazoo MI USA
| |
Collapse
|
27
|
Rasmussen MK, Zamaratskaia G. Regulation of porcine hepatic cytochrome p450 - implication for boar taint. Comput Struct Biotechnol J 2014; 11:106-12. [PMID: 25408844 PMCID: PMC4232568 DOI: 10.1016/j.csbj.2014.09.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/29/2014] [Accepted: 09/03/2014] [Indexed: 11/17/2022] Open
Abstract
Cytochrome P450 (CYP450) is the major family of enzymes involved in the metabolism of several xenobiotic and endogenous compounds. Among substrates for CYP450 is the tryptophan metabolite skatole (3-methylindole), one of the major contributors to the off-odour associated with boar-tainted meat. The accumulation of skatole in pigs is highly dependent on the hepatic clearance by CYP450s. In recent years, the porcine CYP450 has attracted attention both in relation to meat quality and as a potential model for human CYP450. The molecular regulation of CYP450 mRNA expression is controlled by several nuclear receptors and transcription factors that are targets for numerous endogenously and exogenously produced agonists and antagonists. Moreover, CYP450 expression and activity are affected by factors such as age, gender and feeding. The regulation of porcine CYP450 has been suggested to have more similarities with human CYP450 than other animal models, including rodents. This article reviews the available data on porcine hepatic CYP450s and its implications for boar taint.
Collapse
Affiliation(s)
- Martin Krøyer Rasmussen
- Department of Food Science, Aarhus University, Denmark
- INSERM U1040, University of Montpellier, France
- Corresponding author at: Department of Food Science, Aarhus University, P.O. Box 50, DK-8830 Tjele, Denmark. Tel.: + 45 87 15 74 26.
| | - Galia Zamaratskaia
- Department of Food Science, Swedish University of Agricultural Science, Uppsala, Sweden
| |
Collapse
|
28
|
Sjögren E, Hedeland M, Bondesson U, Lennernäs H. Effects of verapamil on the pharmacokinetics and hepatobiliary disposition of fexofenadine in pigs. Eur J Pharm Sci 2014; 57:214-23. [PMID: 24075962 DOI: 10.1016/j.ejps.2013.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 08/19/2013] [Accepted: 09/18/2013] [Indexed: 11/29/2022]
Abstract
The pharmacokinetics (PK) of fexofenadine (FEX) in pigs were investigated with the focus on exploring the interplay between hepatic transport and metabolism when administered intravenously (iv) alone or with verapamil. The in vivo pig model enabled simultaneous sampling from plasma (pre-liver, post-liver and peripheral), bile and urine. Each animal was administered FEX 35mg iv alone or with verapamil 35mg. Plasma, bile and urine were analyzed with liquid chromatography-tandem mass spectrometry. Non-compartmental analysis (NCA) was used to estimate traditional PK parameters. In addition, a physiologically based pharmacokinetic (PBPK) model consisting of 11 compartments (6 tissues +5 sample sites) was applied for mechanistic elucidation and estimation of individual PK parameters. FEX had a terminal half-life of 1.7h and a liver extraction of 3%. The fraction of the administered dose of unchanged FEX excreted into the bile was 25% and the bile exposure was more than 100 times higher than the portal vein total plasma exposure, indicating carrier-mediated (CM) disposition processes in the liver. 23% of the administered dose of FEX was excreted unchanged in the urine. An increase in FEX plasma exposure (+50%) and a decrease in renal clearance (-61%) were detected by NCA as a direct effect of concomitant administration of verapamil. However, analysis of the PBPK model also revealed that biliary clearance was significantly inhibited (-53%) by verapamil. In addition, PBPK analysis established that metabolism and CM uptake were important factors in the disposition of FEX in the liver. In conclusion, this study demonstrated that CM transport of FEX in both liver and kidneys was inhibited by a single dose of verapamil.
Collapse
Affiliation(s)
- Erik Sjögren
- Department of Pharmacy, Biopharmaceutic Research Group, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden.
| | - Mikael Hedeland
- Department of Medicinal Chemistry, Division of Analytical Pharmaceutical Chemistry, Uppsala University, Box 573, SE-751 23 Uppsala, Sweden; National Veterinary Institute (SVA), Department of Chemistry, Environment and Feed Hygiene, SE-751 89 Uppsala, Sweden
| | - Ulf Bondesson
- Department of Medicinal Chemistry, Division of Analytical Pharmaceutical Chemistry, Uppsala University, Box 573, SE-751 23 Uppsala, Sweden; National Veterinary Institute (SVA), Department of Chemistry, Environment and Feed Hygiene, SE-751 89 Uppsala, Sweden
| | - Hans Lennernäs
- Department of Pharmacy, Biopharmaceutic Research Group, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
| |
Collapse
|
29
|
Sjögren E, Abrahamsson B, Augustijns P, Becker D, Bolger MB, Brewster M, Brouwers J, Flanagan T, Harwood M, Heinen C, Holm R, Juretschke HP, Kubbinga M, Lindahl A, Lukacova V, Münster U, Neuhoff S, Nguyen MA, Peer AV, Reppas C, Hodjegan AR, Tannergren C, Weitschies W, Wilson C, Zane P, Lennernäs H, Langguth P. In vivo methods for drug absorption – Comparative physiologies, model selection, correlations with in vitro methods (IVIVC), and applications for formulation/API/excipient characterization including food effects. Eur J Pharm Sci 2014; 57:99-151. [PMID: 24637348 DOI: 10.1016/j.ejps.2014.02.010] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 02/15/2014] [Accepted: 02/17/2014] [Indexed: 01/11/2023]
|
30
|
Li X, Jin X, Zhou X, Wang X, Shi D, Xiao Y, Bi D. Pregnane X receptor is required for IFN-α-mediated CYP3A29 expression in pigs. Biochem Biophys Res Commun 2014; 445:469-74. [DOI: 10.1016/j.bbrc.2014.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 02/05/2014] [Indexed: 11/29/2022]
|
31
|
Mach N, Berri M, Esquerré D, Chevaleyre C, Lemonnier G, Billon Y, Lepage P, Oswald IP, Doré J, Rogel-Gaillard C, Estellé J. Extensive expression differences along porcine small intestine evidenced by transcriptome sequencing. PLoS One 2014; 9:e88515. [PMID: 24533095 PMCID: PMC3922923 DOI: 10.1371/journal.pone.0088515] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 01/07/2014] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to analyse gene expression along the small intestine (duodenum, jejunum, ileum) and in the ileal Peyer's patches in four young pigs with no clinical signs of disease by transcriptome sequencing. Multidimensional scaling evidenced that samples clustered by tissue type rather than by individual, thus prefiguring a relevant scenario to draw tissue-specific gene expression profiles. Accordingly, 1,349 genes were found differentially expressed between duodenum and jejunum, and up to 3,455 genes between duodenum and ileum. Additionally, a considerable number of differentially expressed genes were found by comparing duodenum (7,027 genes), jejunum (6,122 genes), and ileum (6,991 genes) with ileal Peyer's patches tissue. Functional analyses revealed that most of the significant differentially expressed genes along small intestinal tissues were involved in the regulation of general biological processes such as cell development, signalling, growth and proliferation, death and survival or cell function and maintenance. These results suggest that the intrinsic large turnover of intestinal tissues would have local specificities at duodenum, ileum and jejunum. In addition, in concordance with their biological function, enteric innate immune pathways were overrepresented in ileal Peyer's patches. The reported data provide an expression map of the cell pathway variation in the different small intestinal tissues. Furthermore, expression levels measured in healthy individuals could help to understand changes in gene expression that occur in dysbiosis or pathological states.
Collapse
Affiliation(s)
- Núria Mach
- UMR1313 Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
- UMR1313 Génétique Animale et Biologie Intégrative, AgroParisTech, Jouy-en-Josas, France
- DSV/iRCM/SREIT/LREG, CEA, Jouy-en-Josas, France
- UMR1319 MICALIS, INRA, Jouy-en-Josas, France
- UMR1319 MICALIS, AgroParisTech, Jouy-en-Josas, France
- * E-mail:
| | - Mustapha Berri
- UMR1282 ISP, INRA, Nouzilly, France
- UMR1282 ISP, Université de Tours, Tours, France
| | - Diane Esquerré
- UMR444 LGC-Plateforme GET, INRA, Castanet-Tolosan, France
| | - Claire Chevaleyre
- UMR1282 ISP, INRA, Nouzilly, France
- UMR1282 ISP, Université de Tours, Tours, France
| | - Gaëtan Lemonnier
- UMR1313 Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
- UMR1313 Génétique Animale et Biologie Intégrative, AgroParisTech, Jouy-en-Josas, France
- DSV/iRCM/SREIT/LREG, CEA, Jouy-en-Josas, France
| | | | - Patricia Lepage
- UMR1319 MICALIS, INRA, Jouy-en-Josas, France
- UMR1319 MICALIS, AgroParisTech, Jouy-en-Josas, France
| | - Isabelle P. Oswald
- UMR1331 TOXALIM, INRA, Toulouse, France
- UMR1331 TOXALIM-INP, Université de Toulouse III, Toulouse, France
| | - Joël Doré
- UMR1319 MICALIS, INRA, Jouy-en-Josas, France
- UMR1319 MICALIS, AgroParisTech, Jouy-en-Josas, France
| | - Claire Rogel-Gaillard
- UMR1313 Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
- UMR1313 Génétique Animale et Biologie Intégrative, AgroParisTech, Jouy-en-Josas, France
- DSV/iRCM/SREIT/LREG, CEA, Jouy-en-Josas, France
| | - Jordi Estellé
- UMR1313 Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
- UMR1313 Génétique Animale et Biologie Intégrative, AgroParisTech, Jouy-en-Josas, France
- DSV/iRCM/SREIT/LREG, CEA, Jouy-en-Josas, France
| |
Collapse
|
32
|
Schmitz A, Zielinski J, Dick B, Mevissen M. In vitro
metabolism of testosterone in the horse liver and involvement of equine CYPs 3A89, 3A94 and 3A95. J Vet Pharmacol Ther 2014; 37:338-47. [DOI: 10.1111/jvp.12106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 12/24/2013] [Indexed: 02/03/2023]
Affiliation(s)
- A. Schmitz
- Division of Veterinary Pharmacology and Toxicology; Vetsuisse Faculty; University Bern; Bern Switzerland
| | - J. Zielinski
- Division of Veterinary Pharmacology and Toxicology; Vetsuisse Faculty; University Bern; Bern Switzerland
| | - B. Dick
- Department of Nephrology, Hypertension and Clinical Pharmacology; Inselspital; Bern Switzerland
| | - M. Mevissen
- Division of Veterinary Pharmacology and Toxicology; Vetsuisse Faculty; University Bern; Bern Switzerland
| |
Collapse
|
33
|
Van Peer E, Verbueken E, Saad M, Casteleyn C, Van Ginneken C, Van Cruchten S. Ontogeny of CYP3A and P-Glycoprotein in the Liver and the Small Intestine of the Göttingen Minipig: An Immunohistochemical Evaluation. Basic Clin Pharmacol Toxicol 2013; 114:387-94. [PMID: 24224644 DOI: 10.1111/bcpt.12173] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 10/29/2013] [Indexed: 01/08/2023]
Affiliation(s)
- Els Van Peer
- Applied Veterinary Morphology; Department of Veterinary Sciences; University of Antwerp; Wilrijk Belgium
| | - Evy Verbueken
- Applied Veterinary Morphology; Department of Veterinary Sciences; University of Antwerp; Wilrijk Belgium
| | - Moayad Saad
- Applied Veterinary Morphology; Department of Veterinary Sciences; University of Antwerp; Wilrijk Belgium
| | - Christophe Casteleyn
- Applied Veterinary Morphology; Department of Veterinary Sciences; University of Antwerp; Wilrijk Belgium
| | - Chris Van Ginneken
- Applied Veterinary Morphology; Department of Veterinary Sciences; University of Antwerp; Wilrijk Belgium
| | - Steven Van Cruchten
- Applied Veterinary Morphology; Department of Veterinary Sciences; University of Antwerp; Wilrijk Belgium
| |
Collapse
|
34
|
Lundahl A, Tevell Åberg A, Bondesson U, Lennernäs H, Hedeland M. High-resolution mass spectrometric investigation of the phase I and II metabolites of finasteride in pig plasma, urine and bile. Xenobiotica 2013; 44:498-510. [DOI: 10.3109/00498254.2013.866298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
35
|
Lilienberg E, Ebeling Barbier C, Nyman R, Hedeland M, Bondesson U, Axén N, Lennernäs H. Investigation of hepatobiliary disposition of doxorubicin following intrahepatic delivery of different dosage forms. Mol Pharm 2013; 11:131-44. [PMID: 24171458 DOI: 10.1021/mp4002574] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Unresectable, intermediate stage hepatocellular carcinoma (HCC) is often treated palliatively in humans by doxorubicin (DOX). The drug is administered either as a drug-emulsified-in-Lipiodol (DLIP) or as drug loaded into drug eluting beads (DEB), and both formulations are administered intrahepatically. However, several aspects of their in vivo performance in the liver are still not well-understood. In this study, DLIP and DEB were investigated regarding the local and systemic pharmacokinetics (PK) of DOX and its primary metabolite doxorubicinol (DOXol). An advanced PK-multisampling site acute in vivo pig model was used for simultaneous sampling in the portal, hepatic, and femoral veins and the bile duct. The study had a randomized, parallel design with four treatment groups (TI-TIV). TI (n = 4) was used as control and received an intravenous (i.v.) infusion of DOX as a solution. TII and TIII were given a local injection in the hepatic artery with DLIP (n = 4) or DEB (n = 4), respectively. TIV (n = 2) received local injections of DLIP in the hepatic artery and bile duct simultaneously. All samples were analyzed for concentrations of DOX and DOXol with UPLC-MS/MS. Compared to DLIP, the systemic exposure for DOX with DEB was reduced (p < 0.05), in agreement with a slower in vivo release. The approximated intracellular bioavailability of DOX during 6 h appeared to be lower for DEB than DLIP. Following i.v. infusion (55 min), DOX had a liver extraction of 41 (28-53)%, and the fraction of the dose eliminated in bile of DOX and DOXol was 20 (15-22)% and 4.2 (3.2-5.2)%, respectively. The AUCbile/AUCVP for DOX and DOXol was 640 (580-660) and 5000 (3900-5400), respectively. In conclusion, DLIP might initially deliver a higher hepatocellular concentration of DOX than DEB as a consequence of its higher in vivo release rate. Thus, DLIP delivery results in higher intracellular peak concentrations that might correlate with better anticancer effects, but also higher systemic drug exposure and safety issues.
Collapse
Affiliation(s)
- Elsa Lilienberg
- Department of Pharmacy, Uppsala University , Box 580, 751 23 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
36
|
Antunes Viegas D, Palmeira-de-Oliveira A, Salgueiro L, Martinez-de-Oliveira J, Palmeira-de-Oliveira R. Helichrysum italicum: from traditional use to scientific data. JOURNAL OF ETHNOPHARMACOLOGY 2013; 151:54-65. [PMID: 24239849 DOI: 10.1016/j.jep.2013.11.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/31/2013] [Accepted: 11/01/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Helichrysum italicum (Roth) G. Don fil. (family Asteraceae) has been used for its medicinal properties for a long time and, even nowadays, continues to play an important role in the traditional medicine of Mediterranean countries. Based on this traditional knowledge, its different pharmacological activities have been the focus of active research. This review aims to provide an overview of the current state of knowledge of the pharmacological activities of Helichrysum italicum, as well as its traditional uses, toxicity, drug interactions and safety. MATERIALS AND METHODS The selection of relevant data was made through a search using the keywords "Helichrysum italicum" and "H. italicum" in "Directory of Open Access Journals", "Google Scholar", "ISI Web of Knowledge", "PubMed", "ScienceDirect" and "Wiley Online Library". Information obtained in local and foreign books and other sources was also included. RESULTS There are reports on the traditional use of Helichrysum italicum in European countries, particularly Italy, Spain, Portugal and Bosnia and Herzegovina. In these countries, its flowers and leaves are the most used parts in the treatment of health disorders such as allergies, colds, cough, skin, liver and gallbladder disorders, inflammation, infections and sleeplessness. In order to validate some of the traditional uses of Helichrysum italicum and highlight other potential applications for its extracts and isolated compounds, several scientific studies have been conducted in the last decades. In vitro studies characterized Helichrysum italicum as an antimicrobial and anti-inflammatory agent. Its flavonoids and terpenes were effective against bacteria (e.g. Staphylococcus aureus), its acetophenones, phloroglucinols and terpenoids displayed antifungal action against Candida albicans and its flavonoids and phloroglucinols inhibited HSV and HIV, respectively. Helichrysum italicum acetophenones, flavonoids and phloroglucinols demonstrated inhibitory action in different pathways of arachidonic acid metabolism and other pro-inflammatory mediators. Regarding Helichrysum italicum in vivo activity, the highlight goes to the anti-erythematous and photoprotective activities of its flavonoids, demonstrated both in animals and humans, and to the anti-inflammatory properties exhibited by its flavonoids, acetophenones and phloroglucinols, as seen in animal models. Concerning its safety and adverse effects, while Helichrysum italicum does not display significant levels of cytotoxicity or genotoxicity, it should be noticed that one of its flavonoids inhibited some CYP isoforms and a case has been reported of an allergic reaction to its extracts. CONCLUSIONS Helichrysum italicum is a medicinal plant with promising pharmacological activities. However, most of its traditionally claimed applications are not yet scientifically proven. Clinical trials are needed to further confirm these data and promote Helichrysum italicum as an important tool in the treatment of several diseases.
Collapse
Affiliation(s)
- Daniel Antunes Viegas
- CICS-UBI - Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| | - Ana Palmeira-de-Oliveira
- CICS-UBI - Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| | - Lígia Salgueiro
- Center for Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| | - José Martinez-de-Oliveira
- CICS-UBI - Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal; Child and Women Health Department, Centro Hospitalar Cova da Beira EPE, Covilhã, Portugal.
| | - Rita Palmeira-de-Oliveira
- CICS-UBI - Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal; Pharmacy Department, Centro Hospitalar Cova da Beira EPE, Covilhã, Portugal.
| |
Collapse
|
37
|
Elgart A, Cherniakov I, Aldouby Y, Domb AJ, Hoffman A. Improved oral bioavailability of BCS class 2 compounds by self nano-emulsifying drug delivery systems (SNEDDS): the underlying mechanisms for amiodarone and talinolol. Pharm Res 2013; 30:3029-44. [PMID: 23686373 DOI: 10.1007/s11095-013-1063-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 04/17/2013] [Indexed: 01/26/2023]
Abstract
PURPOSE Superior bioavailability of BCS Class 2 compounds incorporated into SNEDDS was previously reported. This study aims to elucidate the underlying mechanisms accountable for this phenomenon. METHODS SNEDDS of amiodarone (AM) and talinolol were developed. Pharmacokinetic parameters were assessed in vivo. Effect on intestinal permeability, P-gp efflux and toxicity was evaluated in vitro (Caco-2) and ex vivo (Ussing). Solubilization was assessed in vitro (Dynamic Lipolysis Model). Effect on intraenterocyte metabolism was evaluated using CYP3A4 microsomes. RESULTS Oral administration of AM-SNEDDS and talinolol-SNEDDS resulted in higher and less variable AUC and Cmax. In vitro, higher talinolol-SNEDDS Papp indicated Pgp inhibition. Lipolysis of AM-SNEDDS resulted in higher AM concentration in the fraction available for absorption. Incubation of AM-SNEDDS with CYP3A4 indicated CYP inhibition. SNEDDS didn't alter mannitol Papp and TEER. SNEDDS effect was transient. CONCLUSIONS Multiple mechanisms are accountable for improved bioavailability and reduced variability of Class-2 compounds by SNEDDS: increased solubilization, reduced intraenterocyte metabolism and reduced P-gp efflux. SNEDDS effect is reversible and doesn't cause intestinal tissue or cell damage. These comprehensive findings can be used for intelligent selection of drugs for which oral bioavailability will improve upon incorporation into SNEDDS, based on recognition of the drug's absorption barriers and the ability of SNEDDS to overcome them.
Collapse
Affiliation(s)
- Anna Elgart
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, P.O.Box 12065, Jerusalem, 91120, Israel
| | | | | | | | | |
Collapse
|
38
|
Goossens J, De Bock L, Osselaere A, Verbrugghe E, Devreese M, Boussery K, Van Bocxlaer J, De Backer P, Croubels S. The mycotoxin T-2 inhibits hepatic cytochrome P4503A activity in pigs. Food Chem Toxicol 2013; 57:54-6. [PMID: 23524315 DOI: 10.1016/j.fct.2013.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/05/2013] [Accepted: 03/08/2013] [Indexed: 11/30/2022]
Abstract
Mycotoxins are toxic metabolites produced by fungi that readily colonize crops. After ingestion, these mycotoxins can compromise intestinal health, and once entering the blood stream, even affect the liver and its metabolizing enzymes. It was therefore the aim of the present study to investigate the effect of T-2 toxin, an emerging and potent Fusarium mycotoxin, on the enzymatic activity of cytochrome P4503A (CYP3A) metabolizing enzymes in the liver of pigs. In addition, a yeast-derived feed additive that claims to bind T-2 toxin was included in the study to evaluate its efficacy. Our results demonstrated that a 14-days intake of T-2 toxin contaminated feed at a dose of 903 μg/kg feed, whether or not combined with the mycotoxin binder, results in a substantial inhibition of the CYP3A activity in the liver of pigs. This result may be of importance for animal health, the pharmacokinetics and the withdrawal time of drugs that are substrate of CYP3A enzymes, and consequently can be a threat for public health with respect to tissue residues of these drugs.
Collapse
Affiliation(s)
- J Goossens
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Helke KL, Swindle MM. Animal models of toxicology testing: the role of pigs. Expert Opin Drug Metab Toxicol 2012; 9:127-39. [PMID: 23216131 DOI: 10.1517/17425255.2013.739607] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION In regulatory toxicological testing, both a rodent and non-rodent species are required. Historically, dogs and non-human primates (NHP) have been the species of choice of the non-rodent portion of testing. The pig is an appropriate option for these tests based on metabolic pathways utilized in xenobiotic biotransformation. AREAS COVERED This review focuses on the Phase I and Phase II biotransformation pathways in humans and pigs and highlights the similarities and differences of these models. This is a growing field and references are sparse. Numerous breeds of pigs are discussed along with specific breed differences in these enzymes that are known. While much available data are presented, it is grossly incomplete and sometimes contradictory based on methods used. EXPERT OPINION There is no ideal species to use in toxicology. The use of dogs and NHP in xenobiotic testing continues to be the norm. Pigs present a viable and perhaps more reliable model of non-rodent testing.
Collapse
Affiliation(s)
- Kristi L Helke
- Medical University South Carolina, Comparative Medicine, 114 Doughty St, Ste 648, MSC777, Charleston, SC 29425, USA.
| | | |
Collapse
|
40
|
Rogée S, Talbot N, Caperna T, Bouquet J, Barnaud E, Pavio N. New models of hepatitis E virus replication in human and porcine hepatocyte cell lines. J Gen Virol 2012; 94:549-558. [PMID: 23175242 DOI: 10.1099/vir.0.049858-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hepatitis E virus (HEV) causes acute, enterically transmitted hepatitis in human. It is associated with large epidemics in tropical and subtropical regions where it is endemic or with sporadic cases in non-endemic regions. Unlike other hepatitis viruses, HEV has several animal reservoirs. Phylogenetic studies on HEV human and animal sequences, and the identification of cases of direct transmission from animal to human strongly suggest that HEV is a zoonotic agent. The lack of efficient cell culture models limits studies on molecular and cellular aspects of HEV infection and species barrier crossing. The present study reports on the development of two new in vitro models of HEV replication using a human hepatoma-derived cell line, HepaRG, and a porcine embryonic stem cell-derived cell line, PICM-19. These two cell lines have morphological and functional properties similar to primary hepatocytes. These in vitro culture systems support HEV replication and release of encapsidated RNA. These new models represent a powerful tool for studying the viral replication cycle, species barrier crossing and virulence factors.
Collapse
Affiliation(s)
- Sophie Rogée
- UMR 1161 Virology, Ecole Nationale Vétérinaire d'Alfort, 94706 Maisons-Alfort, France.,UMR 1161 Virology, INRA, 94706 Maisons-Alfort, France.,UMR 1161 Virology, ANSES, Laboratoire de Santé Animale, 94706 Maisons-Alfort, France
| | - Neil Talbot
- USDA, ARS, Animal and Natural Resources Institute, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| | - Thomas Caperna
- USDA, ARS, Animal and Natural Resources Institute, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| | - Jérôme Bouquet
- UMR 1161 Virology, Ecole Nationale Vétérinaire d'Alfort, 94706 Maisons-Alfort, France.,UMR 1161 Virology, INRA, 94706 Maisons-Alfort, France.,UMR 1161 Virology, ANSES, Laboratoire de Santé Animale, 94706 Maisons-Alfort, France
| | - Elodie Barnaud
- UMR 1161 Virology, Ecole Nationale Vétérinaire d'Alfort, 94706 Maisons-Alfort, France.,UMR 1161 Virology, INRA, 94706 Maisons-Alfort, France.,UMR 1161 Virology, ANSES, Laboratoire de Santé Animale, 94706 Maisons-Alfort, France
| | - Nicole Pavio
- UMR 1161 Virology, Ecole Nationale Vétérinaire d'Alfort, 94706 Maisons-Alfort, France.,UMR 1161 Virology, INRA, 94706 Maisons-Alfort, France.,UMR 1161 Virology, ANSES, Laboratoire de Santé Animale, 94706 Maisons-Alfort, France
| |
Collapse
|
41
|
Kulkarni R, Yumibe N, Wang Z, Zhang X, Tang CC, Ruterbories K, Cox A, McCain R, Knipp GT. Comparative Pharmacokinetics Studies of Immediate- and Modified-Release Formulations of Glipizide in Pigs and Dogs. J Pharm Sci 2012; 101:4327-36. [DOI: 10.1002/jps.23292] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 07/31/2012] [Indexed: 11/09/2022]
|
42
|
Thörn HA, Sjögren E, Dickinson PA, Lennernäs H. Binding Processes Determine the Stereoselective Intestinal and Hepatic Extraction of Verapamil in Vivo. Mol Pharm 2012; 9:3034-45. [DOI: 10.1021/mp3000875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Helena Anna Thörn
- Department of Pharmacy, Uppsala University, Box 580, Uppsala, Sweden
| | - Erik Sjögren
- Department of Pharmacy, Uppsala University, Box 580, Uppsala, Sweden
| | - Paul Alfred Dickinson
- Clinical Pharmacology and Pharmacometrics, AstraZeneca R&D, Alderley Park, Macclesfield, United Kingdom
| | - Hans Lennernäs
- Department of Pharmacy, Uppsala University, Box 580, Uppsala, Sweden
| |
Collapse
|
43
|
Sjögren E, Svanberg P, Kanebratt KP. Optimized Experimental Design for the Estimation of Enzyme Kinetic Parameters: An Experimental Evaluation. Drug Metab Dispos 2012; 40:2273-9. [DOI: 10.1124/dmd.112.047373] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
44
|
Thörn HA, Yasin M, Dickinson PA, Lennernäs H. Extensive intestinal glucuronidation of raloxifenein vivoin pigs and impact for oral drug delivery. Xenobiotica 2012; 42:917-28. [DOI: 10.3109/00498254.2012.683497] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
45
|
Zamaratskaia G, Zlabek V, Ropstad E, Andresen Ø. In vitro and in vivo association of porcine hepatic cytochrome P450 3A and 2C activities with testicular steroids. Reprod Domest Anim 2012; 47:891-8. [PMID: 22276943 DOI: 10.1111/j.1439-0531.2012.01986.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The aim of this study was to screen the inhibitory potential of several testicular steroids on cytochrome P450 3A (CYP3A) and 2C (CYP2C) activities in porcine liver microsomes. The microsomes used in this study were obtained from pubertal male pigs of two breeds, Landrace and Duroc. For the in vitro inhibition study, porcine microsomes were incubated in the presence of 17β-estradiol, 17α-estradiol, androstenone, dehydroepiandrosterone and dihydrotestosterone. Both reversible and mechanism-based inhibitions were examined. 7-benzyloxyresorufin (BR) and 7-benzyloxy-4-trifluoromethylcoumarin (BFC) were used as substrates for CYP3A, and diclofenac and tolbutamide (TB) as substrates for CYP2C. 7-benzyloxyresorufin O-dealkylase (BROD) activity was inhibited by all tested steroids in the microsomes from Landrace pigs via mechanism-based mode, but in the microsomes from Duroc pigs, BROD activities were inhibited only in the presence of 17β-oestradiol. Mechanism-based inhibition of BFC metabolism by the tested steroids was observed in the microsomes from both breeds, but this inhibition was weak and did not exceed 20%. TB hydroxylase (TBOH) activity in the microsomes from Duroc pigs was inhibited by 17α-oestradiol through the mechanism-based mode of inhibition. None of the investigated steroids inhibited TBOH activity in Landrace pigs. For the in vivo study, male pigs were injected with a single dose of human chorionic gonadotropin (hCG) to stimulate testicular steroid production by the Leydig cells. In vivo stimulation with hGC did not alter BROD activity either in Landrace or in Duroc pigs. BFC metabolism was significantly induced by hCG stimulation in both breeds and TBOH activity only in Duroc pigs. Activity of diclofenac hydroxylase was not detected in either Landrace or Duroc pigs. Breed significantly affected BROD and TBOH activity with BROD being higher in Landrace and TBOH in Duroc pigs. This study improved our understanding of the role of testicular steroids in the regulation of porcine CYP450 activity.
Collapse
Affiliation(s)
- G Zamaratskaia
- Department of Food Science, BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | | | | |
Collapse
|