1
|
Bose S, Chaudhari VS, Kushram P. 3D printed scaffolds with quercetin and vitamin D3 nanocarriers: In vitro cellular evaluation. J Biomed Mater Res A 2024; 112:2110-2123. [PMID: 38894584 PMCID: PMC11464199 DOI: 10.1002/jbm.a.37756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Increasing bone diseases and anomalies significantly challenge bone regeneration, necessitating the development of innovative implantable devices for effective healing. This study explores the potential of 3D-printed calcium phosphate (CaP) scaffolds functionalized with natural medicine to address this issue. Specifically, quercetin and vitamin D3 (QVD) encapsulated solid lipid nanoparticles (QVD-SLNs) are incorporated into the scaffold to enhance bone regeneration. The melt emulsification method is utilized to achieve high drug encapsulation efficiency (~98%) and controlled biphasic release kinetics. The process-structure-property performance of these systems allows more controlled release while maintaining healthy cell-material interactions. The functionalized scaffolds show ~1.3- and ~-1.6-fold increase in osteoblast cell proliferation and differentiation, respectively, as compared with the control. The treated scaffold demonstrates a reduction in osteoclastic activity as compared with the control. The QVD-SLN-loaded scaffolds show ~4.2-fold in vitro chemopreventive potential against osteosarcoma cells. Bacterial assessment with both Staphylococcus aureus and Pseudomonas aeruginosa shows a significant reduction in bacterial colony growth over the treated scaffold. These findings summarize that the release of QVD-SLNs through a 3D-printed CaP scaffold can treat various bone-related disorders for low or non-load-bearing applications.
Collapse
Affiliation(s)
- Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, USA
| | - Vishal Sharad Chaudhari
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, USA
| | - Priya Kushram
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, USA
| |
Collapse
|
2
|
Patra S, Dey J, Kar S, Chakraborty A, Tawate M. Methotrexate-Loaded Surface-Modified Solid Lipid Nanoparticles Targeting Cancer Expressing COX-2 Enzyme. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14811-14822. [PMID: 38979753 DOI: 10.1021/acs.langmuir.4c00638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Cancer is a major public health problem worldwide, and it is the second leading cause of death of humans in the world. The present study has been directed toward the preparation of methotrexate-loaded surface-modified solid lipid nanoparticles (SLNs) for potential use as a chemotherapeutic formulation for cancer therapy. A lipid (C14-AAP) derived from myristic acid (C14H30O2) and acetaminophen (AAP) was employed as a targeting ligand for human breast and lung cancer cells that overexpress the cyclooxygenases-2 (COX-2) enzyme. The SLNs consisting of stearic acid and C14-AAP were characterized by several methods, including dynamic light scattering (DLS), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), ultraviolet-visible (UV-vis) spectroscopy, high-resolution transmission electron microscopy (HRTEM), and field emission scanning electron microscopy (FESEM) techniques. An in vitro cell cytotoxicity study was done by carrying out an MTT assay and flow cytometry study in the human breast cancer (MCF7) and human lung cancer cell line (A549). The expression level of COX-2 enzyme in MCF7 and A549 cell lines was examined by reverse transcription polymerase chain reaction (RT-PCR). A high level of COX-2 expression was observed in both cell lines. In vitro cell cytotoxicity study in MC7 and A549 cell lines showed the surface-modified, methotrexate-loaded SLN is more effective in cell killing and induction of apoptotic death in both the cell lines than free methotrexate in MTT, flow cytometry, clonogenic assay, and Western blot studies. The surface-modified SLN was radiolabeled with 99mTc with %RCP greater than 95%. In vivo biodistribution study of the 99mTc-labeled SLN in melanoma tumor-bearing C57BL6 mice showed moderate tumor uptake of the radiotracer at 3 h post injection. The SPECT/CT image aligns with the biodistribution results. This study shows that AAP-modified SLNs could be a potential chemotherapeutic formulation for cancer therapy.
Collapse
Affiliation(s)
- Swagata Patra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Joykrishna Dey
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Somnath Kar
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai 400012, India
| | - Avik Chakraborty
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai 400012, India
| | - Megha Tawate
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai 400012, India
| |
Collapse
|
3
|
Patra S, Dey J, Kar S, Chakraborty A. Delivery of Chlorambucil to the Brain Using Surface Modified Solid Lipid Nanoparticles. ACS APPLIED BIO MATERIALS 2024; 7:3403-3413. [PMID: 38700026 DOI: 10.1021/acsabm.4c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
The delivery of drugs to the brain in the therapy of diseases of the central nervous system (CNS) remains a continuing challenge because of the lack of delivery systems that can cross the blood-brain barrier (BBB). Therefore, there is a need to develop an innovative delivery method for the treatment of CNS diseases. Thus, we have investigated the interaction of γ-aminobutyric acid (GABA) and S-(-)-γ-amino-α-hydroxybutyric acid (GAHBA) with the GABA receptor by performing a docking study. Both GABA and GAHBA show comparable binding affinities toward the receptor. In this study, we developed surface-modified solid lipid nanoparticles (SLNs) using GAHBA-derived lipids that can cross the BBB. CLB-loaded SLNs were characterized by a number of methods including differential scanning calorimetry, dynamic light scattering, UV-vis spectroscopy, and transmission electron microscopy. The blank and CLB-loaded SLN suspensions were found to exhibit good storage stability. Also, the SLNs showed a higher encapsulation efficiency for CLB drugs. In vitro release kinetics of CLB at physiological temperature was also investigated. The results of the in vitro cell cytotoxicity assay and flow cytometry studies in the human glioma U87MG cell line and human prostate cancer PC3 cell line suggested a higher efficacy of the GAHBA-modified CLB-loaded SLNs in U87MG cells. The transcription level of GABA receptor expression in the target organ and cell line was analyzed by a reverse transcription polymerase chain reaction study. The in vivo biodistribution and brain uptake in C57BL6 mice and SPECT/CT imaging in Wistar rats investigated using 99mTc-labeled SLN and autoradiography suggest that the SLNs have an increasing brain uptake. We have demonstrated the delivery of the anticancer drug chlorambucil (CLB) to glioma.
Collapse
Affiliation(s)
- Swagata Patra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Joykrishna Dey
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Somnath Kar
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai 400012, India
| | - Avik Chakraborty
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai 400012, India
| |
Collapse
|
4
|
Valverde-Fraga L, Haddad R, Alrabadi N, Sánchez S, Remuñán-López C, Csaba N. Design and in vitro assessment of chitosan nanocapsules for the pulmonary delivery of rifabutin. Eur J Pharm Sci 2023:106484. [PMID: 37268092 DOI: 10.1016/j.ejps.2023.106484] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/09/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
Tuberculosis (TB) is a life-threatening disease and a main cause of death worldwide. It mainly affects the lungs, and it is attributed to the infection with Mycobacterium tuberculosis (MTB). Current treatments consist of the oral administration of combinations of antibiotics including rifabutin, in high doses and for long periods of time. These therapeutic regimens are associated with many side effects and high rates of drug resistance. To overcome these problems, this study aims at developing a nanosystem for the improved delivery of antibiotics, with potential application in pulmonary delivery. Chitosan-based nanomaterials are widely used in biomedical applications, due to their biodegradability and biocompatibility, as well as their potential antimicrobial effects and lack of toxicity. In addition, this polymer is particularly attractive for mucosal delivery due to its bioadhesive properties. Therefore, the structure of the proposed nanocarrier consists of a chitosan shell and a lipid core with a combination of different oils and surfactants to allow optimal association of the hydrophobic drug rifabutin. These nanocapsules were characterized in terms of size, polydispersity index, surface charge, morphology, encapsulation efficiency and biological stability. The release kinetics of the drug-loaded nanostructures was evaluated in simulated lung media. Moreover, in vitro studies in different cell models (A549 and Raw 264.7 cells) demonstrated the safety of the nanocapsules as well as their efficient internalization. An antimicrobial susceptibility test was performed to evaluate the efficacy of the rifabutin-loaded nanocapsules against Mycobacterium phlei. This study indicated complete inhibition for antibiotic concentrations within the expected susceptibility range of Mycobacterium (≤ 0.25-16 mg/L).
Collapse
Affiliation(s)
- Lorena Valverde-Fraga
- Nanobiofar Group. Department of Pharmacology, Pharmacy & Pharmaceutical Technology. Faculty of Pharmacy. University of Santiago de Compostela Campus Vida. 15782 Santiago de Compostela. Spain; Center for Research in Molecular Medicine and Chronic Diseases (CiMUS). University of Santiago de Compostela. Campus Vida, 15782 Santiago de Compostela. Spain
| | - Razan Haddad
- Department of Pharmaceutical Technology and Pharmaceutical Sciences. Faculty of Pharmacy. Department of Pharmacology. Faculty of Medicine. Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Nasr Alrabadi
- Department of Pharmaceutical Technology and Pharmaceutical Sciences. Faculty of Pharmacy. Department of Pharmacology. Faculty of Medicine. Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Sandra Sánchez
- Department of Microbiology and Parasitology. Faculty of Pharmacy. University of Santiago de Compostela. Campus Vida, 15782 Santiago de Compostela. Spain
| | - Carmen Remuñán-López
- Nanobiofar Group. Department of Pharmacology, Pharmacy & Pharmaceutical Technology. Faculty of Pharmacy. University of Santiago de Compostela Campus Vida. 15782 Santiago de Compostela. Spain
| | - Noemi Csaba
- Nanobiofar Group. Department of Pharmacology, Pharmacy & Pharmaceutical Technology. Faculty of Pharmacy. University of Santiago de Compostela Campus Vida. 15782 Santiago de Compostela. Spain; Center for Research in Molecular Medicine and Chronic Diseases (CiMUS). University of Santiago de Compostela. Campus Vida, 15782 Santiago de Compostela. Spain..
| |
Collapse
|
5
|
Hebishy E, Collette L, Iheozor‐Ejiofor P, Onarinde B. Stability and antimicrobial activity of lemongrass essential oil in nanoemulsions produced by high‐intensity ultrasounds and stabilized by soy lecithin, hydrolysed whey proteins, gum Arabic or their ternary admixture. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Essam Hebishy
- Centre of Excellence in Agri‐food Technologies, National Centre for Food Manufacturing College of Sciences, University of Lincoln Holbeach Spalding United Kingdom
| | - Laurine Collette
- Centre of Excellence in Agri‐food Technologies, National Centre for Food Manufacturing College of Sciences, University of Lincoln Holbeach Spalding United Kingdom
- IUT‐Dijon‐Auxerre, Department of BioEngineering Dijon Cedex France
| | - Pamela Iheozor‐Ejiofor
- Centre of Excellence in Agri‐food Technologies, National Centre for Food Manufacturing College of Sciences, University of Lincoln Holbeach Spalding United Kingdom
| | - Bukola Onarinde
- Centre of Excellence in Agri‐food Technologies, National Centre for Food Manufacturing College of Sciences, University of Lincoln Holbeach Spalding United Kingdom
| |
Collapse
|
6
|
Caramona A, Coimbra I, Pinto T, Aparício S, Madeira PJA, Ribeiro HM, Marto J, Almeida AJ. Repurposing of Marine Raw Materials in the Formulation of Innovative Plant Protection Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4221-4242. [PMID: 35357173 DOI: 10.1021/acs.jafc.2c00038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the years, the growth of the world population has caused a huge agricultural production to support the population's needs. Since plant protection products are essential to preserve agricultural crops and to optimize vital plant processes, it is crucial to use more sustainable, biodegradable, and biocompatible raw materials, without harming the environment and human health. Although the development of new plant protection products is a costly process, the environmental benefits should be considered. In this context, marine raw materials obtained as byproducts of fishing industries, possessing a wide variety of physicochemical and biological properties, can serve as a promising source of such materials. They have a high potential for developing alternative and safe formulations for agricultural applications, not only as biocompatible excipients but also as effective and selective, or even both. It is also possible to promote a synergistic effect between an active substance and the biological activity of the marine polymer used in the formulation, enabling plant protection products with lower concentrations of the active substances. Thus, this review addresses the repurposing of marine raw materials for the development of innovative plant protection products, focusing on micro- and nanoparticulate formulations, to protect the environment through more ecological and sustainable strategies.
Collapse
Affiliation(s)
- Aline Caramona
- iMed.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Inês Coimbra
- Ascenza Agro SA, Av. do Rio Tejo, Herdade das Praias, 2910-440 Setúbal, Portugal
| | - Teresa Pinto
- Ascenza Agro SA, Av. do Rio Tejo, Herdade das Praias, 2910-440 Setúbal, Portugal
| | - Sónia Aparício
- Ascenza Agro SA, Av. do Rio Tejo, Herdade das Praias, 2910-440 Setúbal, Portugal
| | | | - Helena Margarida Ribeiro
- iMed.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Joana Marto
- iMed.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - António José Almeida
- iMed.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
7
|
Sainaga Jyothi VG, Ghouse SM, Khatri DK, Nanduri S, Singh SB, Madan J. Lipid nanoparticles in topical dermal drug delivery: Does chemistry of lipid persuade skin penetration? J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103176] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Etxebeste-Mitxeltorena M, Moreno E, Carvalheiro M, Calvo A, Navarro-Blasco I, González-Peñas E, Álvarez-Galindo JI, Plano D, Irache JM, Almeida AJ, Sanmartín C, Espuelas S. Oral Efficacy of a Diselenide Compound Loaded in Nanostructured Lipid Carriers in a Murine Model of Visceral Leishmaniasis. ACS Infect Dis 2021; 7:3197-3209. [PMID: 34767359 PMCID: PMC8675869 DOI: 10.1021/acsinfecdis.1c00394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Indexed: 11/29/2022]
Abstract
Leishmaniasis urgently needs new oral treatments, as it is one of the most important neglected tropical diseases that affects people with poor resources. The drug discovery pipeline for oral administration currently discards entities with poor aqueous solubility and permeability (class IV compounds in the Biopharmaceutical Classification System, BCS) such as the diselenide 2m, a trypanothione reductase (TR) inhibitor. This work was assisted by glyceryl palmitostearate and diethylene glycol monoethyl ether-based nanostructured lipid carriers (NLC) to render 2m bioavailable and effective after its oral administration. The loading of 2m in NLC drastically enhanced its intestinal permeability and provided plasmatic levels higher than its effective concentration (IC50). In L. infantum-infected BALB/c mice, 2m-NLC reduced the parasite burden in the spleen, liver, and bone marrow by at least 95% after 5 doses, demonstrating similar efficacy as intravenous Fungizone. Overall, compound 2m and its formulation merit further investigation as an oral treatment for visceral leishmaniasis.
Collapse
Affiliation(s)
- Mikel Etxebeste-Mitxeltorena
- Institute
of Tropical Health, Department of Pharmaceutical Technology and Chemistry,
School of Pharmacy and Nutrition, University
of Navarra, 31008 Pamplona, Spain
| | - Esther Moreno
- Institute
of Tropical Health, Department of Pharmaceutical Technology and Chemistry,
School of Pharmacy and Nutrition, University
of Navarra, 31008 Pamplona, Spain
- Instituto
de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Manuela Carvalheiro
- Research
Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Alba Calvo
- Institute
of Tropical Health, Department of Pharmaceutical Technology and Chemistry,
School of Pharmacy and Nutrition, University
of Navarra, 31008 Pamplona, Spain
- Instituto
de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Iñigo Navarro-Blasco
- Department
of Chemistry, School of Sciences, University
of Navarra, 31008 Pamplona, Spain
| | - Elena González-Peñas
- Department
of Pharmaceutical Technology and Chemistry, School of Pharmacy and
Nutrition, University of Navarra, 31008 Pamplona, Spain
| | | | - Daniel Plano
- Institute
of Tropical Health, Department of Pharmaceutical Technology and Chemistry,
School of Pharmacy and Nutrition, University
of Navarra, 31008 Pamplona, Spain
- Instituto
de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Juan M. Irache
- Instituto
de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Department
of Pharmaceutical Technology and Chemistry, School of Pharmacy and
Nutrition, University of Navarra, 31008 Pamplona, Spain
| | - Antonio J. Almeida
- Research
Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Carmen Sanmartín
- Institute
of Tropical Health, Department of Pharmaceutical Technology and Chemistry,
School of Pharmacy and Nutrition, University
of Navarra, 31008 Pamplona, Spain
- Instituto
de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Socorro Espuelas
- Institute
of Tropical Health, Department of Pharmaceutical Technology and Chemistry,
School of Pharmacy and Nutrition, University
of Navarra, 31008 Pamplona, Spain
- Instituto
de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
9
|
Ferreira MA, de Almeida Júnior RF, Onofre TS, Casadei BR, Farias KJS, Severino P, de Oliveira Franco CF, Raffin FN, de Lima e Moura TFA, de Melo Barbosa R. Annatto Oil Loaded Nanostructured Lipid Carriers: A Potential New Treatment for Cutaneous Leishmaniasis. Pharmaceutics 2021; 13:1912. [PMID: 34834327 PMCID: PMC8618414 DOI: 10.3390/pharmaceutics13111912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 11/18/2022] Open
Abstract
Annatto (Bixa orellana L.) is extensively used as food pigment worldwide. Recently, several studies have found it to have healing and antioxidant properties, as well as effective action against leishmaniasis. Therefore, the purpose of this study was to incorporate the oil obtained from annatto seeds into a nanostructured lipid carrier (NLC) and evaluate its physicochemical properties and biological activity against Leishmania major. Nanoparticles were prepared by the fusion-emulsification and ultrasonication method, with the components Synperonic™ PE (PL) as the surfactant, cetyl palmitate (CP) or myristyl myristate (MM) as solid lipids, annatto oil (AO) (2% and 4%, w/w) as liquid lipid and active ingredient, and ultra-pure water. Physicochemical and biological characterizations were carried out to describe the NLCs, including particle size, polydispersity index (PDI), and zeta potential (ZP) by dynamic light scattering (DLS), encapsulation efficiency (EE%), thermal behavior, X-ray diffraction (XRD), transmission electron microscopy (TEM), Electron Paramagnetic Resonance (EPR), cytotoxicity on BALB/c 3T3 fibroblasts and immortalized human keratinocyte cells, and anti-leishmaniasis activity in vitro. Nanoparticles presented an average diameter of ~200 nm (confirmed by TEM results), a PDI of less than 0.30, ZP between -12.6 and -31.2 mV, and more than 50% of AO encapsulated in NLCs. Thermal analyses demonstrated that the systems were stable at high temperatures with a decrease in crystalline structure due to the presence of AOs (confirmed by XRD). In vitro, the anti-leishmania test displayed good activity in encapsulating AO against L. major. The results indicate that the oily fraction of Bixa orellana L. in NLC systems should be evaluated as a potential therapeutic agent against leishmaniasis.
Collapse
Affiliation(s)
- Marianna Araújo Ferreira
- Laboratory of Drug Development, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (M.A.F.); (F.N.R.)
| | | | - Thiago Souza Onofre
- Biochemistry and Molecular Biology Department, Federal University of Viçosa (UFV), Viçosa 36570-900, Brazil;
| | - Bruna Renata Casadei
- Institute of Physics, University of São Paulo, USP, São Paulo 05508-090, Brazil;
| | | | - Patricia Severino
- Institute of Technology and Research (ITP), Aracaju 49010-390, Brazil;
| | | | - Fernanda Nervo Raffin
- Laboratory of Drug Development, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (M.A.F.); (F.N.R.)
| | | | - Raquel de Melo Barbosa
- Laboratory of Drug Development, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (M.A.F.); (F.N.R.)
| |
Collapse
|
10
|
Bahraminegad S, Pardakhty A, Sharifi I, Ranjbar M. Therapeutic effects of the as-synthesized polylactic acid/chitosan nanofibers decorated with amphotricin B for in vitro treatment of Leishmaniasis. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Kammona O, Tsanaktsidou E. Nanotechnology-aided diagnosis, treatment and prevention of leishmaniasis. Int J Pharm 2021; 605:120761. [PMID: 34081999 DOI: 10.1016/j.ijpharm.2021.120761] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/10/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023]
Abstract
Leishmaniasis is a prevalent parasitic infection belonging to neglected tropical diseases. It is caused by Leishmania protozoan parasites transmitted by sandflies and it is responsible for increased morbidity/mortality especially in low- and middle-income countries. The lack of cheap, portable, easy to use diagnostic tools exhibiting high efficiency and specificity impede the early diagnosis of the disease. Furthermore, the typical anti-leishmanial agents are cytotoxic, characterized by low patient compliance and require long-term regimen and usually hospitalization. In addition, due to the intracellular nature of the disease, the existing treatments exhibit low bioavailability resulting in low therapeutic efficacy. The above, combined with the common development of resistance against the anti-leishmanial agents, denote the urgent need for novel therapeutic strategies. Furthermore, the lack of effective prophylactic vaccines hinders the control of the disease. The development of nanoparticle-based biosensors and nanocarrier-aided treatment and vaccination strategies could advance the diagnosis, therapy and prevention of leishmaniasis. The present review intends to highlight the various nanotechnology-based approaches pursued until now to improve the detection of Leishmania species in biological samples, decrease the side effects and increase the efficacy of anti-leishmanial drugs, and induce enhanced immune responses, specifically focusing on the outcome of their preclinical and clinical evaluation.
Collapse
Affiliation(s)
- Olga Kammona
- Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece.
| | - Evgenia Tsanaktsidou
- Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece
| |
Collapse
|
12
|
Elkot HA, Ragab I, Saleh NM, Amin MN, Al-Rashood ST, El-Messery SM, Hassan GS. Design, synthesis, and antitumor activity of PLGA nanoparticles incorporating a discovered benzimidazole derivative as EZH2 inhibitor. Chem Biol Interact 2021; 344:109530. [PMID: 34029540 DOI: 10.1016/j.cbi.2021.109530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Targeting enhancer of zeste homolog 2 (EZH2) can represent a hopeful strategy for oncotherapy. Also, the use of PLGA-based nanoparticles as a novel and rate-controlling carrier system was of our concern. METHODS Benzimidazole derivatives were synthesized, and their structures were clarified. In vitro antitumor activity was evaluated. Then, a modeling study was performed to investigate the ability of the most active compounds to recognize EZH2 active sites. Compound 30 (Drug) was selected to conduct pre-formulation studies and then it was incorporated into polymeric PLGA nanoparticles (NPs). NPs were then fully characterized to select an optimized formula (NP4) that subjected to further evaluation regarding antitumor activity and protein expression levels of EZH2 and EpCAM. RESULTS The results showed the antitumor activity of some synthesized derivatives. Docking outcomes demonstrated that Compound 30 was able to identify EZH2 active sites. NP4 exhibited promising findings and proved to keep the antitumor activity of Compound 30. HEPG-2 was the most sensitive for both Drug and NP4. Protein analysis indicated that Drug and NP4 had targeted EZH2 and the downstream signaling pathway leading to the decline of EpCAM expression. CONCLUSIONS Targeting EZH2 by Compound 30 has potential use in the treatment of cancer especially hepatocellular carcinoma.
Collapse
Affiliation(s)
- Hoda A Elkot
- Faculty of Pharmacy, Mansoura University, P.O. Box 35516, Mansoura, Egypt
| | - Ibrahim Ragab
- Faculty of Pharmacy, Mansoura University, P.O. Box 35516, Mansoura, Egypt
| | - Noha M Saleh
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, P.O. Box 35516, Mansoura, Egypt.
| | - Mohamed N Amin
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, P.O. Box 35516, Mansoura, Egypt
| | - Sara T Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shahenda M El-Messery
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, P.O. Box 35516, Mansoura, Egypt
| | - Ghada S Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, P.O. Box 35516, Mansoura, Egypt
| |
Collapse
|
13
|
Youshia J, Kamel AO, El Shamy A, Mansour S. Gamma sterilization and in vivo evaluation of cationic nanostructured lipid carriers as potential ocular delivery systems for antiglaucoma drugs. Eur J Pharm Sci 2021; 163:105887. [PMID: 34022410 DOI: 10.1016/j.ejps.2021.105887] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/27/2021] [Accepted: 05/17/2021] [Indexed: 02/02/2023]
Abstract
Solid lipid nanoparticles and nanostructured lipid carriers showed promising results for enhancement of ocular bioavailability of drugs with poor corneal permeability. One of these drugs is methazolamide, which is an orally administered carbonic anhydrase inhibitor for glaucoma treatment. However, sterilization by autoclaving may result in loss of the physical properties of lipid nanoparticles such as particle size and surface charge. Here, we evaluated gamma radiation as an alternative sterilization method. Methazolamide loaded nanostructured lipid carriers were optimized using 23 factorial design. Optimized formulations contained 6% lipid (85% solid lipid (Cetostearyl alcohol and glyceryl behenate) and 15% oil either medium chain triglycerides or isopropyl myristate) stabilized by 2% polysorbate 80 and 0.15% stearylamine. Nanoparticles were cationic, smaller than 500 nm, and had an entrapment efficiency of about 30%. They released methazolamide within 8 hours and showed a 5-fold enhanced reduction in intraocular pressure compared to methazolamide solution. Gamma sterilization was superior to autoclaving in preserving entrapped methazolamide, size, and surface charge of lipid nanoparticles. These findings demonstrate that gamma radiation is a viable alternative to autoclaving for sterilizing lipid nanoparticles. Moreover, this proves that nanostructured lipid carriers enhance pharmacological response of topically administered methazolamide for treating glaucoma.
Collapse
Affiliation(s)
- John Youshia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt.
| | - Amany O Kamel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Abdelhameed El Shamy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Samar Mansour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt; Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, German University in Cairo, 11835 Cairo, Egypt
| |
Collapse
|
14
|
Nunes A, Gonçalves L, Marto J, Martins AM, Silva AN, Pinto P, Martins M, Fraga C, Ribeiro HM. Investigations of Olive Oil Industry By-Products Extracts with Potential Skin Benefits in Topical Formulations. Pharmaceutics 2021; 13:pharmaceutics13040465. [PMID: 33808196 PMCID: PMC8065837 DOI: 10.3390/pharmaceutics13040465] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 01/10/2023] Open
Abstract
The by-products of olive oil industry are a major ecological issue due to their phenolic content, highly toxic organic load, and low pH. However, they can be recovered and reused, since their components have antioxidant, anti-inflammatory, and photoprotector properties. In this work, oil-in-water creams containing three different olive oil industry by-products extracts were produced without the use of organic solvents. First, the extracts were thoroughly characterized in vitro for cytotoxicity, inhibition of skin enzymes, and antioxidant and photoprotection capacities. Safety studies were then performed, including ocular and skin irritation tests, ecotoxicity evaluation, and in vivo Human Repeat Insult Patch Test. The results obtained in this initial characterization supported the incorporation of the extracts in the cream formulations. After preparation, the creams were characterized for their organoleptic, physicochemical, droplet size and rheological properties, and microbial contamination. The results showed that all formulations were semi-solid creams, with stable pH, compatible with the skin, without microbial contamination, and with the expected droplet size range. The rheological analysis showed shear-thinning behavior with yield stress, with the viscosity decreasing with increasing shear rate. The oscillatory results suggest that the creams have a strong network structure, being easily rubbed into the skin. Finally, compatibility, acceptability and antioxidant efficacy were evaluated in vivo, in human volunteers. No adverse reactions were observed after application of the formulations on skin and the cream with the highest concentrations of phenolic compounds showed the highest antioxidant efficiency. In conclusion, the results suggest that olive oil industry by-products extracts have valuable properties that favor their re-use in the cosmetic industry. The example presented here showed their successful incorporation into creams and their impact in these formulations' appearance, pH, and rheological performance, as well as their in vivo compatibility with skin and antioxidant efficiency.
Collapse
Affiliation(s)
- Andreia Nunes
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.N.); (L.G.); (J.M.); (A.M.M.); (P.P.)
| | - Lídia Gonçalves
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.N.); (L.G.); (J.M.); (A.M.M.); (P.P.)
| | - Joana Marto
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.N.); (L.G.); (J.M.); (A.M.M.); (P.P.)
| | - Ana Margarida Martins
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.N.); (L.G.); (J.M.); (A.M.M.); (P.P.)
| | - Alexandra N. Silva
- ADEIM, Laboratório de Controlo Microbiológico, 1649-003 Lisbon, Portugal;
| | - Pedro Pinto
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.N.); (L.G.); (J.M.); (A.M.M.); (P.P.)
- PhDtrials, Avenida Maria Helena Vieira da Silva, n° 24 A, 1750-182 Lisboa, Portugal
| | - Marta Martins
- Marine and Environmental Sciences Centre (MARE), NOVA School of Science and Technology (FCT NOVA), Campus da Caparica, 2829-516 Caparica, Portugal;
| | - Carmo Fraga
- Sovena Portugal—Consumer Goods, S.A., Rua Dr. António Borges n°2, Edifício Arquiparque 2-3° Andar, 1495-131 Algés, Portugal;
| | - Helena Margarida Ribeiro
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.N.); (L.G.); (J.M.); (A.M.M.); (P.P.)
- Correspondence: ; Tel.: +351-217-500-769
| |
Collapse
|
15
|
Increased Therapeutic Efficacy of SLN Containing Etofenamate and Ibuprofen in Topical Treatment of Inflammation. Pharmaceutics 2021; 13:pharmaceutics13030328. [PMID: 33802592 PMCID: PMC7999628 DOI: 10.3390/pharmaceutics13030328] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022] Open
Abstract
Innovative formulations, including solid lipid nanoparticles (SLNs), have been sought to improve skin permeation of non-steroidal anti-inflammatory drugs (NSAIDs). The present study explores the use of SLNs, prepared using a fusion-emulsification method, to increase skin permeation and in vivo activity of two relevant NSAIDs: A liquid molecule (etofenamate) and a solid one (ibuprofen), formulated in a 2% hydroxypropyl methylcellulose gel through the gelation of SLN suspensions. Compritol® 888 ATO and Tween® 80 were used as a solid lipid and a surfactant, respectively. All production steps were up scalable, resulting in SLNs with high encapsulation efficiency (>90%), a mean particle size of <250 nm, a polydispersity index <0.2, and that were stable for 12 months. In vitro permeation, using human skin in Franz diffusion cells, showed increased permeation and similar cell viability in Df and HaCaT cell lines for SLN formulations when compared to commercial formulations of etofenamate (Reumon® Gel 5%) and ibuprofen (Ozonol® 5%). In vivo activity in the rat paw edema inflammation model showed that SLN hydrogels containing lower doses of etofenamate (8.3 times lower) and ibuprofen (16.6 times lower) produced similar effects compared to the commercial formulations, while decreasing edema and inflammatory cell infiltration, and causing no histological changes in the epidermis. These studies demonstrate that encapsulation in SLNs associated to a suitable hydrogel is a promising technological approach to NSAIDs dermal application.
Collapse
|
16
|
Carvalheiro M, Vieira J, Faria-Silva C, Marto J, Simões S. Amphotericin B-loaded deformable lipid vesicles for topical treatment of cutaneous leishmaniasis skin lesions. Drug Deliv Transl Res 2021; 11:717-728. [PMID: 33534106 DOI: 10.1007/s13346-021-00910-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2021] [Indexed: 11/26/2022]
Abstract
Cutaneous leishmaniasis (CL), the most common clinical form of human leishmaniasis, is a non-fatal chronic and disabling disease characterized by erythema and nodular or ulcerative skin lesions that may cause permanent scars and disfigurement. Topical drug delivery represents a simple and efficacious approach to treat CL skin lesions. The association of drugs with nanocarrier systems enhances their permeation properties and increases the drug amount available in the dermis. Here, a deformable lipid vesicle (DLV) was optimized for the topical administration of Amphotericin B (AmB), with the aim of studying and understanding the advantages of this type of delivery system in the transport of a drug through the skin layers. AmB-DVL were characterized in terms of incorporation parameters, stability, and elasticity, and evaluated in vitro for their permeation properties, cytotoxicity, and anti-leishmanial activity. The AmB-DVL exhibited a translucent fluid gel-like aspect and a yellow color, a mean size of 132 nm (PdI ≤ 0.1), zeta potential values around zero (mV), and an AmB incorporation efficiency of 95%. Permeation and penetration assays suggest that AmB-DLV are suitable for topical administration since AmB was detected in the epidermal and dermal skin layers. AmB-DVL was able to reduce promastigote viability in a dose-dependent manner, as well as the number of intracellular amastigotes in THP-1 macrophages. Selectivity index (SI) value for AmB-DLV was considerably higher than that observed for free AmB. Results suggest that DLV may represent an attractive vehicle for dermal delivery of AmB and a new low-cost and safe therapeutic option in CL treatment.
Collapse
Affiliation(s)
- Manuela Carvalheiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisboa, Portugal
| | - Jennifer Vieira
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisboa, Portugal
| | - Catarina Faria-Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisboa, Portugal
| | - Joana Marto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisboa, Portugal
| | - Sandra Simões
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisboa, Portugal.
| |
Collapse
|
17
|
Chaudhari VS, Murty US, Banerjee S. Nanostructured lipid carriers as a strategy for encapsulation of active plant constituents: Formulation and in vitro physicochemical characterizations. Chem Phys Lipids 2021; 235:105037. [PMID: 33400968 DOI: 10.1016/j.chemphyslip.2020.105037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/14/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022]
Abstract
Active plant constituents obtained from edible sources have manifested their pharmacological potential as a therapy against several diseases. But the lack of their desired physicochemical properties such as solubility, permeability ultimately leads to poor bioavailability. Two potent active plant constituents namely, quercetin and piperine having a problem with either solubility or permeability or both, and hence require an advanced lipid-mediated separate formulation system to improve their aforementioned concerns. Concerning advancement in nanoformulations, lipid-based nano-carriers systems have created their mark as a novel drug delivery system. Therefore, an advanced formulation like nanostructured lipid carriers (NLCs) has been formulated individually for both the active plant constituents/drugs through the solvent evaporation technique using high shear homogenization method followed by sonication. Compritol® 888 ATO, a solid lipid, and squalene as liquid lipid was used in their optimized ratios to formulate individual NLCs. Blank and individual drugs loaded NLCs were further characterized for their in vitro physicochemical properties. NLCs showed a negative surface charge with an average particle size below 200 nm. Electron microscopy images showed an anomalous structure of both the formulated NLCs with higher % drug encapsulation efficiency (DEE) with the desired in vitro drug release profile. In the case of quercetin-NLCs, 93.18 ± 5.5 % DEE was observed followed by drug release up to 45.0 ± 1.3 % within 12 h, while piperine-NLCs showed 91.80 ± 2.51 % DEE and drug release up to 38 ± 5.2 % at the same time. XRD and DSC plots showed the conversion of both the drugs into an amorphous structure encapsulated in a lyophilized NLCs matrix. Finally, the safety profile for formulated NLCs was confirmed by haemolysis assay. Hence, the developed active plant constituents enriched NLCs can further be delivered separately and/or in combination, and also may further be evaluated both in vitro and in vivo means.
Collapse
Affiliation(s)
- Vishal Sharad Chaudhari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Kamrup, Assam, India
| | | | - Subham Banerjee
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Kamrup, Assam, India.
| |
Collapse
|
18
|
Islan GA, Gonçalves LMD, Marto J, Duarte A, Alvarez VA, Castro GR, Almeida AJ. Effect of α-tocopherol on the physicochemical, antioxidant and antibacterial properties of levofloxacin loaded hybrid lipid nanocarriers. NEW J CHEM 2021. [DOI: 10.1039/d0nj03781h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Non-toxic hybrid lipidic nanoparticles become a promising tool for enhanced lung delivery of levofloxacin in combination with antioxidant properties.
Collapse
Affiliation(s)
- Germán A. Islan
- Laboratorio de Nanobiomateriales
- CINDEFI
- Departamento de Química
- Facultad de Ciencias Exactas
- Universidad Nacional de La Plata (UNLP) – CONICET (CCT La Plata)
| | - Lídia M. D. Gonçalves
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- 1649-003 Lisbon
- Portugal
| | - Joana Marto
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- 1649-003 Lisbon
- Portugal
| | - Aida Duarte
- Laboratory of Microbiology
- Faculty of Pharmacy
- Universidade de Lisboa
- 1649-003 Lisbon
- Portugal
| | - Vera A. Alvarez
- Grupo de Materiales Compuestos de Matriz Polimérica (CoMP)
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA)
- Facultad de Ingeniería
- Universidad Nacional de Mar del Plata (UNMDP) – CONICET
- Buenos Aires
| | - Guillermo R. Castro
- Laboratorio de Nanobiomateriales
- CINDEFI
- Departamento de Química
- Facultad de Ciencias Exactas
- Universidad Nacional de La Plata (UNLP) – CONICET (CCT La Plata)
| | - António J. Almeida
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- 1649-003 Lisbon
- Portugal
| |
Collapse
|
19
|
Tan ZM, Lai GP, Pandey M, Srichana T, Pichika MR, Gorain B, Bhattamishra SK, Choudhury H. Novel Approaches for the Treatment of Pulmonary Tuberculosis. Pharmaceutics 2020; 12:pharmaceutics12121196. [PMID: 33321797 PMCID: PMC7763148 DOI: 10.3390/pharmaceutics12121196] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) is a contagious airborne disease caused by Mycobacterium tuberculosis, which primarily affects human lungs. The progression of drug-susceptible TB to drug-resistant strains, MDR-TB and XDR-TB, has become worldwide challenge in eliminating TB. The limitations of conventional TB treatment including frequent dosing and prolonged treatment, which results in patient’s noncompliance to the treatment because of treatment-related adverse effects. The non-invasive pulmonary drug administration provides the advantages of targeted-site delivery and avoids first-pass metabolism, which reduced the dose requirement and systemic adverse effects of the therapeutics. With the modification of the drugs with advanced carriers, the formulations may possess sustained released property, which helps in reducing the dosing frequency and enhanced patients’ compliances. The dry powder inhaler formulation is easy to handle and storage as it is relatively stable compared to liquids and suspension. This review mainly highlights the aerosolization properties of dry powder inhalable formulations with different anti-TB agents to understand and estimate the deposition manner of the drug in the lungs. Moreover, the safety profile of the novel dry powder inhaler formulations has been discussed. The results of the studies demonstrated that dry powder inhaler formulation has the potential in enhancing treatment efficacy.
Collapse
Affiliation(s)
- Zhi Ming Tan
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (Z.M.T.); (G.P.L.)
| | - Gui Ping Lai
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (Z.M.T.); (G.P.L.)
| | - Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa, Bukit Jalil, Kuala Lumpur 57000, Malaysia
- Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, Kuala Lumpur 57000, Malaysia;
- Correspondence: (M.P.); (H.C.)
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Prince of Songkla University, Songkhla 90110, Thailand;
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla 90110, Thailand
| | - Mallikarjuna Rao Pichika
- Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, Kuala Lumpur 57000, Malaysia;
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia;
- Centre for Drug Delivery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia
| | - Subrat Kumar Bhattamishra
- Department of Life Science, School of Pharmacy, International Medical University, Jalan Jalil Perkasa, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa, Bukit Jalil, Kuala Lumpur 57000, Malaysia
- Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, Kuala Lumpur 57000, Malaysia;
- Correspondence: (M.P.); (H.C.)
| |
Collapse
|
20
|
Muraca G, Berti IR, Sbaraglini ML, Fávaro WJ, Durán N, Castro GR, Talevi A. Trypanosomatid-Caused Conditions: State of the Art of Therapeutics and Potential Applications of Lipid-Based Nanocarriers. Front Chem 2020; 8:601151. [PMID: 33324615 PMCID: PMC7726426 DOI: 10.3389/fchem.2020.601151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/19/2020] [Indexed: 11/13/2022] Open
Abstract
Trypanosomatid-caused conditions (African trypanosomiasis, Chagas disease, and leishmaniasis) are neglected tropical infectious diseases that mainly affect socioeconomically vulnerable populations. The available therapeutics display substantial limitations, among them limited efficacy, safety issues, drug resistance, and, in some cases, inconvenient routes of administration, which made the scenarios with insufficient health infrastructure settings inconvenient. Pharmaceutical nanocarriers may provide solutions to some of these obstacles, improving the efficacy-safety balance and tolerability to therapeutic interventions. Here, we overview the state of the art of therapeutics for trypanosomatid-caused diseases (including approved drugs and drugs undergoing clinical trials) and the literature on nanolipid pharmaceutical carriers encapsulating approved and non-approved drugs for these diseases. Numerous studies have focused on the obtention and preclinical assessment of lipid nanocarriers, particularly those addressing the two currently most challenging trypanosomatid-caused diseases, Chagas disease, and leishmaniasis. In general, in vitro and in vivo studies suggest that delivering the drugs using such type of nanocarriers could improve the efficacy-safety balance, diminishing cytotoxicity and organ toxicity, especially in leishmaniasis. This constitutes a very relevant outcome, as it opens the possibility to extended treatment regimens and improved compliance. Despite these advances, last-generation nanosystems, such as targeted nanocarriers and hybrid systems, have still not been extensively explored in the field of trypanosomatid-caused conditions and represent promising opportunities for future developments. The potential use of nanotechnology in extended, well-tolerated drug regimens is particularly interesting in the light of recent descriptions of quiescent/dormant stages of Leishmania and Trypanosoma cruzi, which have been linked to therapeutic failure.
Collapse
Affiliation(s)
- Giuliana Muraca
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP), La Plata, Argentina
- Administración Nacional de Medicamentos, Alimentos y Tecnología Médica (ANMAT), Buenos Aires, Argentina
| | - Ignacio Rivero Berti
- Laboratorio de Nanobiomateriales, Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), La Plata, Argentina
| | - María L. Sbaraglini
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP), La Plata, Argentina
| | - Wagner J. Fávaro
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Nelson Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Nanomedicine Research Unit (Nanomed), Federal University of ABC (UFABC), Santo André, Brazil
| | - Guillermo R. Castro
- Laboratorio de Nanobiomateriales, Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), La Plata, Argentina
| | - Alan Talevi
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP), La Plata, Argentina
| |
Collapse
|
21
|
Shaaban M, Nasr M, Tawfik AA, Fadel M, Sammour O. Bergamot oil as an integral component of nanostructured lipid carriers and a photosensitizer for photodynamic treatment of vitiligo: Characterization and clinical experimentation. Expert Opin Drug Deliv 2020; 18:139-150. [PMID: 33119413 DOI: 10.1080/17425247.2021.1844180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Background: Bergamot oil (BO) is a photosensitizer that can be used for photodynamic therapy (PDT) of dermatological diseases such as vitiligo. Being an oil, it can be integrated within the lipidic matrix of nanostructured lipid carriers (NLCs) as the liquid lipid constituent, hence exhibiting a dual role. Research design and methods: NLCs were prepared with different emulsifiers and coemulsifiers, and the effect of the preparation method and formulation variables on the NLCs' size was elucidated. The prepared NLCs were further characterized for their in vitro release, viscosity, thermal behavior, and in vitro photostability. Furthermore, a preclinical photodynamic study on animal skin was conducted, followed by clinical experimentation on patients with vitiligo. Results: Results showed that BO was successfully incorporated within the NLCs. The selected NLCs formulation was in the nanometer range with a gel consistency, and it provided sustained release of BO for 24 h. NLCs improved the photostability and photodynamic properties of BO, and displayed promising preclinical and clinical results for the topical PDT of vitiligo. Expert Opinion: BO containing NLCs was proven to be promising means for PDT of vitiligo, and can be further explored in other dermatological diseases.
Collapse
Affiliation(s)
- Mai Shaaban
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University , Cairo, Egypt
| | - Maha Nasr
- Dermatology and Laser Dermatology Unit, Department of Medical Applications of Laser, National Institute of Laser Enhanced Sciences, Cairo University , Cairo, Egypt
| | - Abeer A Tawfik
- Dermatology and Laser Dermatology Unit, Department of Medical Applications of Laser, National Institute of Laser Enhanced Sciences, Cairo University , Cairo, Egypt
| | - Maha Fadel
- Pharmaceutical Technology Unit, Department of Medical Applications of Laser, National Institute of Laser Enhanced Sciences, Cairo University , Cairo, Egypt
| | - Omaima Sammour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University , Cairo, Egypt
| |
Collapse
|
22
|
Nafari A, Cheraghipour K, Sepahvand M, Shahrokhi G, Gabal E, Mahmoudvand H. Nanoparticles: New agents toward treatment of leishmaniasis. Parasite Epidemiol Control 2020; 10:e00156. [PMID: 32566773 PMCID: PMC7298521 DOI: 10.1016/j.parepi.2020.e00156] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/17/2020] [Accepted: 05/16/2020] [Indexed: 12/12/2022] Open
Abstract
Leishmaniasis is a widespread disease that causes 20,000 to 30,000 deaths annually, making it a major health problem in endemic areas. Because of low-performance medications, drug delivery poses a great challenge for better treatment of leishmaniasis. The present study's purpose was to review the application of nanoparticles as a new method in leishmaniasis treatment. To identify all relevant literature, we searched Web of Sciences, Scopus, PubMed, NCBI, Scielo, and Google Scholar, and profiled studies published between 1986 and 2019. In the present study, we tried to identify different research efforts in different conditions that examined the influence of various nanoparticles on different forms of leishmaniasis. In this way, we could compare their results and obtain a reliable conclusion from the most recent studies on this subject. Our review's results indicate that incorporating nanoparticles with chemical drugs improves the quality, efficiency, and sustainability of drugs and reduces their costs. Finally, considering the use of nanoparticles in the destruction of parasites, their inhibitory effect (making drugs more effective and less harmful), and their utility in making effective vaccines to prevent and fight against parasites, further research on this issue is highly recommended.
Collapse
Affiliation(s)
- Amir Nafari
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Koroush Cheraghipour
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Maryam Sepahvand
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ghazal Shahrokhi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Esraa Gabal
- Agricultural Science and Resource Management in the Tropics and Subtropics, Bonn University, Germany
| | - Hossein Mahmoudvand
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
23
|
Assolini JP, Tomiotto-Pellissier F, da Silva Bortoleti BT, Gonçalves MD, Sahd CS, Carloto ACM, Feuser PE, Cordeiro AP, Borghi SM, Verri WA, Sayer C, Hermes de Araújo PH, Costa IN, Conchon-Costa I, Miranda-Sapla MM, Pavanelli WR. Diethyldithiocarbamate encapsulation reduces toxicity and promotes leishmanicidal effect through apoptosis-like mechanism in promastigote and ROS production by macrophage. J Drug Target 2020; 28:1110-1123. [DOI: 10.1080/1061186x.2020.1783669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- João Paulo Assolini
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Fernanda Tomiotto-Pellissier
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute (ICC), Curitiba, PR, Brazil
| | - Bruna Taciane da Silva Bortoleti
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute (ICC), Curitiba, PR, Brazil
| | - Manoela Daiele Gonçalves
- Department of Chemical, Center of Exact Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Claudia Stoeglehner Sahd
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | | | - Paulo Emilio Feuser
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Arthur Poester Cordeiro
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Sergio Marques Borghi
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Waldiceu Aparecido Verri
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Claudia Sayer
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | | | - Idessania Nazareth Costa
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Ivete Conchon-Costa
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | | | - Wander Rogério Pavanelli
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute (ICC), Curitiba, PR, Brazil
| |
Collapse
|
24
|
Carvacrol loaded nanostructured lipid carriers as a promising parenteral formulation for leishmaniasis treatment. Eur J Pharm Sci 2020; 150:105335. [PMID: 32272211 DOI: 10.1016/j.ejps.2020.105335] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/11/2020] [Accepted: 03/30/2020] [Indexed: 01/11/2023]
Abstract
Leishmaniasis are a group of neglected infectious diseases caused by protozoa of the genus Leishmania with distinct presentations. The available leishmaniasis treatment options are either expensive and/or; cause adverse effects and some are ineffective for resistant Leishmania strains. Therefore, molecules derived from natural products as the monoterpene carvacrol, have attracted interest as promising anti-leishmania agents. However, the therapeutic use of carvacrol is limited due to its low aqueous solubility, rapid oxidation and volatilization. Thus, the development of nanostructured lipid carriers (NLCs) was proposed in the present study as a promising nanotechnology strategy to overcome these limitations and enable the use of carvacrol in leishmaniasis therapy. Carvacrol NLCs were obtained using a warm microemulsion method, and evaluated regarding the influence of lipid matrix and components concentration on the NLCs formation. NLCs were characterized by DSC and XRD as well. In addition, to the in vitro carvacrol release from NLCs, the in vitro cytotoxicity and leishmanicidal activity assays, and the in vivo pharmacokinetics evaluation of free and encapsulated carvacrol were performed. NLCs containing carvacrol were obtained successfully using a warm microemulsion dilution method. The NLCs formulation with the lowest particle size (98.42 ± 0.80 nm), narrowest size distribution (suitable for intravenous administration), and the highest encapsulation efficiency was produced by using beeswax as solid lipid (HLB=9) and 5% of lipids and surfactant. The in vitro release of carvacrol from NLCs was fitted to the Korsmeyer and Peppas, and Weibull models, demonstrating that the release mechanism is probably the Fickian diffusion type. Moreover, carvacrol encapsulation in NLCs provided a lower cytotoxicity in comparison to free carvacrol (p<0.05), increasing its in vitro leishmanicidal efficacy in the amastigote form. Finally, the in vivo pharmacokinetics of carvacrol after IV bolus administration suggests that this phenolic monoterpene undergoes enterohepatic circulation and therefore presented a long half-life (t1/2) and low clearance (Cl). In addition, C0, mean residence time (MRT) and Vdss of encapsulated carvacrol were higher than free carvacrol (p < 0.05), favoring a higher distribution of carvacrol in the target tissues. Thus, it is possible to conclude that the developed NLCs are a promising delivery system for leishmaniasis treatment.
Collapse
|
25
|
Carvalho SG, Araujo VHS, Dos Santos AM, Duarte JL, Silvestre ALP, Fonseca-Santos B, Villanova JCO, Gremião MPD, Chorilli M. Advances and challenges in nanocarriers and nanomedicines for veterinary application. Int J Pharm 2020; 580:119214. [PMID: 32165220 DOI: 10.1016/j.ijpharm.2020.119214] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/19/2020] [Accepted: 03/07/2020] [Indexed: 01/16/2023]
Abstract
To ensure success in the development and manufacturing of nanomedicines requires forces of an interdisciplinary team that combines medicine, engineering, chemistry, biology, material and pharmaceutical areas. Numerous researches in nanotechnology applied to human health are available in the literature. Althought, the lack of nanotechnology-based pharmaceuticals products for use exclusively in veterinary pharmacotherapy creates a potential area for the development of innovative products, as these animal health studies are still scarce when compared to studies in human pharmacotherapy. Nano-dosage forms can ensure safer and more effective pharmacotherapy for animals and can more be safer for the consumers of livestock products, once they can offer higher selectivity and smaller toxicity associated with lower doses of the drugs. In addition, the development and production of nanomedicines may consolidate the presence of pharmaceutical laboratories in the global market and can generate greater profit in a competitive business environment. To contribute to this scenario, this article provides a review of the main nanocarriers used in nanomedicines for veterinary use, with emphasis on liposomes, nanoemulsions, micelles, lipid nanoparticles, polymeric nanoparticles, mesoporous silica nanoparticles, metallic nanoparticles and dendrimers, and the state of the art of application of these nanocarriers in drug delivery systems to animal use. Finnaly, the major challenges involved in research, scale-up studies, large-scale manufacture, analytical methods for quality assessment, and regulatory aspects of nanomedicines were discussed.
Collapse
Affiliation(s)
- Suzana Gonçalves Carvalho
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Victor Hugo Sousa Araujo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil
| | - Aline Martins Dos Santos
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil
| | - Jonatas Lobato Duarte
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil
| | - Amanda Letícia Polli Silvestre
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil
| | - Bruno Fonseca-Santos
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), 13083-871 Campinas, SP, Brazil
| | - Janaina Cecília Oliveira Villanova
- Laboratory of Pharmaceutical Production, Departament of Pharmacy and Nutrition - Federal University of Espirito Santo (UFES), 29500-000 Alegre, ES, Brazil
| | - Maria Palmira Daflon Gremião
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil
| |
Collapse
|
26
|
Viegas C, Almeida B, Monteiro A, Paciência I, Rufo J, Aguiar L, Lage B, Diogo Gonçalves LM, Caetano LA, Carolino E, Gomes AQ, Twarużek M, Kosicki R, Grajewski J, Teixeira JP, Viegas S, Pereira C. Exposure assessment in one central hospital: A multi-approach protocol to achieve an accurate risk characterization. ENVIRONMENTAL RESEARCH 2020; 181:108947. [PMID: 31767353 DOI: 10.1016/j.envres.2019.108947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
The bioburden in a Hospital building originates not only from patients, visitors and staff, but is also disseminated by several indoor hospital characteristics and outdoor environmental sources. This study intends to assess the exposure to bioburden in one central Hospital with a multi-approach protocol using active and passive sampling methods. The microbial contamination was also characterized through molecular tools for toxigenic species, antifungal resistance and mycotoxins and endotoxins profile. Two cytotoxicity assays (MTT and resazurin) were conducted with two cell lines (Calu-3 and THP-1), and in vitro pro-inflammatory potential was assessed in THP-1 cell line. Out of the 15 sampling locations 33.3% did not comply with Portuguese legislation regarding bacterial contamination, whereas concerning fungal contamination 60% presented I/O > 1. Toxigenic fungal species were observed in 27% of the sampled rooms (4 out of 15) and qPCR analysis successfully amplified DNA from the Aspergillus sections Flavi and Fumigati, although mycotoxins were not detected. Growth of distinct fungal species was observed on Sabouraud dextrose agar with triazole drugs, such as Aspergillus section Versicolores on 1 mg/L VORI. The highest concentrations of endotoxins were found in settled dust samples and ranged from 5.72 to 23.0 EU.mg-1. While a considerable cytotoxic effect (cell viability < 30%) was observed in one HVAC filter sample with Calu-3 cell line, it was not observed with THP-1 cell line. In air samples a medium cytotoxic effect (61-68% cell viability) was observed in 3 out of 15 samples. The cytokine responses produced a more potent average cell response (46.8 ± 12.3 ρg/mL IL-1β; 90.8 ± 58.5 ρg/mL TNF-α) on passive samples than air samples (25.5 ± 5.2 ρg/mL IL-1β and of 19.4 ± 5.2 ρg/mL TNF-α). A multi-approach regarding parameters to assess, sampling and analysis methods should be followed to characterize the biorburden in the Hospital indoor environment. This study supports the importance of considering exposure to complex mixtures in indoor environments.
Collapse
Affiliation(s)
- Carla Viegas
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Portugal; Comprehensive Health Research Center (CHRC), Portugal.
| | - Beatriz Almeida
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal
| | - Ana Monteiro
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; Escola Nacional de Saúde Pública, Universidade NOVA de Lisboa, 1600-560, Lisbon, Portugal
| | - Inês Paciência
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal & Centro Hospitalar São João, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal; Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Porto, Portugal
| | - João Rufo
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal & Centro Hospitalar São João, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - Lívia Aguiar
- INSA - Instituto Nacional de Saúde Dr. Ricardo Jorge, Departamento de Saúde Ambiental, Porto, Portugal
| | - Bruna Lage
- INSA - Instituto Nacional de Saúde Dr. Ricardo Jorge, Departamento de Saúde Ambiental, Porto, Portugal
| | - Lídia Maria Diogo Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Liliana Aranha Caetano
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Elisabete Carolino
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal
| | - Anita Quintal Gomes
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; University of Lisbon Institute of Molecular Medicine, Faculty of Medicine, Lisbon, Portugal
| | - Magdalena Twarużek
- Kazimierz Wielki University, Faculty of Natural Sciences, Institute of Experimental Biology, Department of Physiology and Toxicology, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Robert Kosicki
- Kazimierz Wielki University, Faculty of Natural Sciences, Institute of Experimental Biology, Department of Physiology and Toxicology, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Jan Grajewski
- Kazimierz Wielki University, Faculty of Natural Sciences, Institute of Experimental Biology, Department of Physiology and Toxicology, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - João Paulo Teixeira
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal; INSA - Instituto Nacional de Saúde Dr. Ricardo Jorge, Departamento de Saúde Ambiental, Porto, Portugal
| | - Susana Viegas
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Portugal; Comprehensive Health Research Center (CHRC), Portugal
| | - Cristiana Pereira
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal; INSA - Instituto Nacional de Saúde Dr. Ricardo Jorge, Departamento de Saúde Ambiental, Porto, Portugal
| |
Collapse
|
27
|
In vitro-in vivo correlation (IVIVC) of solid lipid nanoparticles loaded with poorly water-soluble drug lovastatin. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
28
|
Valle IV, Machado ME, Araújo CDCB, da Cunha-Junior EF, da Silva Pacheco J, Torres-Santos EC, da Silva LCRP, Cabral LM, do Carmo FA, Sathler PC. Oral pentamidine-loaded poly(d,l-lactic-co-glycolic) acid nanoparticles: an alternative approach for leishmaniasis treatment. NANOTECHNOLOGY 2019; 30:455102. [PMID: 31365912 DOI: 10.1088/1361-6528/ab373e] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Leishmaniasis is a group of diseases caused by a protozoa parasite from one of over 20 Leishmania species. Depending on the tissues infected, these diseases are classified as cutaneous, mucocutaneous and visceral leishmaniasis. For the treatment of leishmaniasis refractory to antimony-based drugs, pentamidine (PTM) is a molecule of great interest. However, PTM displays poor bioavailability through oral routes due to its two strongly basic amidine moieties, which restricts its administration by a parenteral route and limits its clinical use. Among various approaches, nanotechnology-based drug delivery systems (nano-DDS) have potential to overcome the challenges associated with PTM oral administration. Here, we present the development of PTM-loaded PLGA nanoparticles (NPs) with a focus on the characterization of their physicochemical properties and potential application as an oral treatment of leishmaniasis. NPs were prepared by a double emulsion methodology. The physicochemical properties were characterized through the mean particle size, polydispersity index (PdI), zeta potential, entrapment efficiency, yield process, drug loading, morphology, in vitro drug release and in vivo pharmacological activity. The PTM-loaded PLGA NPs presented with a size of 263 ± 5 nm (PdI = 0.17 ± 0.02), an almost neutral charge (-3.2 ± 0.8 mV) and an efficiency for PTM entrapment of 91.5%. The release profile, based on PTM dissolution, could be best described by a zero-order model, followed by a drug diffusion profile that fit to the Higuchi model. In addition, in vivo assay showed the efficacy of orally given PTM-loaded PLGA NPs (0.4 mg kg-1) in infected BALB/c mice, with significant reduction of organ weight and parasite load in spleen (p-value < 0.05). This work successfully reported the oral use of PTM-loaded NPs, with a high potential for the treatment of visceral leishmaniasis, opening a new perspective to utilization of this drug in clinical practice.
Collapse
Affiliation(s)
- Isabela Viol Valle
- Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Chen PX, Rogers MA. Opportunities and challenges in developing orally administered cannabis edibles. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2019.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Mazur KL, Feuser PE, Valério A, Poester Cordeiro A, de Oliveira CI, Assolini JP, Pavanelli WR, Sayer C, Araújo PHH. Diethyldithiocarbamate loaded in beeswax-copaiba oil nanoparticles obtained by solventless double emulsion technique promote promastigote death in vitro. Colloids Surf B Biointerfaces 2018; 176:507-512. [PMID: 30711703 DOI: 10.1016/j.colsurfb.2018.12.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/28/2018] [Accepted: 12/18/2018] [Indexed: 01/10/2023]
Abstract
Leishmaniasis is considered a neglected tropical disease that represents a Public Health problem due to its high incidence. In the search of new alternatives for Leishmaniasis treatment diethyldithiocarbamate (DETC) has shown an excellent leishmanicidal activity and the incorporation into drug carrier systems, such as solid lipid nanoparticles (SLNs), is very promising. In the present work DETC loaded in beeswax nanoparticles containing copaiba oil were obtained by the double emulsion/melt technique. The nanoparticles were characterized and leishmanicidal activity against L. amazonensis promastigotes forms and cytotoxicity in murine macrophages were evaluated. SLNs presented size below 200 nm, spherical morphology, negative charge surface, high encapsulation efficiency, above 80%, and excellent stability. Moreover, Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) analyses were performed to evaluate the chemical structure and possible interactions between DETC and SLNs. SLNs provided a protection for DETC, decreasing its cytotoxic effects in macrophages, which led to an improvement in the selectivity against the parasites, which almost doubled from free DETC (11.4) to DETC incorporated in SLNs (18.2). These results demonstrated that SLNs had a direct effect on L. amazonensis promastigotes without affect the viability of macrophage cell, can be a promising alternative therapy for the cutaneous treatment of L. amazonensis.
Collapse
Affiliation(s)
- Karin Luize Mazur
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Brazil
| | - Paulo Emílio Feuser
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Brazil
| | - Alexsandra Valério
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Brazil
| | - Arthur Poester Cordeiro
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Brazil
| | | | - João Paulo Assolini
- Laboratory of Experimental Protozoology, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, PR, Brazil
| | - Wander Rogério Pavanelli
- Laboratory of Experimental Protozoology, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, PR, Brazil
| | - Claudia Sayer
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Brazil
| | - Pedro H H Araújo
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Brazil.
| |
Collapse
|
31
|
Kumar V, Chaudhary H, Kamboj A. Development and evaluation of isradipine via rutin-loaded coated solid-lipid nanoparticles. Interv Med Appl Sci 2018; 10:236-246. [PMID: 30792921 PMCID: PMC6376350 DOI: 10.1556/1646.10.2018.45] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/09/2018] [Accepted: 08/28/2018] [Indexed: 11/19/2022] Open
Abstract
The objective was to develop a stable and non-compliance coated solid-lipid nanoparticles (coated SLN) using polymer (Eudragit L100) and lipoid (glycerol monostearate: soya lecithin) for partial dose reduction of isradipine [ISR; 2.5 mg by combination of bioenhancing agent (rutin; Ru) in equivalent ratio]. The physicochemical characterizations were performed by FT-IR and DSC of elected model drug (ISR), drug mixer with Ru/polymer and coated SLN with Ru (ONbp); the resulted distinctive peaks demonstrated that no chemical interaction and incompatibility found between them. The plasma samples of formulation (ONbp) were analyzed by liquid chromatography (HPLC) using UV-spectrometer. Data were integrated and analyzed with the help of a computer-designed program "Kinetica Software" (Thermo Scientific Kinetica, PK/PD Analysis, version 5.0, Philadelphia, PA). The pharmacokinetic study showed 3.2- to 4.7-folds enhancement in oral bioavailability of coated SLN of ISR with Ru (ONbp) when compared to a coated formulation of ISR without Ru (ONps) and conventional drug suspension. In vivo studies were revealed significantly at greater extent in (drug stability and solubility) oral absorption, which has shown potential entrapment efficiency (97.85% ± 1.02%) to improve biological activity against hypertension. Hence, nano-system of ISR against hypertension is achieved with consequent dose reduction with enhanced systemic bioavailability.
Collapse
Affiliation(s)
- Vikash Kumar
- Department of RIC, I. K. Gujral Punjab Technical University, Kapurthala, India
| | | | - Anjoo Kamboj
- Chandigarh College of Pharmacy, Chandigarh, India
| |
Collapse
|
32
|
de Souza A, Marins DSS, Mathias SL, Monteiro LM, Yukuyama MN, Scarim CB, Löbenberg R, Bou-Chacra NA. Promising nanotherapy in treating leishmaniasis. Int J Pharm 2018; 547:421-431. [PMID: 29886097 DOI: 10.1016/j.ijpharm.2018.06.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 12/18/2022]
Abstract
Leishmaniases are infectious diseases caused by an intracellular protozoan in humans by 20 different species of Leishmania among more than 53 species. There are at least twelve million cases of infections worldwide and three hundred and fifty million people are at risk in at least 98 developing countries in Africa, South-East Asia, and the Americas. Only Brazil presented high burden for both visceral leishmaniasis (VL) and cutaneous (CL). Chemotherapy is the main means of dealing with this infection. Nevertheless, only a few effective drugs are available, and each has a particular disadvantage; toxicity and long-term regimens compromise most chemotherapeutic options, which decreases patient compliance and adherence to the treatment and consequently the emergence of drug-resistant strains. Nano drug delivery systems (NanoDDS) can direct antileishmanial drug substances for intracellular localization in macrophage-rich organs such as bone marrow, liver, and spleen. This strategy can improve the therapeutic efficacy and reduce the toxic effects of several antileishmanial drug substances. This review is an effort to comprehensively compile recent findings, with the aim of advancing understanding of the importance of nanotechnology for treating leishmaniases.
Collapse
Affiliation(s)
- Aline de Souza
- University of São Paulo, Faculty of Pharmaceutical Sciences, Prof. Lineu Prestes Avenue, 580, Bl-13/15, 05508-900 São Paulo, SP, Brazil.
| | - Débora Soares Souza Marins
- University of São Paulo, Faculty of Pharmaceutical Sciences, Prof. Lineu Prestes Avenue, 580, Bl-13/15, 05508-900 São Paulo, SP, Brazil.
| | - Samir Leite Mathias
- Federal University of São Carlos, Department of Physics, Chemistry and Mathematics, João Leme dos Santos Highway, Km 110, 18052-780 Sorocaba, SP, Brazil
| | - Lis Marie Monteiro
- University of São Paulo, Faculty of Pharmaceutical Sciences, Prof. Lineu Prestes Avenue, 580, Bl-13/15, 05508-900 São Paulo, SP, Brazil
| | - Megumi Nishitani Yukuyama
- University of São Paulo, Faculty of Pharmaceutical Sciences, Prof. Lineu Prestes Avenue, 580, Bl-13/15, 05508-900 São Paulo, SP, Brazil
| | - Cauê Benito Scarim
- São Paulo State University "Júlio de Mesquita Filho" - UNESP, Faculty of Pharmaceutical Sciences, Department of Drugs and Medicines, Rodovia Araraquara Jaú, Km 01 - s/n, 14800-903 Araraquara, SP, Brazil
| | - Raimar Löbenberg
- University of Alberta, Faculty of Pharmacy and Pharmaceutical Sciences, Edmonton, AB T6G 2N8, Canada.
| | - Nádia Araci Bou-Chacra
- University of São Paulo, Faculty of Pharmaceutical Sciences, Prof. Lineu Prestes Avenue, 580, Bl-13/15, 05508-900 São Paulo, SP, Brazil.
| |
Collapse
|
33
|
Marto J, Ruivo E, Lucas SD, Gonçalves LM, Simões S, Gouveia LF, Felix R, Moreira R, Ribeiro HM, Almeida AJ. Starch nanocapsules containing a novel neutrophil elastase inhibitor with improved pharmaceutical performance. Eur J Pharm Biopharm 2018; 127:1-11. [PMID: 29409864 DOI: 10.1016/j.ejpb.2018.01.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/07/2018] [Accepted: 01/17/2018] [Indexed: 12/22/2022]
Abstract
Psoriasis and atopic dermatitis patients show an excessive amount of elastase in peripheral blood neutrophils due to an imbalance between this proteolytic enzyme and its endogenous inhibitors, the search for new human neutrophil elastase (HNE) inhibitors are required. The HNE is an attractive therapeutic target and inhibitors with new molecular architectures have been extensively investigated. In this context a promising novel synthetic human neutrophil elastase inhibitor (ER143) was associated to a starch-based nanoparticulate system (StNC) with improved pharmaceutical performance, using a quality by design approach to support product development and optimization. The resulting formulation was characterized in terms of and in vitro release, permeation and retention studies in newborn pig skin, using Franz diffusion cells revealing the StNC have the ability to control the drug release rate and contribute to a high skin retention and/or permeation profiles. The anti-inflammatory activity accessed in vivo using the croton oil-induced ear inflammation model in mice showed that erythema and edema were attenuated in 98% following local application. These observations suggest the association of ER143 to the StNC promotes a deeper skin penetration and retention, also confirming StNC as a potential topical delivery system.
Collapse
Affiliation(s)
- J Marto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - E Ruivo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - S D Lucas
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - L M Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - S Simões
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - L F Gouveia
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - R Felix
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - R Moreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal.
| | - H M Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - A J Almeida
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal.
| |
Collapse
|
34
|
Banerjee S, Roy S, Nath Bhaumik K, Kshetrapal P, Pillai J. Comparative study of oral lipid nanoparticle formulations (LNFs) for chemical stabilization of antitubercular drugs: physicochemical and cellular evaluation. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:540-558. [DOI: 10.1080/21691401.2018.1431648] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Subham Banerjee
- Implants, Devices & Drug Delivery Systems (ID3S) Laboratory, Centre for Biodesign & Diagnostics (CBD), Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Subhadeep Roy
- Implants, Devices & Drug Delivery Systems (ID3S) Laboratory, Centre for Biodesign & Diagnostics (CBD), Translational Health Science and Technology Institute (THSTI), Faridabad, India
- Department of Pharmaceutical Sciences, School of Bio-Sciences & Bio-Technology, Baba Saheb Bhimrao Ambedkar University, Lucknow, India
| | - Kaushik Nath Bhaumik
- Implants, Devices & Drug Delivery Systems (ID3S) Laboratory, Centre for Biodesign & Diagnostics (CBD), Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | | | - Jonathan Pillai
- Implants, Devices & Drug Delivery Systems (ID3S) Laboratory, Centre for Biodesign & Diagnostics (CBD), Translational Health Science and Technology Institute (THSTI), Faridabad, India
| |
Collapse
|
35
|
El-Leithy ES, Abdel-Rashid RS. Lipid nanocarriers for tamoxifen citrate/coenzyme Q10 dual delivery. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.07.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Kalhapure RS, Sikwal DR, Rambharose S, Mocktar C, Singh S, Bester L, Oh JK, Renukuntla J, Govender T. Enhancing targeted antibiotic therapy via pH responsive solid lipid nanoparticles from an acid cleavable lipid. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2067-2077. [DOI: 10.1016/j.nano.2017.04.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/01/2017] [Accepted: 04/11/2017] [Indexed: 02/07/2023]
|
37
|
Islan GA, Durán M, Cacicedo ML, Nakazato G, Kobayashi RKT, Martinez DST, Castro GR, Durán N. Nanopharmaceuticals as a solution to neglected diseases: Is it possible? Acta Trop 2017; 170:16-42. [PMID: 28232069 DOI: 10.1016/j.actatropica.2017.02.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 12/05/2016] [Accepted: 02/10/2017] [Indexed: 12/22/2022]
Abstract
The study of neglected diseases has not received much attention, especially from public and private institutions over the last years, in terms of strong support for developing treatment for these diseases. Support in the form of substantial amounts of private and public investment is greatly needed in this area. Due to the lack of novel drugs for these diseases, nanobiotechnology has appeared as an important new breakthrough for the treatment of neglected diseases. Recently, very few reviews focusing on filiarasis, leishmaniasis, leprosy, malaria, onchocerciasis, schistosomiasis, trypanosomiasis, and tuberculosis, and dengue virus have been published. New developments in nanocarriers have made promising advances in the treatment of several kinds of diseases with less toxicity, high efficacy and improved bioavailability of drugs with extended release and fewer applications. This review deals with the current status of nanobiotechnology in the treatment of neglected diseases and highlights how it provides key tools for exploring new perspectives in the treatment of a wide range of diseases.
Collapse
Affiliation(s)
- German A Islan
- Laboratorio de Nanobiomateriales, CINDEFI, Depto. de Quimica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET (CCT La Plata), 1900, La Plata, Argentina
| | - Marcela Durán
- Urogenital Carcinogenesis: Urogenitaland Immunotherapy Laboratory, Institute of Biology, University of Campinas, Campinas, SP, Brazil,; NanoBioss, Chemistry Institute, University of Campinas, SP, Brazil
| | - Maximiliano L Cacicedo
- Laboratorio de Nanobiomateriales, CINDEFI, Depto. de Quimica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET (CCT La Plata), 1900, La Plata, Argentina
| | - Gerson Nakazato
- Department of Microbiology, Biology Sciences Center, Londrina State University (UEL), Londrina, Brazil
| | - Renata K T Kobayashi
- Department of Microbiology, Biology Sciences Center, Londrina State University (UEL), Londrina, Brazil
| | - Diego S T Martinez
- NanoBioss, Chemistry Institute, University of Campinas, SP, Brazil; Brazilian Nanotechnology National Laboratory (LNNano-CNPEM), Campinas, SP, Brazil
| | - Guillermo R Castro
- Laboratorio de Nanobiomateriales, CINDEFI, Depto. de Quimica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET (CCT La Plata), 1900, La Plata, Argentina.
| | - Nelson Durán
- NanoBioss, Chemistry Institute, University of Campinas, SP, Brazil; Brazilian Nanotechnology National Laboratory (LNNano-CNPEM), Campinas, SP, Brazil; Biological Chemistry Laboratory, Institute of Chemistry, University of Campinas, Campinas, SP. Brazil.
| |
Collapse
|
38
|
New Polyurethane Nail Lacquers for the Delivery of Terbinafine: Formulation and Antifungal Activity Evaluation. J Pharm Sci 2017; 106:1570-1577. [DOI: 10.1016/j.xphs.2017.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 02/01/2017] [Accepted: 02/13/2017] [Indexed: 12/20/2022]
|
39
|
Sun Q, Li W, Li H, Wang X, Wang Y, Niu X. Preparation, Characterization and Anti-Ulcer Efficacy of Sanguinarine Loaded Solid Lipid Nanoparticles. Pharmacology 2017; 100:14-24. [DOI: 10.1159/000454882] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/02/2016] [Indexed: 12/27/2022]
|
40
|
Baranauskiene L, Matulis D. Herbicide oryzalin inhibits human carbonic anhydrasesin vitro. J Biochem Mol Toxicol 2017; 31. [DOI: 10.1002/jbt.21894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/19/2016] [Accepted: 12/22/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Lina Baranauskiene
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology; Vilnius University; Vilnius LT-10257 Lithuania
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology; Vilnius University; Vilnius LT-10257 Lithuania
| |
Collapse
|
41
|
C5 induces different cell death pathways in promastigotes of Leishmania amazonensis. Chem Biol Interact 2016; 256:16-24. [DOI: 10.1016/j.cbi.2016.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/16/2016] [Accepted: 06/14/2016] [Indexed: 11/18/2022]
|
42
|
Marques CF, Matos AC, Ribeiro IAC, Gonçalves LM, Bettencourt A, Ferreira JMF. Insights on the properties of levofloxacin-adsorbed Sr- and Mg-doped calcium phosphate powders. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:123. [PMID: 27300006 DOI: 10.1007/s10856-016-5733-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/27/2016] [Indexed: 06/06/2023]
Abstract
Several types of biodegradable materials have been investigated for the treatment of osteomyelitis. Calcium phosphate (CaP) ceramics are among the most performing materials due to their resemblance to human hard tissues in terms of mineralogical composition, and proven ability to adsorb and deliver a number of drugs. This research work was intended to study the suitability of modified CaP powders loaded with a fluoroquinolone as drug delivery systems for osteomyelitis treatment. Levofloxacin (LEV) was chosen due to the well-recognized anti-staphylococcal activity and adequate penetration into osteoarticular tissues. Substituted CaP powders (5 mol% Sr(2+) or 5 mol% Mg(2+)) were synthesised through aqueous precipitation. The obtained powders were characterised by X-ray diffraction, SEM and FTIR analysis. The X-ray diffraction patterns confirmed the presence of HA and β-tricalcium phosphates (β-TCP) phases in doped compositions, especially in the case of Mg-doped system. The fixation of LEV at the surface of the particles occurred only by physisorption. Both the in vitro microbiological susceptibility, against Staphylococcus spp, and biocompatibility of LEV-loaded CaP powders have not been compromised.
Collapse
Affiliation(s)
- Catarina F Marques
- Department of Materials and Ceramics Engineering, CICECO, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Ana C Matos
- Research Institute for Medicines (iMed. ULisboa), Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Isabel A C Ribeiro
- Research Institute for Medicines (iMed. ULisboa), Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Lídia M Gonçalves
- Research Institute for Medicines (iMed. ULisboa), Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Ana Bettencourt
- Research Institute for Medicines (iMed. ULisboa), Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - José M F Ferreira
- Department of Materials and Ceramics Engineering, CICECO, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
43
|
Development of solid lipid nanoparticles as carriers for improving oral bioavailability of glibenclamide. Eur J Pharm Biopharm 2016; 102:41-50. [DOI: 10.1016/j.ejpb.2016.02.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/09/2016] [Accepted: 02/19/2016] [Indexed: 01/08/2023]
|
44
|
El-Zaafarany GM, Soliman ME, Mansour S, Awad GAS. Identifying lipidic emulsomes for improved oxcarbazepine brain targeting: In vitro and rat in vivo studies. Int J Pharm 2016; 503:127-40. [PMID: 26924357 DOI: 10.1016/j.ijpharm.2016.02.038] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 12/12/2022]
Abstract
Lipid-based nanovectors offer effective carriers for brain delivery by improving drug potency and reducing off-target effects. Emulsomes are nano-triglyceride (TG) carriers formed of lipid cores supported by at least one phospholipid (PC) sheath. Due to their surface active properties, PC forms bilayers at the aqueous interface, thereby enabling encapsulated drug to benefit from better bioavailability and stability. Emulsomes of oxcarbazepine (OX) were prepared, aimed to offer nanocarriers for nasal delivery for brain targeting. Different TG cores (Compritol(®), tripalmitin, tristearin and triolein) and soya phosphatidylcholine in different amounts and ratios were used for emulsomal preparation. Particles were modulated to generate nanocarriers with suitable size, charge, encapsulation efficiency and prolonged release. Cytotoxicity and pharmacokinetic studies were also implemented. Nano-spherical OX-emulsomes with maximal encapsulation of 96.75% were generated. Stability studies showed changes within 30.6% and 11.2% in the size and EE% after 3 months. MTT assay proved a decrease in drug toxicity by its encapsulation in emulsomes. Incorporation of OX into emulsomes resulted in stable nanoformulations. Tailoring emulsomes properties by modulating the surface charge and particle size produced a stable system for the lipophilic drug with a prolonged release profile and mean residence time and proved direct nose-to-brain transport in rats.
Collapse
Affiliation(s)
- Ghada M El-Zaafarany
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Monazzamet Elwehda Elafrikeya Street, P.O.B. 11566, Abbaseyya, Cairo, Egypt.
| | - Mahmoud E Soliman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Monazzamet Elwehda Elafrikeya Street, P.O.B. 11566, Abbaseyya, Cairo, Egypt.
| | - Samar Mansour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Monazzamet Elwehda Elafrikeya Street, P.O.B. 11566, Abbaseyya, Cairo, Egypt.
| | - Gehanne A S Awad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Monazzamet Elwehda Elafrikeya Street, P.O.B. 11566, Abbaseyya, Cairo, Egypt.
| |
Collapse
|
45
|
Supplementation of host response by targeting nitric oxide to the macrophage cytosol is efficacious in the hamster model of visceral leishmaniasis and adds to efficacy of amphotericin B. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2016; 6:125-32. [PMID: 27183429 PMCID: PMC4919251 DOI: 10.1016/j.ijpddr.2016.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 12/29/2015] [Accepted: 01/12/2016] [Indexed: 02/07/2023]
Abstract
We investigated efficacy of nitric oxide (NO) against Leishmania donovani. NO is a mediator of host response to infection, with direct parasiticidal activity in addition to its role in signalling to evoke innate macrophage responses. However, it is short-lived and volatile, and is therefore difficult to introduce into infected cells and maintain inracellular concentrations for meaningful periods of time. We incorporated diethylenetriamine NO adduct (DETA/NO), a prodrug, into poly(lactide-co-glycolide) particles of ∼200 nm, with or without amphotericin B (AMB). These particles sustained NO levels in mouse macrophage culture supernatants, generating an area under curve (AUC0.08-24h) of 591.2 ± 95.1 mM × h. Free DETA/NO resulted in NO peaking at 3 h and declining rapidly to yield an AUC of 462.5 ± 193.4. Particles containing AMB and DETA/NO were able to kill ∼98% of promastigotes and ∼76% of amastigotes in 12 h when tested in vitro. Promastigotes and amastigotes were killed less efficiently by particles containing a single drug– either DETA/NO (∼42%, 35%) or AMB (∼90%, 50%) alone, or by equivalent concentrations of drugs in solution. In a pre-clinical efficacy study of power >0.95 in the hamster model, DETA/NO particles were non-inferior to Fungizone® but not Ambisome®, resulting in significant (∼73%) reduction in spleen parasites in 7 days. Particles containing both DETA/NO and AMB were superior (∼93% reduction) to Ambisome®. We conclude that NO delivered to the cytosol of macrophages infected with Leishmania possesses intrinsic activity and adds significantly to the efficacy of AMB. A prodrug of nitric oxide (NO) was delivered to macrophages harboring Leishmania. Particles of NO donor were non-inferior to Fungizone® in a hamster infection model. Particles containing amphotericin B and the NO donor were superior to Ambisome®. The efficacious dose of amphotericin B was reduced by combining with the NO prodrug. Targeted drug delivery can supplement the innate NO response against Leishmania.
Collapse
|
46
|
Marto J, Ascenso A, Gonçalves LM, Gouveia LF, Manteigas P, Pinto P, Oliveira E, Almeida AJ, Ribeiro HM. Melatonin-based pickering emulsion for skin's photoprotection. Drug Deliv 2016; 23:1594-607. [PMID: 26755411 DOI: 10.3109/10717544.2015.1128496] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
CONTEXT Based on its antioxidant activity, melatonin was recently found to have a protection effect against photocarcinogenesis. OBJECTIVE This work aimed to develop an innovative sunscreen formulation based on the Pickering emulsions concept, stabilized by physical UV filters, modified starch and natural oils associated to melatonin as a key strategy for prevention against UV-induced skin damage. MATERIALS AND METHODS For this purpose, melatonin was incorporated in Pickering emulsions that were characterized using physicochemical, in vitro and in vivo testing. Physicochemical studies included physical and chemical stability by a thorough pharmaceutical control. The possible protective effects of melatonin against UV-induced cell damage in HaCaT cell lines were investigated in vitro. The safety assessment and the in vivo biological properties of the final formulations, including Human Repeat Insult Patch Test and sunscreen water resistance tests were also evaluated. RESULTS AND DISCUSSION These studies demonstrated that melatonin sunscreen Pickering emulsion was beneficial and presented a powerful protection against UVB-induced damage in HaCat cells, including inhibition of apoptosis. The inclusion of zinc oxide, titanium dioxide, green coffee oil and starch ensured a high SPF (50+) against UVA and UVB. CONCLUSION The combination of melatonin, multifunctional solid particles and green coffee oil, contributed to achieve a stable, effective and innovative sunscreen with a meaningful synergistic protection against oxidative stress.
Collapse
Affiliation(s)
- Joana Marto
- a Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon , Portugal and
| | - Andreia Ascenso
- a Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon , Portugal and
| | - Lídia M Gonçalves
- a Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon , Portugal and
| | - Luís F Gouveia
- a Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon , Portugal and
| | - Patrícia Manteigas
- a Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon , Portugal and
| | - Pedro Pinto
- a Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon , Portugal and
| | | | - António J Almeida
- a Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon , Portugal and
| | - Helena M Ribeiro
- a Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon , Portugal and
| |
Collapse
|
47
|
Lopes RM, Pereira J, Esteves MA, Gaspar MM, Carvalheiro M, Eleutério CV, Gonçalves L, Jiménez-Ruiz A, Almeida AJ, Cruz MEM. Lipid-based nanoformulations of trifluralin analogs in the management of Leishmania infantum infections. Nanomedicine (Lond) 2016; 11:153-70. [DOI: 10.2217/nnm.15.190] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To improve the potential of trifluralin (TFL) in the management of Leishmania infantum infections through the synthesis of analogs (TFLA) and incorporation in nanoparticulate drug delivery systems (NanoDDS), liposomes and solid lipid nanoparticles, for selective targeting to leishmania infection sites. Material & methods: In vitro screening of 18 TFLA was performed by flow cytometry. NanoDDS were loaded with active TFLA and evaluated for antileishmanial efficacy in mice through determination of parasite burden in liver and spleen. Results: The in vitro testing revealed the most active and nontoxic TFLAs, which were selected for the in vivo studies based on high incorporation in liposomes and lipid nanoparticles (>90%). Selected TFLA nanoformulations showed superior antileishmanial activity in mice (parasite burden >80%), over free TFLA and Glucantime. Conclusion: The modification of TFL structure to obtain active TFLA, together with their incorporation in NanoDDS, improved their in vivo performance against L. infantum infection.
Collapse
Affiliation(s)
- Rui M Lopes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649–003 Lisboa, Portugal
| | - Joana Pereira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649–003 Lisboa, Portugal
| | - M Alexandra Esteves
- Solar Energy Unit, National Laboratory for Energy & Geology, Estrada do Paço do Lumiar, 22, 1649–038 Lisboa, Portugal
| | - M Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649–003 Lisboa, Portugal
| | - Manuela Carvalheiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649–003 Lisboa, Portugal
| | - Carla V Eleutério
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649–003 Lisboa, Portugal
| | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649–003 Lisboa, Portugal
| | - António Jiménez-Ruiz
- Departamento de Biología de Sistemas-Unidad Asociada al Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - António J Almeida
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649–003 Lisboa, Portugal
| | - M Eugénia M Cruz
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649–003 Lisboa, Portugal
| |
Collapse
|
48
|
Rifabutin-loaded solid lipid nanoparticles for inhaled antitubercular therapy: Physicochemical and in vitro studies. Int J Pharm 2015; 497:199-209. [PMID: 26656946 DOI: 10.1016/j.ijpharm.2015.11.050] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/26/2015] [Accepted: 11/27/2015] [Indexed: 11/20/2022]
Abstract
Systemic administration of antitubercular drugs can be complicated by off-target toxicity to cells and tissues that are not infected by Mycobacterium tuberculosis . Delivery of antitubercular drugs via nanoparticles directly to the infected cells has the potential to maximize efficacy and minimize toxicity. The present work demonstrates the potential of solid lipid nanoparticles (SLN) as a delivery platform for rifabutin (RFB). Two different RFB-containing SLN formulations were produced using glyceryl dibehenate or glyceryl tristearate as lipid components. Full characterization was performed in terms of particle size, encapsulation and loading efficiency, morphology by transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) studies. Physical stability was evaluated when formulations were stored at 5 ± 3°C and in the freeze-dried form. Formulations were stable throughout lyophilization without significant variations on physicochemical properties and RFB losses. The SLN showed to be able to endure harsh temperature conditions as demonstrated by dynamic light scattering (DLS). Release studies revealed that RFB was almost completely released from SLN. In vitro studies with THP1 cells differentiated in macrophages showing a nanoparticle uptake of 46 ± 3% and 26 ± 9% for glyceryl dibehenate and glyceryl tristearate SLN, respectively. Cell viability studies using relevant lung cell lines (A549 and Calu-3) revealed low cytotoxicity for the SLN, suggesting these could be new potential vehicles for pulmonary delivery of antitubercular drugs.
Collapse
|
49
|
Monteiro LM, Tavares GD, Ferreira EI, Consiglieri VO, Bou-Chacra NA, Löbenberg R. Reverse phase high-performance liquid chromatography for quantification of hydroxymethylnitrofurazone in polymeric nanoparticles. BRAZ J PHARM SCI 2015. [DOI: 10.1590/s1984-82502015000300008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hydroxymethylnitrofurazone (NFOH) is a new compound with potential leishmanicidal and trypanocidal activity. Despite its effectiveness, the formulators have to overcome its poor aqueous solubility. Recently, polymeric nano-scale drug delivery systems have proposed for the treatment of neglected diseases. As several studies have confirmed the advantages of such formulations, and this approach provides new analytical challenges, including the need to detect trace amounts of the drug. A suitable method was developed and validated for NFOH determination bound to poly (n-butylcyanoacrylate) (PBCA) nanoparticles. The chromatographic separation was achieved using a C18 column maintained at 25 ºC and an isocratic mobile phase consisting of water and acetonitrile: 80:20 (v/v) at a flow rate of 1.2 mL min-1 and UV-detection at 265 nm. Investigated validation parameters included selectivity, linearity, accuracy, precision and robustness (changes in column temperature, mobile phase composition and flow). The method was specific, the peak of NFOH had no interference with any nanoparticle excipients and no co-elution with main degradation product (nitrofurazone). Linearity was over the range of 0.94 13.11 μg mL-1 (r2=0.999). The method was accurate and precise, recovery of 100.7%, RSD of 0.4%; intra-day and inter-day RSD range 9.98-9.99 μg mL-1 and 0.3% to 0.5%, respectively. Robustness confirmed that method could resist the applied changes. Application of the optimized method revealed an encapsulation efficiency of 64.4% (n=3). Therefore, the method was successfully developed and validated for the determination of the encapsulation efficiency of NFOH-PBCA nanoparticles.
Collapse
|
50
|
Metwally AA, Hathout RM. Computer-Assisted Drug Formulation Design: Novel Approach in Drug Delivery. Mol Pharm 2015; 12:2800-10. [DOI: 10.1021/mp500740d] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Abdelkader A. Metwally
- Department of Pharmaceutics and
Industrial Pharmacy, Faculty of Pharmacy, and ‡Bioinformatics
Program, Faculty of Computer and Information Sciences, Ain Shams University, Cairo 11566, Egypt
| | - Rania M. Hathout
- Department of Pharmaceutics and
Industrial Pharmacy, Faculty of Pharmacy, and ‡Bioinformatics
Program, Faculty of Computer and Information Sciences, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|