1
|
Munir N, de Lima T, Nugent M, McAfee M. In-line NIR coupled with machine learning to predict mechanical properties and dissolution profile of PLA-Aspirin. FUNCTIONAL COMPOSITE MATERIALS 2024; 5:14. [PMID: 39391170 PMCID: PMC11461551 DOI: 10.1186/s42252-024-00063-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
In the production of polymeric drug delivery devices, dissolution profile and mechanical properties of the drug loaded polymeric matrix are considered important Critical Quality Attributes (CQA) for quality assurance. However, currently the industry relies on offline testing methods which are destructive, slow, labour intensive, and costly. In this work, a real-time method for predicting these CQAs in a Hot Melt Extrusion (HME) process is explored using in-line NIR and temperature sensors together with Machine Learning (ML) algorithms. The mechanical and drug dissolution properties were found to vary significantly with changes in processing conditions, highlighting that real-time methods to accurately predict product properties are highly desirable for process monitoring and optimisation. Nonlinear ML methods including Random Forest (RF), K-Nearest Neighbours (KNN) and Recursive Feature Elimination with RF (RFE-RF) outperformed commonly used linear machine learning methods. For the prediction of tensile strength RFE-RF and KNN achieved R 2 values 98% and 99%, respectively. For the prediction of drug dissolution, two time points were considered with drug release at t = 6 h as a measure of the extent of burst release, and t = 96 h as a measure of sustained release. KNN and RFE-RF achieved R 2 values of 97% and 96%, respectively in predicting the drug release at t = 96 h. This work for the first time reports the prediction of drug dissolution and mechanical properties of drug loaded polymer product from in-line data collected during the HME process. Supplementary Information The online version contains supplementary material available at 10.1186/s42252-024-00063-5.
Collapse
Affiliation(s)
- Nimra Munir
- Centre for Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), Atlantic Technological University, ATU Sligo, Ash Lane, Co. Sligo F91 YW50 Ireland
- Centre for Precision Engineering, Materials and Manufacturing (PEM Centre), Atlantic Technological University, ATU Sligo, Ash Lane, Co. Sligo F91 YW50 Ireland
| | - Tielidy de Lima
- Materials Research Institute, Technological University of the Shannon: Midlands Midwest, Athlone, N37HD68 Ireland
| | - Michael Nugent
- Materials Research Institute, Technological University of the Shannon: Midlands Midwest, Athlone, N37HD68 Ireland
| | - Marion McAfee
- Centre for Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), Atlantic Technological University, ATU Sligo, Ash Lane, Co. Sligo F91 YW50 Ireland
- Centre for Precision Engineering, Materials and Manufacturing (PEM Centre), Atlantic Technological University, ATU Sligo, Ash Lane, Co. Sligo F91 YW50 Ireland
| |
Collapse
|
2
|
Conte J, Saatkamp RH, Sanches MP, Argenta DF, da Rosa Monte Machado G, Kretzer IF, Parize AL, Caon T. Development of biopolymer films loaded with fluconazole and thymol for resistant vaginal candidiasis. Int J Biol Macromol 2024; 275:133356. [PMID: 38945715 DOI: 10.1016/j.ijbiomac.2024.133356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 07/02/2024]
Abstract
Vulvovaginal candidiasis (VVC) is an opportunistic infection caused by a fungus of the Candida genus, affecting approximately 75 % of women during their lifetime. Fungal resistance cases and adverse effects have been the main challenges of oral therapies. In this study, the topical application of thin films containing fluconazole (FLU) and thymol (THY) was proposed to overcome these problems. Vaginal films based only on chitosan (CH) or combining this biopolymer with pectin (PEC) or hydroxypropylmethylcellulose acetate succinate (HPMCAS) were developed by the solvent casting method. In addition to a higher swelling index, CH/HPMCAS films showed to be more plastic and flexible than systems prepared with CH/PEC or only chitosan. Biopolymers and FLU were found in an amorphous state, contributing to explaining the rapid gel formation after contact with vaginal fluid. High permeability rates of FLU were also found after its immobilization into thin films. The presence of THY in polymer films increased the distribution of FLU in vaginal tissues and resulted in improved anti-Candida activity. A significant activity against the resistant C. glabrata was achieved, reducing the required FLU dose by 50 %. These results suggest that the developed polymer films represent a promising alternative for the treatment of resistant vulvovaginal candidiasis, encouraging further studies in this context.
Collapse
Affiliation(s)
- Júlia Conte
- Postgraduate Program in Pharmacy (PGFAR), Federal University of Santa Catarina, Trindade, 88040-900 Florianopolis, SC, Brazil
| | - Rodrigo Henrique Saatkamp
- Postgraduate Program in Chemistry, Chemistry Department, Federal University of Santa Catarina, Trindade, 88040-900 Florianopolis, SC, Brazil
| | - Mariele Paludetto Sanches
- Postgraduate Program in Chemistry, Chemistry Department, Federal University of Santa Catarina, Trindade, 88040-900 Florianopolis, SC, Brazil
| | - Débora Fretes Argenta
- Postgraduate Program in Pharmacy (PGFAR), Federal University of Santa Catarina, Trindade, 88040-900 Florianopolis, SC, Brazil
| | - Gabriella da Rosa Monte Machado
- Postgraduate Program in Pharmacy (PGFAR), Federal University of Santa Catarina, Trindade, 88040-900 Florianopolis, SC, Brazil
| | - Iara Fabrícia Kretzer
- Postgraduate Program in Pharmacy (PGFAR), Federal University of Santa Catarina, Trindade, 88040-900 Florianopolis, SC, Brazil
| | - Alexandre Luis Parize
- Postgraduate Program in Chemistry, Chemistry Department, Federal University of Santa Catarina, Trindade, 88040-900 Florianopolis, SC, Brazil
| | - Thiago Caon
- Postgraduate Program in Pharmacy (PGFAR), Federal University of Santa Catarina, Trindade, 88040-900 Florianopolis, SC, Brazil.
| |
Collapse
|
3
|
Lunter D, Klang V, Eichner A, Savic SM, Savic S, Lian G, Erdő F. Progress in Topical and Transdermal Drug Delivery Research-Focus on Nanoformulations. Pharmaceutics 2024; 16:817. [PMID: 38931938 PMCID: PMC11207871 DOI: 10.3390/pharmaceutics16060817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Skin is the largest organ and a multifunctional interface between the body and its environment. It acts as a barrier against cold, heat, injuries, infections, chemicals, radiations or other exogeneous factors, and it is also known as the mirror of the soul. The skin is involved in body temperature regulation by the storage of fat and water. It is an interesting tissue in regard to the local and transdermal application of active ingredients for prevention or treatment of pathological conditions. Topical and transdermal delivery is an emerging route of drug and cosmetic administration. It is beneficial for avoiding side effects and rapid metabolism. Many pharmaceutical, technological and cosmetic innovations have been described and patented recently in the field. In this review, the main features of skin morphology and physiology are presented and are being followed by the description of classical and novel nanoparticulate dermal and transdermal drug formulations. The biophysical aspects of the penetration of drugs and cosmetics into or across the dermal barrier and their investigation in diffusion chambers, skin-on-a-chip devices, high-throughput measuring systems or with advanced analytical techniques are also shown. The current knowledge about mathematical modeling of skin penetration and the future perspectives are briefly discussed in the end, all also involving nanoparticulated systems.
Collapse
Affiliation(s)
- Dominique Lunter
- Department of Pharmaceutical Technology, Eberhard-Karls-Universität Tübingen, 72074 Tübingen, Germany;
| | - Victoria Klang
- Department of Pharmaceutical Sciences, University of Vienna, 1010 Vienna, Austria;
| | - Adina Eichner
- Department of Dermatology and Venereology, Martin Luther University Halle-Wittenberg, 06108 Halle, Germany;
- Institute of Applied Dermatopharmacy, Martin Luther University Halle-Wittenberg (IADP) e.V., 06108 Halle, Germany
| | - Sanela M. Savic
- Faculty of Technology in Leskovac, University of Niš, 16000 Leskovac, Serbia;
- R&D Sector, DCP Hemigal, 16000 Leskovac, Serbia
| | - Snezana Savic
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Guoping Lian
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK;
- Unilever R&D Colworth, Sharnbrook, Bedford MK44 1LQ, UK
| | - Franciska Erdő
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1083 Budapest, Hungary
| |
Collapse
|
4
|
Pansuriya R, Doutch J, Parmar B, Kailasa SK, Mahmoudi N, Hoskins C, Malek NI. A bio-ionic liquid based self-healable and adhesive ionic hydrogel for the on-demand transdermal delivery of a chemotherapeutic drug. J Mater Chem B 2024; 12:5479-5495. [PMID: 38742683 DOI: 10.1039/d4tb00510d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The non-invasive nature and potential for sustained release make transdermal drug administration an appealing treatment option for cancer therapy. However, the strong barrier of the stratum corneum (SC) poses a challenge for the penetration of hydrophilic chemotherapy drugs such as 5-fluorouracil (5-FU). Due to its biocompatibility and capacity to increase drug solubility and permeability, especially when paired with chemical enhancers, such as oleic acid (OA), which is used in this work, choline glycinate ([Cho][Gly]) has emerged as a potential substance for transdermal drug delivery. In this work, we examined the possibility of transdermal delivery of 5-FU for the treatment of breast cancer using an ionic hydrogel formulation consisting of [Cho][Gly] with OA. Small angle neutron scattering, rheological analysis, field emission scanning electron microscopy, and dynamic light scattering analysis were used to characterize the ionic hydrogel. The non-covalent interactions present between [Cho][Gly] and OA were investigated by computational simulations and FTIR spectroscopy methods. When subjected to in vitro drug permeation using goat skin in a Franz diffusion cell, the hydrogel demonstrated sustained release of 5-FU and effective permeability in the order: [Cho][Gly]-OA gel > [Cho][Gly] > PBS (control). The hydrogel also demonstrated 92% cell viability after 48 hours for the human keratinocyte cell line (HaCaT cells) as well as the normal human cell line L-132. The breast cancer cell line MCF-7 and the cervical cancer cell line HeLa were used to study in vitro cytotoxicity that was considerably affected by the 5-FU-loaded hydrogel. These results indicate the potential of the hydrogel as a transdermal drug delivery vehicle for the treatment of breast cancer.
Collapse
Affiliation(s)
- Raviraj Pansuriya
- Ionic Liquids Research Laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India.
| | - James Doutch
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK
| | - Bhagyesh Parmar
- Ionic Liquids Research Laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India.
| | - Suresh Kumar Kailasa
- Ionic Liquids Research Laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India.
| | - Najet Mahmoudi
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK
| | - Clare Hoskins
- Technology and Innovation Centre, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1RD, UK
| | - Naved I Malek
- Ionic Liquids Research Laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India.
| |
Collapse
|
5
|
Pansuriya R, Patel T, Kumar S, Aswal VK, Raje N, Hoskins C, Kailasa SK, Malek NI. Multifunctional Ionic Hydrogel-Based Transdermal Delivery of 5-Fluorouracil for the Breast Cancer Treatment. ACS APPLIED BIO MATERIALS 2024; 7:3110-3123. [PMID: 38620030 DOI: 10.1021/acsabm.4c00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Transdermal drug delivery systems (TDDS) are a promising and innovative approach for breast cancer treatment, offering advantages such as noninvasiveness, potential for localized and prolonged drug delivery while minimizing systemic side effects through avoiding first-pass metabolism. Utilizing the distinctive characteristics of hydrogels, such as their biocompatibility, versatility, and higher drug loading capabilities, in the present work, we prepared ionic hydrogels through synergistic interaction between ionic liquids (ILs), choline alanine ([Cho][Ala]), and choline proline ([Cho][Pro]) with oleic acid (OA). ILs used in the study are biocompatible and enhance the solubility of 5-fluorouracil (5-FU), whereas OA is a known chemical penetration enhancer. The concentration-dependent (OA) change in morphological aggregates, that is, from cylindrical micelles to worm-like micelles to hydrogels was formed with both ILs and was characterized by SANS measurement, whereas the interactions involved were confirmed by FTIR spectroscopy. The hydrogels have excellent mechanical properties, which studied by rheology and their morphology through FE-SEM analysis. The in vitro skin permeation study revealed that both hydrogels penetrated 255 times ([Cho][Ala]) and 250 times ([Cho][Pro]) more as compared to PBS after 48 h. Those ionic hydrogels exhibited the capability to change the lipid and keratin arrangements within the skin layer, thereby enhancing the transdermal permeation of the 5-FU. Both ionic hydrogels exhibit excellent biocompatibility with normal cell lines (L-132 cells) as well as cancerous cell lines (MCF-7 cells), demonstrating over 92% cell viability after 48 h in both cell lines. In vitro, the cytotoxicity of the 5-FU-loaded hydrogels was evaluated on MCF-7 and HeLa cell lines. These results indicate that the investigated biocompatible and nontoxic ionic hydrogels enable the transdermal delivery of hydrophilic drugs, making them a viable option for effectively treating breast cancer.
Collapse
Affiliation(s)
- Raviraj Pansuriya
- Ionic Liquids Research Laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat395007, Gujarat ,India
| | - Tapas Patel
- Ionic Liquids Research Laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat395007, Gujarat ,India
| | - Sugam Kumar
- Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai400085, India
| | - Vinod K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai400085, India
| | - Naina Raje
- Analytical Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai400085, India
| | - Clare Hoskins
- Technology and Innovation Centre, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1RD, U.K
| | - Suresh Kumar Kailasa
- Ionic Liquids Research Laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat395007, Gujarat ,India
| | - Naved I Malek
- Ionic Liquids Research Laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat395007, Gujarat ,India
| |
Collapse
|
6
|
Qian Y, Wei X, Wang Y, Yin S, Chen J, Dong J. Development of a novel human stratum corneum mimetic phospholipid -vesicle-based permeation assay models for in vitro permeation studies. Drug Dev Ind Pharm 2024; 50:410-419. [PMID: 38497274 DOI: 10.1080/03639045.2024.2331242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 03/05/2024] [Indexed: 03/19/2024]
Abstract
OBJECTIVES To develop and evaluate a novel human stratum corneum (SC) mimetic phospholipid vesicle-based permeation assay (PVPASC) model for in vitro permeation studies. SIGNIFICANCE Due to the increasing restrictions on the use of human and animal skins, artificial skin models have attracted substantial interest in pharmaceuticals and cosmetic industries. In this study, a modified PVPASC model containing both SC lipids and proteins was developed. METHODS The PVPASC model was optimized by altering the lipid composition and adding keratin in the formulation of large liposomes. The barrier properties were monitored by measuring the electrical resistance (ER) and permeability of Rhodamine B (RB). The modified PVPASC model was characterized in terms of the surface topography, solvent influence and storage stability. The permeation studies of the active components in Compound Nanxing Zhitong Plaster (CNZP) were performed to examine the capability of PVPASC in the application of skin penetration. RESULTS The ER and Papp values of RB obtained from the optimized PVPASC model indicated a similar barrier property to porcine ear skin. Scanning electron microscope analysis demonstrated a mimic 'brick-and-mortar' structure. The PVPASC model can be stored for three weeks at -20 °C, and withstand the presence of different receptor medium for 24 h. The permeation studies of the active components demonstrated a good correlation (r2 = 0.9136) of Papp values between the drugs' permeation through the PVPASC model and porcine ear skin. CONCLUSION Keratin contained composite phospholipid vesicle-based permeation assay models have been proven to be potential skin tools in topical/transdermal permeation studies.
Collapse
Affiliation(s)
- Yuerong Qian
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Xuchao Wei
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Yiwei Wang
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
- ANZAC Research Institute, The University of Sydney, Sydney, Australia
| | - Shaoping Yin
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Jun Chen
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Dong
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| |
Collapse
|
7
|
Shriky B, Vigato AA, Sepulveda AF, Machado IP, de Araujo DR. Poloxamer-based nanogels as delivery systems: how structural requirements can drive their biological performance? Biophys Rev 2023; 15:475-496. [PMID: 37681104 PMCID: PMC10480380 DOI: 10.1007/s12551-023-01093-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/30/2023] [Indexed: 09/09/2023] Open
Abstract
Poloxamers or Pluronics®-based nanogels are one of the most used matrices for developing delivery systems. Due to their thermoresponsive and flexible mechanical properties, they allowed the incorporation of several molecules including drugs, biomacromolecules, lipid-derivatives, polymers, and metallic, polymeric, or lipid nanocarriers. The thermogelling mechanism is driven by micelles formation and their self-assembly as phase organizations (lamellar, hexagonal, cubic) in response to microenvironmental conditions such as temperature, osmolarity, and additives incorporated. Then, different biophysical techniques have been used for investigating those structural transitions from the mechanisms to the preferential component's orientation and organization. Since the design of PL-based pharmaceutical formulations is driven by the choice of the polymer type, considering its physico-chemical properties, it is also relevant to highlight that factors inherent to the polymeric matrix can be strongly influenced by the presence of additives and how they are able to determine the nanogels biopharmaceuticals properties such as bioadhesion, drug loading, surface interaction behavior, dissolution, and release rate control. In this review, we discuss the general applicability of three of the main biophysical techniques used to characterize those systems, scattering techniques (small-angle X-ray and neutron scattering), rheology and Fourier transform infrared absorption spectroscopy (FTIR), connecting their supramolecular structure and insights for formulating effective therapeutic delivery systems. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-023-01093-2.
Collapse
Affiliation(s)
- Bana Shriky
- Department of Mechanical and Energy Systems Engineering, Faculty of Engineering and Informatics, University of Bradford, Bradford, UK
| | - Aryane Alves Vigato
- Natural and Human Sciences Centre, Federal University of ABC, Av. dos Estados 5001, Bloco A, Torre 3, Lab 503-3, Bairro Bangu, Santo André, São Paulo, CEP 090210-580 Brazil
| | - Anderson Ferreira Sepulveda
- Natural and Human Sciences Centre, Federal University of ABC, Av. dos Estados 5001, Bloco A, Torre 3, Lab 503-3, Bairro Bangu, Santo André, São Paulo, CEP 090210-580 Brazil
| | | | - Daniele Ribeiro de Araujo
- Natural and Human Sciences Centre, Federal University of ABC, Av. dos Estados 5001, Bloco A, Torre 3, Lab 503-3, Bairro Bangu, Santo André, São Paulo, CEP 090210-580 Brazil
| |
Collapse
|
8
|
Jiang T, Xie Y, Dong J, Yang X, Qu S, Wang X, Sun C. The dexamethasone acetate cubosomes as a potential transdermal delivery system for treating skin inflammation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Keck CM, Abdelkader A, Pelikh O, Wiemann S, Kaushik V, Specht D, Eckert RW, Alnemari RM, Dietrich H, Brüßler J. Assessing the Dermal Penetration Efficacy of Chemical Compounds with the Ex-Vivo Porcine Ear Model. Pharmaceutics 2022; 14:678. [PMID: 35336052 PMCID: PMC8951478 DOI: 10.3390/pharmaceutics14030678] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: The ex vivo porcine ear model is often used for the determination of the dermal penetration efficacy of chemical compounds. This study investigated the influence of the post-slaughter storage time of porcine ears on the dermal penetration efficacy of chemical compounds. (2) Methods: Six different formulations (curcumin and different fluorescent dyes in different vehicles and/or nanocarriers) were tested on ears that were (i) freshly obtained, (ii) stored for 24 or 48 h at 4 °C after slaughter before use and (iii) freshly frozen and defrosted 12 h before use. (3) Results: Results showed that porcine ears undergo post-mortem changes. The changes can be linked to rigor mortis and all other well-described phenomena that occur with carcasses after slaughter. The post-mortem changes modify the skin properties of the ears and affect the penetration efficacy. The onset of rigor mortis causes a decrease in the water-holding capacity of the ears, which leads to reduced penetration of chemical compounds. The water-holding capacity increases once the rigor is released and results in an increased penetration efficacy for chemical compounds. Despite different absolute penetration values, no differences in the ranking of penetration efficacies between the different formulations were observed between the differently aged ears. (4) Conclusions: All different types of ears can be regarded to be suitable for dermal penetration testing of chemical compounds. The transepidermal water loss (TEWL) and/or skin hydration of the ears were not correlated with the ex vivo penetration efficacy because both an impaired skin barrier and rigor mortis cause elevated skin hydration and TEWL values but an opposite penetration efficacy. Other additional values (for example, pH and/or autofluorescence of the skin) should, therefore, be used to select suitable and non-suitable skin areas for ex vivo penetration testing. Finally, data from this study confirmed that smartFilms and nanostructured lipid carriers (NLC) represent superior formulation strategies for efficient dermal and transdermal delivery of curcumin.
Collapse
Affiliation(s)
- Cornelia M. Keck
- Department of Pharmaceutics and Biopharmaceutics, Philipps-University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (A.A.); (O.P.); (S.W.); (V.K.); (D.S.); (R.W.E.); (R.M.A.); (H.D.); (J.B.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sharkawy A, Silva AM, Rodrigues F, Barreiro F, Rodrigues A. Pickering emulsions stabilized with chitosan/collagen peptides nanoparticles as green topical delivery vehicles for cannabidiol (CBD). Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127677] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Enggi CK, Isa HT, Sulistiawati S, Ardika KAR, Wijaya S, Asri RM, Mardikasari SA, Donnelly RF, Permana AD. Development of thermosensitive and mucoadhesive gels of cabotegravir for enhanced permeation and retention profiles in vaginal tissue: A proof of concept study. Int J Pharm 2021; 609:121182. [PMID: 34648879 DOI: 10.1016/j.ijpharm.2021.121182] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 12/20/2022]
Abstract
As an effective anti-HIV drug, cabotegravir (CAB) is currently administered via oral and injection routes, leading to several drawbacks, such as poor oral bioavailability and problems in the injection application process, as well as low drug concentration in vaginal tissue of woman patients. To overcome these issues, for the first time, we formulated CAB into three types of vaginal gels, considering the benefits of vaginal tissue as a delivery route. Thermosensitive gel, mucoadhesive gel, and the combination of these gels were developed as suitable carriers for CAB. Pluronics®, hydroxy propyl methyl cellulose (HPMC), Carbomer and poly(ethylene glycol) (PEG) 400 were used as thermosensitive, mucoadhesive and permeation enhancer agents, respectively. The gels were evaluated for their thermosensitive and mucoadhesive properties, as well as their pH values, viscosities, gel erosions, drug content recovery, in vitro drug release, ex vivo permeation, ex vivo retention, hemolytic activities, Lactobacillus inhibition activities and in vivo irritation properties. The results showed that all formulations showed desired characteristics for vaginal administration. Importantly, all formulations did not show hemolytic activities and inhibitions to Lactobacillus as normal bacteria in the vagina. Furthermore, no irritation in the vaginal tissues of the rats was observed by histopathological studies. Considering the thermosensitive and mucoadhesive properties, the combination of Pluronic® F127, Pluronic F68, and HPMC in thermosensitive-mucoadhesive vaginal gels was selected as the optimum dosage form for CAB as this formulation was able to provide ease administration due to its liquid form at room temperature. The use of PEG in this formulation was able to increase the penetrability of CAB through vaginal tissue with 0.61 ± 0.05 mg and 17.28 ± 0.95 mg of CAB being able to penetrate and localize in the vagina, respectively. Essentially, the optimum formulation was retained in the vaginal mucosa for>8 h. To conclude, further extensive in vivo studies should now be conducted to evaluate the efficacy of this approach.
Collapse
Affiliation(s)
| | | | | | | | - Stevens Wijaya
- Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
| | | | | | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia.
| |
Collapse
|
12
|
Uddin S, Islam MR, Chowdhury MR, Wakabayashi R, Kamiya N, Moniruzzaman M, Goto M. Lipid-Based Ionic-Liquid-Mediated Nanodispersions as Biocompatible Carriers for the Enhanced Transdermal Delivery of a Peptide Drug. ACS APPLIED BIO MATERIALS 2021; 4:6256-6267. [PMID: 35006923 DOI: 10.1021/acsabm.1c00563] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lipid-based biocompatible ionic liquids (LBILs) have attracted attention as carriers in transdermal drug delivery systems (TDDSs) because of their lipophilic character. In this study, we report the formulation of a peptide-LBIL complex microencapsulated in an oil phase as a potential carrier for the transdermal delivery of leuprolide acetate as a model hydrophilic peptide. The peptide-LBIL complexes were prepared via a water-in-oil emulsion composed of 1,2-dimyristoyl-sn-glycerol-3-ethyl-phosphatidylcholine (EDMPC), a fatty acid (stearic, oleic, and linoleic acid)-based LBIL, and cyclohexane followed by freeze-drying to remove the water and cyclohexane. Then, the peptide-LBIL complexes were nanodispersed and stabilized in isopropyl myristate (IPM) using sorbitol laurate (Span-20). Ionic-liquid-in-oil nanodispersions (IL/O-NDs) were prepared with varying weight ratios of LBILs and Span-20 as the surfactant and the cosurfactant, respectively. Keeping the overall surfactant constant at 10 wt % in IPM, a 5:5 wt % ratio of surfactant (IL) and cosurfactant (Span-20) in the IL/O-NDs significantly (p < 0.0001) increased the physiochemical stability, drug-loading capacity, and drug encapsulation efficiency. The in vitro and in vivo peptide delivery across the skin was increased significantly (p < 0.0001) using IL/O-NDs, compared with non-IL-treated groups. Of all of the LBIL-based formulations, [EDMPC][Linoleate]/O-ND was considered the most preferable for a TDDS based on the pharmacokinetic parameters. The transdermal delivery flux with [EDMPC][Linoleate]/O-ND was increased 65-fold compared with the aqueous delivery vehicle. The IL/O-NDs were able to deform the lipid and protein arrangements of the skin layers to enhance the transdermal permeation of the peptide. In vitro and in vivo cytotoxicity studies of the IL/O-NDs revealed the biocompatibility of the LBIL-based formulations. These results indicated that IL/O-NDs are promising biocompatible carriers for lipid-peptide TDDSs.
Collapse
Affiliation(s)
- Shihab Uddin
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Md Rafiqul Islam
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Raihan Chowdhury
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Advanced Transdermal Drug Delivery System Centre, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Advanced Transdermal Drug Delivery System Centre, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Division of Biotechnology, Centre for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Muhammad Moniruzzaman
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Advanced Transdermal Drug Delivery System Centre, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Division of Biotechnology, Centre for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
13
|
Wang S, Zuo A, Guo J. Types and evaluation of in vitro penetration models for buccal mucosal delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
Zhang D, Bian Q, Zhou Y, Huang Q, Gao J. The application of label-free imaging technologies in transdermal research for deeper mechanism revealing. Asian J Pharm Sci 2020; 16:265-279. [PMID: 34276818 PMCID: PMC8261078 DOI: 10.1016/j.ajps.2020.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/23/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
The penetration behavior of topical substances in the skin not only relates to the transdermal delivery efficiency but also involves the safety and therapeutic effect of topical products, such as sunscreen and hair growth products. Researchers have tried to illustrate the transdermal process with diversified theories and technologies. Directly observing the distribution of topical substances on skin by characteristic imaging is the most convincing approach. Unfortunately, fluorescence labeling imaging, which is commonly used in biochemical research, is limited for transdermal research for most topical substances with a molecular mass less than 500 Da. Label-free imaging technologies possess the advantages of not requiring any macromolecular dyes, no tissue destruction and an extensive substance detection capability, which has enabled rapid development of such technologies in recent years and their introduction to biological tissue analysis, such as skin samples. Through the specific identification of topical substances and endogenous tissue components, label-free imaging technologies can provide abundant tissue distribution information, enrich theoretical and practical guidance for transdermal drug delivery systems. In this review, we expound the mechanisms and applications of the most popular label-free imaging technologies in transdermal research at present, compare their advantages and disadvantages, and forecast development prospects.
Collapse
Affiliation(s)
- Danping Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiong Bian
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi Zhou
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaoling Huang
- The Third People's Hospital of Hangzhou, Hangzhou 310012, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jiangsu Engineering Research Center for New-Type External and Transdermal Preparations, Changzhou 213000, China
- Corresponding author.
| |
Collapse
|
15
|
Erdal MS, Gürbüz A, Birteksöz Tan S, Güngör S, Özsoy Y. In Vitro Skin Permeation and Antifungal Activity of Naftifine Microemulsions. Turk J Pharm Sci 2020; 17:43-48. [PMID: 32454759 DOI: 10.4274/tjps.galenos.2018.87699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/18/2018] [Indexed: 12/01/2022]
Abstract
Objectives Microemulsions are fluid, isotropic, colloidal systems that have been widely studied as drug delivery systems. The percutaneous transport of active agents can be enhanced by their microemulsion formulation when compared to conventional formulations. The purpose of this study was to evaluate naftifine-loaded microemulsions with the objective of improving the skin permeation of the drug. Materials and Methods Microemulsions comprising oleic acid (oil phase), Kolliphor EL or Kolliphor RH40 (surfactant), Transcutol (co-surfactant), and water were prepared and physicochemical characterization was performed. In vitro skin permeation of naftifine from microemulsions was investigated and compared with that of its conventional commercial formulation. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy was used to evaluate the interaction between the microemulsions and the stratum corneum lipids. Candida albicans American Type Culture Collection (ATCC) 10231 and Candida parapsilosis were used to evaluate the antifungal susceptibility of the naftifine-loaded microemulsions. Results The microemulsion formulation containing Kolliphor RH40 as co-surfactant increased naftifine permeation through pig skin significantly when compared with the commercial topical formulation (p<0.05). ATR-FTIR spectroscopy showed that microemulsions increased the fluidity of the stratum corneum lipid bilayers. Drug-loaded microemulsions possessed superior antifungal activity against Candida albicans ATCC 10231 and Candida parapsilosis. Conclusion This study demonstrated that microemulsions could be suggested as an alternative topical carrier with potential for enhanced skin delivery of naftifine.
Collapse
Affiliation(s)
- Meryem Sedef Erdal
- İstanbul University, Faculty of Pharmacy, Department of Pharmaceutical Technology, İstanbul, Turkey
| | - Aslı Gürbüz
- İstanbul University, Faculty of Pharmacy, Department of Pharmaceutical Technology, İstanbul, Turkey
| | - Seher Birteksöz Tan
- İstanbul University, Faculty of Pharmacy, Department of Pharmaceutical Microbiology, İstanbul, Turkey
| | - Sevgi Güngör
- İstanbul University, Faculty of Pharmacy, Department of Pharmaceutical Technology, İstanbul, Turkey
| | - Yıldız Özsoy
- İstanbul University, Faculty of Pharmacy, Department of Pharmaceutical Technology, İstanbul, Turkey
| |
Collapse
|
16
|
Islam MR, Chowdhury MR, Wakabayashi R, Tahara Y, Kamiya N, Moniruzzaman M, Goto M. Choline and amino acid based biocompatible ionic liquid mediated transdermal delivery of the sparingly soluble drug acyclovir. Int J Pharm 2020; 582:119335. [DOI: 10.1016/j.ijpharm.2020.119335] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/28/2020] [Accepted: 04/12/2020] [Indexed: 12/22/2022]
|
17
|
Ionic Liquid-In-Oil Microemulsions Prepared with Biocompatible Choline Carboxylic Acids for Improving the Transdermal Delivery of a Sparingly Soluble Drug. Pharmaceutics 2020; 12:pharmaceutics12040392. [PMID: 32344768 PMCID: PMC7238071 DOI: 10.3390/pharmaceutics12040392] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/26/2022] Open
Abstract
The transdermal delivery of sparingly soluble drugs is challenging due to of the need for a drug carrier. In the past few decades, ionic liquid (IL)-in-oil microemulsions (IL/O MEs) have been developed as potential carriers. By focusing on biocompatibility, we report on an IL/O ME that is designed to enhance the solubility and transdermal delivery of the sparingly soluble drug, acyclovir. The prepared MEs were composed of a hydrophilic IL (choline formate, choline lactate, or choline propionate) as the non-aqueous polar phase and a surface-active IL (choline oleate) as the surfactant in combination with sorbitan laurate in a continuous oil phase. The selected ILs were all biologically active ions. Optimized pseudo ternary phase diagrams indicated the MEs formed thermodynamically stable, spherically shaped, and nano-sized (<100 nm) droplets. An in vitro drug permeation study, using pig skin, showed the significantly enhanced permeation of acyclovir using the ME. A Fourier transform infrared spectroscopy study showed a reduction of the skin barrier function with the ME. Finally, a skin irritation study showed a high cell survival rate (>90%) with the ME compared with Dulbecco's phosphate-buffered saline, indicates the biocompatibility of the ME. Therefore, we conclude that IL/O ME may be a promising nano-carrier for the transdermal delivery of sparingly soluble drugs.
Collapse
|
18
|
Zhang Y, Zhang H, Zhang K, Li Z, Guo T, Wu T, Hou X, Feng N. Co-hybridized composite nanovesicles for enhanced transdermal eugenol and cinnamaldehyde delivery and their potential efficacy in ulcerative colitis. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 28:102212. [PMID: 32334099 DOI: 10.1016/j.nano.2020.102212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/16/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023]
Abstract
Percutaneous absorption of drugs can be enhanced by ethosomes, which are nanocarriers with excellent deformability and drug-loading properties. However, the ethanol within ethosomes increases phospholipid membrane fluidity and permeability, leading to drug leakage during storage. Here, we developed and characterized a new phospholipid nanovesicles that is co-hybridized with hyaluronic acid (HA), ethanol and the encapsulated volatile oil medicines (eugenol and cinnamaldehyde [EUG/CAH]) for transdermal administration. In comparison with EUG/CAH-loaded ethosomes (ES), the formulation stability and percutaneous drug absorption of EUG/CAH-loaded HA-immobilized ethosomes (HA-ES) were significantly improved. After transdermal administration of HA-ES, the interstitial cells of Cajal in the colon of rats with trinitrobenzene sulfonate-induced ulcerative colitis (UC) were significantly increased, and the stem cell factor/c-kit signaling pathway was partly repaired. Overall, HA-ES possesses excellent deformability and showed improved efficacy against UC compared with ES, which is demonstrated as a promising transdermal delivery vehicle for volatile oil medicines.
Collapse
Affiliation(s)
- Yongtai Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongyu Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kai Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhe Li
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Teng Guo
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Wu
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuefeng Hou
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
19
|
Vater C, Hlawaty V, Werdenits P, Cichoń MA, Klang V, Elbe-Bürger A, Wirth M, Valenta C. Effects of lecithin-based nanoemulsions on skin: Short-time cytotoxicity MTT and BrdU studies, skin penetration of surfactants and additives and the delivery of curcumin. Int J Pharm 2020; 580:119209. [PMID: 32165223 DOI: 10.1016/j.ijpharm.2020.119209] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/26/2022]
Abstract
Surfactants are important ingredients in pharmaceutical and cosmetic formulations, as in creams, shampoos or shower gels. As conventional emulsifiers such as sodium dodecyl sulfate (SDS) have fallen into disrepute due to their skin irritation potential, the naturally occurring lecithins are being investigated as a potential alternative. Thus, lecithin-based nanoemulsions with and without the drug curcumin, known for its wound healing properties, were produced and characterised in terms of their particle size, polydispersity index (PDI) and zeta potential and compared to SDS-based formulations. In vitro toxicity of the produced blank nanoemulsions was assessed with primary human keratinocytes and fibroblasts using two different cell viability assays (BrdU and EZ4U). Further, we investigated the penetration profiles of the deployed surfactants and oil components using combined ATR-FTIR/tape stripping experiments and confirmed the ability of the lecithin-based nanoemulsions to deliver curcumin into the stratum corneum in tape stripping-UV/Vis experiments. All manufactured nanoemulsions showed droplet sizes under 250 nm with satisfying PDI and zeta potential values. Viability assays with human skin cells clearly indicated that lecithin-based nanoemulsions were superior to SDS-based formulations. ATR-FTIR tests showed that lecithin and oil components remained in the superficial layers of the stratum corneum, suggesting a low risk for skin irritation. Ex vivo tape stripping experiments revealed that the kind of oil used in the nanoemulsion seemed to influence the depth of curcumin penetration into the stratum corneum.
Collapse
Affiliation(s)
- Claudia Vater
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria; University of Vienna, Research Platform 'Characterisation of Drug Delivery Systems on Skin and Investigation of Involved Mechanisms', Althanstraße 14, 1090 Vienna, Austria
| | - Victoria Hlawaty
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria
| | - Patricia Werdenits
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria
| | - Małgorzata Anna Cichoń
- Medical University of Vienna, Department of Dermatology, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Victoria Klang
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria.
| | - Adelheid Elbe-Bürger
- Medical University of Vienna, Department of Dermatology, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Michael Wirth
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria
| | - Claudia Valenta
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria; University of Vienna, Research Platform 'Characterisation of Drug Delivery Systems on Skin and Investigation of Involved Mechanisms', Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|
20
|
Enhancement of transdermal delivery of artemisinin using microemulsion vehicle based on ionic liquid and lidocaine ibuprofen. Colloids Surf B Biointerfaces 2020; 189:110886. [PMID: 32109824 DOI: 10.1016/j.colsurfb.2020.110886] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/18/2022]
Abstract
A microemulsion system based on ionic liquid (IL) and deep eutectic compound was proposed to improve the transdermal delivery of artemisinin. Deep eutectic lidocaine ibuprofen (Lid·Ibu) was selected as the oil phase, and the imidazolium ionic liquid, 1-hydroxyethyl-3-methylimidazolium chloride ([HOEmim]Cl), was incorporated into the aqueous phase as a transdermal enhancer. The ingredients for the microemulsion in this study were selected, and their ratios were optimized. The optimal microemulsion carrier was composed of 45 wt% of water phase, 45 wt% surfactant phase (containing Tween-80, Span-20, and ethanol (co-surfactant) with the weight ratio of 1:1:1), and 10 wt% Lid·Ibu as the oil phase with artemisinin loading of 1.0 wt% (all the ratios were based on the total weight of microemulsion). Physical properties of this microemulsion, including particle size (41.95 ± 0.85 nm), viscosity (26.65 ± 0.13 mPa·s) and density (1.02 g/cm3), were measured. In-vitro transdermal assay showed a remarkable enhancement of artemisinin transport through the skin, with the permeation flux being 3-fold of the value for isopropyl myristate system in 6 h. The impact of IL-based microemulsion (ILME) on stratum corneum (SC) was investigated by DSC, ATR-FTIR and AFM, which unveiled that the ILME possesses the ability of reducing the SC barrier by disrupting the regular arrangement of keratin, resulting in enhancement of transdermal delivery of artemisinin. This current work suggested that the microemulsion proposed here had an excellent capability to promote the transdermal delivery of artemisinin, which might also be a promising vehicle for the skin delivery of other hydrophobic natural drugs.
Collapse
|
21
|
Transbuccal delivery of benznidazole associated with monoterpenes: permeation studies and mechanistic insights. Eur J Pharm Sci 2020; 143:105177. [PMID: 31812716 DOI: 10.1016/j.ejps.2019.105177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/27/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022]
Abstract
Benznidazole (BZN) represents the only drug currently available for the treatment of Chagas disease in most endemic countries. When administered orally, high doses are required due to its extensive hepatic metabolism and its toxicity represents the main reason for treatment withdrawals. Because of these complications, transbuccal administration of BZN was investigated. This route avoids the first-pass hepatic metabolism and presents high permeability, with direct access to the systemic circulation. BZN was applied on porcine buccal mucosa after pretreatment with pure eugenol, carvacrol or limonene. Thermal (DSC) and spectroscopic (FT-IR) analyzes were performed to investigate the mechanisms of drug absorption enhancement. The permeability coefficient values of BZN increased 2.6, 2.9 and 4.9-fold after pretreatment with eugenol, carvacrol and limonene, respectively. The lag time, in turn, was shortened in the pretreated samples. The DSC and FT-IR analyzes suggested that transport of BZN through the buccal mucosa is associated with log P and size of monoterpenes. Limonene, the most effective absorption enhancer, contributed to greater interaction with non-polar domains of the buccal epithelium. Overall, BZN showed to be efficiently transported through the buccal route, but in vivo pharmacokinetic studies should be performed to confirm these findings.
Collapse
|
22
|
Zheng L, Zhao Z, Yang Y, Li Y, Wang C. Novel skin permeation enhancers based on amino acid ester ionic liquid: Design and permeation mechanism. Int J Pharm 2020; 576:119031. [DOI: 10.1016/j.ijpharm.2020.119031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/15/2019] [Accepted: 01/10/2020] [Indexed: 12/16/2022]
|
23
|
Pena AM, Chen X, Pence IJ, Bornschlögl T, Jeong S, Grégoire S, Luengo GS, Hallegot P, Obeidy P, Feizpour A, Chan KF, Evans CL. Imaging and quantifying drug delivery in skin - Part 2: Fluorescence andvibrational spectroscopic imaging methods. Adv Drug Deliv Rev 2020; 153:147-168. [PMID: 32217069 PMCID: PMC7483684 DOI: 10.1016/j.addr.2020.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 03/10/2020] [Accepted: 03/18/2020] [Indexed: 01/31/2023]
Abstract
Understanding the delivery and diffusion of topically-applied drugs on human skin is of paramount importance in both pharmaceutical and cosmetics research. This information is critical in early stages of drug development and allows the identification of the most promising ingredients delivered at optimal concentrations to their target skin compartments. Different skin imaging methods, invasive and non-invasive, are available to characterize and quantify the spatiotemporal distribution of a drug within ex vivo and in vivo human skin. The first part of this review detailed invasive imaging methods (autoradiography, MALDI and SIMS). This second part reviews non-invasive imaging methods that can be applied in vivo: i) fluorescence (conventional, confocal, and multiphoton) and second harmonic generation microscopies and ii) vibrational spectroscopic imaging methods (infrared, confocal Raman, and coherent Raman scattering microscopies). Finally, a flow chart for the selection of imaging methods is presented to guide human skin ex vivo and in vivo drug delivery studies.
Collapse
Affiliation(s)
- Ana-Maria Pena
- L'Oréal Research and Innovation, 1 avenue Eugène Schueller BP22, 93600 Aulnay-sous-Bois, France
| | - Xueqin Chen
- L'Oréal Research and Innovation, 1 avenue Eugène Schueller BP22, 93600 Aulnay-sous-Bois, France
| | - Isaac J Pence
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, CNY149-3, 13(th) St, Charlestown, MA 02129, United States of America
| | - Thomas Bornschlögl
- L'Oréal Research and Innovation, 1 avenue Eugène Schueller BP22, 93600 Aulnay-sous-Bois, France
| | - Sinyoung Jeong
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, CNY149-3, 13(th) St, Charlestown, MA 02129, United States of America
| | - Sébastien Grégoire
- L'Oréal Research and Innovation, 1 avenue Eugène Schueller BP22, 93600 Aulnay-sous-Bois, France.
| | - Gustavo S Luengo
- L'Oréal Research and Innovation, 1 avenue Eugène Schueller BP22, 93600 Aulnay-sous-Bois, France
| | - Philippe Hallegot
- L'Oréal Research and Innovation, 1 avenue Eugène Schueller BP22, 93600 Aulnay-sous-Bois, France
| | - Peyman Obeidy
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, CNY149-3, 13(th) St, Charlestown, MA 02129, United States of America
| | - Amin Feizpour
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, CNY149-3, 13(th) St, Charlestown, MA 02129, United States of America
| | - Kin F Chan
- Simpson Interventions, Inc., Woodside, CA 94062, United States of America
| | - Conor L Evans
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, CNY149-3, 13(th) St, Charlestown, MA 02129, United States of America.
| |
Collapse
|
24
|
Ali A, Wahlgren M, Pedersen L, Engblom J. Will a water gradient in oral mucosa affect transbuccal drug absorption? J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Binder L, Kulovits EM, Petz R, Ruthofer J, Baurecht D, Klang V, Valenta C. Penetration monitoring of drugs and additives by ATR-FTIR spectroscopy/tape stripping and confocal Raman spectroscopy - A comparative study. Eur J Pharm Biopharm 2018; 130:214-223. [PMID: 29981829 DOI: 10.1016/j.ejpb.2018.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 10/28/2022]
Abstract
Vibrational spectroscopy is a useful tool for analysis of skin properties and to confirm the penetration of drugs and other formulation compounds into the skin. In particular, attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and confocal Raman spectroscopy (CRS) have been optimised for skin analysis. Despite an impressive amount of data on these techniques, a comparative methodological assessment for skin penetration monitoring of model substances is still amiss. Thus, in vitro skin penetration studies were conducted in parallel using the same porcine material and four model substances, namely sodium laureth sulfate (SLES), sodium dodecyl sulfate (SDS), sulfathiazole sodium (STZ) and dimethyl sulfoxide (DMSO). ATR-FTIR spectroscopy in combination with tape stripping and CRS were employed to evaluate the skin penetration of the applied substances. In addition, the skin hydration status or change in skin hydration after application was investigated. The results show that both methods provide valuable information on the skin penetration potential of applied substances. The penetration profiles determined by CRS or ATR-FTIR/tape stripping were comparable for all substances; a slow decrease in relative substance concentration was visible from the skin surface inwards within the stratum corneum (SC). In general, deeper penetration into the SC was observed with CRS, which may be related to the depth resolution of the employed device. However, when related to the respective total SC thickness of each experiment, the penetration depths determined by parallel CRS and ATR-FTIR analysis were in good agreement for all model substances. The observed order of the penetration depth was DMSO > SDS > SLES > STZ with both techniques. A decrease of the relative concentration to 10% of the maximum value was found approximately between 34 and 89% of total SC thickness. Summarising these findings, advantages and drawbacks of the two techniques for in vitro skin penetration studies are discussed.
Collapse
Affiliation(s)
- Lisa Binder
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria
| | - Eva Maria Kulovits
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria
| | - Romana Petz
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria
| | - Johanna Ruthofer
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria
| | - Dieter Baurecht
- University of Vienna, Department of Physical Chemistry, Faculty of Chemistry, Währingerstraße 42, 1090 Vienna, Austria
| | - Victoria Klang
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria; University of Vienna, Research Platform 'Characterisation of Drug Delivery Systems on Skin and Investigation of Involved Mechanisms', Althanstraße 14, 1090 Vienna, Austria.
| | - Claudia Valenta
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria; University of Vienna, Research Platform 'Characterisation of Drug Delivery Systems on Skin and Investigation of Involved Mechanisms', Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|
26
|
Ionic liquid – microemulsions assisting in the transdermal delivery of Dencichine: Preparation, in-vitro and in-vivo evaluations, and investigation of the permeation mechanism. Int J Pharm 2018; 535:120-131. [DOI: 10.1016/j.ijpharm.2017.10.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/18/2017] [Accepted: 10/11/2017] [Indexed: 01/23/2023]
|
27
|
Jeništová A, Dendisová M, Matějka P. Study of plasmonic nanoparticles interactions with skin layers by vibrational spectroscopy. Eur J Pharm Biopharm 2017; 116:85-93. [DOI: 10.1016/j.ejpb.2016.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 10/06/2016] [Accepted: 12/19/2016] [Indexed: 12/26/2022]
|
28
|
Bernal-Chávez SA, Pérez-Carreto LY, Nava-Arzaluz MG, Ganem-Rondero A. Alkylglycerol Derivatives, a New Class of Skin Penetration Modulators. Molecules 2017; 22:molecules22010185. [PMID: 28117757 PMCID: PMC6155712 DOI: 10.3390/molecules22010185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/03/2017] [Accepted: 01/17/2017] [Indexed: 12/02/2022] Open
Abstract
The absorption modulating activity of two alkylglycerol derivatives (batyl and chimyl alcohol) on skin barrier properties was evaluated. Biophysical tests such as transepidermal water loss (TEWL) and attenuated total reflectance–Fourier transform infrared (ATR-FTIR) spectroscopy, as well as in vitro skin permeation studies, were performed in order to determine the effect of these compounds as chemical absorption modulators. Four drugs were used as models: three NSAIDS (diclofenac, naproxen, and piroxicam) and glycyrrhizic acid. The results showed that treatment of the skin with alkylglycerols caused (i) a reduction on the amount of drug permeated; (ii) a reduction in TEWL; and (iii) changes in the ATR-FTIR peaks of stratum corneum lipids, indicative of a more ordered structure. All of these findings confirm that alkyl glycerols have an absorption retarding effect on the drugs tested. Such effects are expected to give rise to important applications in the pharmaceutical and cosmetic sectors, in cases where it is desirable for the drug to remain in the superficial layers of the skin to achieve a local effect.
Collapse
Affiliation(s)
- Sergio Alberto Bernal-Chávez
- Division de Estudios de Posgrado (Tecnología Farmacéutica), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de Mexico, Cuautitlán Izcalli 54740, Estado de Mexico, Mexico.
| | - Lilia Yazmín Pérez-Carreto
- Division de Estudios de Posgrado (Tecnología Farmacéutica), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de Mexico, Cuautitlán Izcalli 54740, Estado de Mexico, Mexico.
| | - María Guadalupe Nava-Arzaluz
- Division de Estudios de Posgrado (Tecnología Farmacéutica), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de Mexico, Cuautitlán Izcalli 54740, Estado de Mexico, Mexico.
| | - Adriana Ganem-Rondero
- Division de Estudios de Posgrado (Tecnología Farmacéutica), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de Mexico, Cuautitlán Izcalli 54740, Estado de Mexico, Mexico.
| |
Collapse
|
29
|
Drug delivery techniques for buccal route: formulation strategies and recent advances in dosage form design. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2016. [DOI: 10.1007/s40005-016-0281-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Ruela ALM, Perissinato AG, Lino MEDS, Mudrik PS, Pereira GR. Evaluation of skin absorption of drugs from topical and transdermal formulations. BRAZ J PHARM SCI 2016. [DOI: 10.1590/s1984-82502016000300018] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
31
|
Wang J, Dong C, Song Z, Zhang W, He X, Zhang R, Guo C, Zhang C, Li F, Wang C, Yuan C. Monocyclic monoterpenes as penetration enhancers of ligustrazine hydrochloride for dermal delivery. Pharm Dev Technol 2016; 22:571-577. [PMID: 27269134 DOI: 10.1080/10837450.2016.1189936] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The purpose of this study was to explore the enhancing effects and the mechanism of monocyclic monoterpene penetration enhancers (menthol and menthone) on the transdermal absorption of ligustrazine hydrochloride (LH). Franz-type diffusion cells were used to determine percutaneous parameters of LH in vitro and surface changes of porcine skin were studied by a scanning electron microscope (SEM). The effects of promoters on the biophysical natures of stratum corneum (SC) were researched by Fourier transform-infrared (FT-IR). Penetration parameters of menthol (p < 0.01) and menthone groups (p < 0.05) were greater than those of the control; morphological changes of skin monitored by SEM demonstrated that the menthone group had the most disruption and desquamation of SC flakes, which resulted from extracted lipids. FT-IR measurements showed menthone had the greatest changes in peak shift and peak area, which resulted from C-H stretching vibrations of SC lipids. The results suggest that the penetration mechanism might include disturbing and extracting SC lipids and the hydrogen bond connection.
Collapse
Affiliation(s)
- Jiaoying Wang
- a State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , PR China
| | - Cuilan Dong
- b The People's Hospital of Zhangqiu , Zhangqiu , PR China
| | - Zijing Song
- a State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , PR China
| | - Wenjun Zhang
- a State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , PR China
| | - Xin He
- c School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing , PR China
| | - Runqi Zhang
- a State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , PR China
| | - Changrun Guo
- a State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , PR China
| | - Chunfeng Zhang
- a State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , PR China.,d Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care , University of Chicago , Chicago , IL , USA
| | - Fei Li
- a State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , PR China
| | - Chongzhi Wang
- d Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care , University of Chicago , Chicago , IL , USA
| | - Chunsu Yuan
- d Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care , University of Chicago , Chicago , IL , USA
| |
Collapse
|
32
|
Erdal MS, Özhan G, Mat MC, Özsoy Y, Güngör S. Colloidal nanocarriers for the enhanced cutaneous delivery of naftifine: characterization studies and in vitro and in vivo evaluations. Int J Nanomedicine 2016; 11:1027-37. [PMID: 27042058 PMCID: PMC4798209 DOI: 10.2147/ijn.s96243] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In topical administration of antifungals, the drugs should pass the stratum corneum to reach lower layers of the skin in effective concentrations. Thus, the formulation of antifungal agents into a suitable delivery system is important for the topical treatment of fungal infections. Nanosized colloidal carriers have gained great interest during the recent years to serve as efficient promoters of drug penetration into the skin. Microemulsions are soft colloidal nanosized drug carriers, which are thermodynamically stable and isotropic systems. They have been extensively explored for the enhancement of skin delivery of drugs. This study was carried out to exploit the feasibility of colloidal carriers as to improve skin transport of naftifine, which is an allylamine antifungal drug. The microemulsions were formulated by construction of pseudoternary phase diagrams and composed of oleic acid (oil phase), Kolliphor® EL or Kolliphor® RH40 (surfactant), Transcutol® (cosurfactant), and water (aqueous phase). The plain and drug-loaded microemulsions were characterized in terms of isotropy, particle size and size distribution, pH value, refractive index, viscosity, and conductivity. The in vitro skin uptake of naftifine from microemulsions was studied using tape stripping technique in pig skin. The drug penetrated significantly into stratum corneum from microemulsions compared to its marketed cream (P<0.05). Moreover, the microemulsion formulations led to highly significant amount of naftifine deposition in deeper layers of skin than that of commercial formulation (P<0.001). Microemulsion–skin interaction was confirmed by attenuated total reflectance – Fourier transformed infrared spectroscopy data, in vitro. The results of the in vivo tape stripping experiment showed similar trends as the in vitro skin penetration study. Topical application of the microemulsion on human forearms in vivo enhanced significantly the distribution and the amount of naftifine penetrated into the stratum corneum as compared to the marketed formulation (P<0.05). The relative safety of the microemulsion formulations was demonstrated with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide viability test. This study indicated that the nanosized colloidal carriers developed could be considered as an effective and safe topical delivery system for naftifine.
Collapse
Affiliation(s)
- M Sedef Erdal
- Department of Pharmaceutical Technology, Cerrahpaşa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Gül Özhan
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Cerrahpaşa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - M Cem Mat
- Department of Dermatology, Cerrahpaşa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Yıldız Özsoy
- Department of Pharmaceutical Technology, Cerrahpaşa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Sevgi Güngör
- Department of Pharmaceutical Technology, Cerrahpaşa Medical Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
33
|
Kontogiannidou E, Andreadis DA, Zografos AL, Nazar H, Klepetsanis P, van der Merwe SM, Fatouros DG. Ex vivo buccal drug delivery of ropinirole hydrochloride in the presence of permeation enhancers: the effect of charge. Pharm Dev Technol 2016; 22:1017-1021. [PMID: 26794504 DOI: 10.3109/10837450.2015.1135343] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In the current study, the ex vivo permeation of ropinirole hydrochloride (RH) across porcine buccal mucosa in the presence of three permeation enhancers, namely N-trimethyl chitosan (TMC) (positively charged) a chitosan derivative, sulfobutyl ether-β-cyclodextrin (SBE-β-CD) (negatively charged) and hydroxypropyl-β-cyclodextrin (HP-β-CD) (neutral), was investigated. Buccal permeation studies were conducted using Franz diffusion cells. Cumulative amounts of RH were plotted versus time. The presence of the permeation enhancers significantly increased the transport of the drug across the porcine buccal epithelium compared to its plain congener (RH solution). The rank order effect of the permeation enhancers for the transport of RH across buccal epithelium was TMC ≥ SBE-β-CD > HP-β-CD > RH solution. The presence of TMC increased 1.34-fold the transport of RH across buccal epithelium, whereas an increase of 1.23- and 1.28-fold was reported in the presence of HP-β-CD and SBE-β-CD, respectively. Infrared spectroscopy (IR) was employed to investigate the interaction of permeation enhancers with the epithelial lipids of porcine buccal mucosa corroborating the permeation results. Finally, light microscopy was performed to assess the histological changes in the porcine epithelium. Formation of vacuoles, spongiosis and acantholysis linear detachment and destruction of the epithelium resulted from the presence of the permeation enhancers. The data suggest that all enhancers tested, and particularly TMC, increase the transport of RH across buccal epithelium.
Collapse
Affiliation(s)
- Eleni Kontogiannidou
- a Laboratory of Pharmaceutical Technology , Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki , Thessaloniki , Greece
| | - Dimitrios A Andreadis
- b Department of Oral Medicine/Pathology , School of Dentistry, Aristotle University of Thessaloniki , Thessaloniki , Greece
| | - Alexandros L Zografos
- c Laboratory of Organic Chemistry , Department of Chemistry, Aristotle University of Thessaloniki , Thessaloniki , Greece
| | - Hamde Nazar
- d School of Medicine, Pharmacy and Health, Durham University , Stockton on Tees , UK
| | - Pavlos Klepetsanis
- e Laboratory of Pharmaceutical Technology , Department of Pharmaceutical Sciences, University of Patras , Patras , Greece , and
| | | | - Dimitrios G Fatouros
- a Laboratory of Pharmaceutical Technology , Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki , Thessaloniki , Greece
| |
Collapse
|
34
|
Zhang D, Wang HJ, Cui XM, Wang CX. Evaluations of imidazolium ionic liquids as novel skin permeation enhancers for drug transdermal delivery. Pharm Dev Technol 2016; 22:511-520. [DOI: 10.3109/10837450.2015.1131718] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Ding Zhang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Huai-Ji Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiu-Ming Cui
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Cheng-Xiao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
35
|
Sa G, Xiong X, Wu T, Yang J, He S, Zhao Y. Histological features of oral epithelium in seven animal species: As a reference for selecting animal models. Eur J Pharm Sci 2016; 81:10-7. [DOI: 10.1016/j.ejps.2015.09.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 09/22/2015] [Accepted: 09/28/2015] [Indexed: 10/23/2022]
|
36
|
Abd-Elbary A, Makky AM, Tadros MI, Alaa-Eldin AA. Laminated sponges as challenging solid hydrophilic matrices for the buccal delivery of carvedilol microemulsion systems: Development and proof of concept via mucoadhesion and pharmacokinetic assessments in healthy human volunteers. Eur J Pharm Sci 2016; 82:31-44. [DOI: 10.1016/j.ejps.2015.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/28/2015] [Accepted: 11/03/2015] [Indexed: 10/22/2022]
|
37
|
Suzuki H, Koizumi H, Ikezaki S, Tabata T, Ohkubo JI, Kitamura T, Hohchi N. Electrical Impedance and Expression of Tight Junction Components of the Nasal Turbinate and Polyp. ORL J Otorhinolaryngol Relat Spec 2015; 78:16-25. [PMID: 26633876 DOI: 10.1159/000442024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/26/2015] [Indexed: 11/19/2022]
Abstract
PURPOSE We investigated the electrical impedance and expression of tight junction components of the turbinate mucosa, nasal polyp, and normal skin. PROCEDURES The inferior turbinate and nasal polyp of patients with chronic rhinosinusitis and the postauricular skin of patients with otitis media were examined. Electrical impedance was measured in vivo using a tissue conductance meter. Expressions of claudin-1 and tricellulin were examined by fluorescence immunohistochemistry and quantitative RT-PCR. RESULTS Electrical impedance was higher in the skin than in the turbinate and polyp, but did not differ between the turbinate and polyp. Immunoreactivities for claudin-1 and tricellulin were seen in the epithelial/epidermal layer. Expression of claudin-1 was higher in the skin than in the turbinate and polyp. The polyp tended to show higher expression of claudin-1 but showed lower expression of tricellulin than the turbinate. The ratio of claudin-1 to tricellulin was highest in the skin and lowest in the turbinate. The correlation between expressions of the two tight junction components was strongly positive in the skin (r = 0.964) and negative (r = -0.527) in the turbinate and polyp. CONCLUSIONS These results suggest that the roles of claudin-1 and tricellulin in barrier function may be complementary, and may thereby maintain a constant level of permeability of the mucosal tissues.
Collapse
Affiliation(s)
| | - Hiroki Koizumi
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Colloidal carriers of isotretinoin for topical acne treatment: skin uptake, ATR-FTIR and in vitro cytotoxicity studies. Arch Dermatol Res 2015; 307:607-15. [DOI: 10.1007/s00403-015-1566-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/20/2015] [Accepted: 04/11/2015] [Indexed: 10/23/2022]
|
39
|
Hoppel M, Holper E, Baurecht D, Valenta C. Monitoring the distribution of surfactants in the stratum corneum by combined ATR-FTIR and tape-stripping experiments. Skin Pharmacol Physiol 2015; 28:167-75. [PMID: 25612540 DOI: 10.1159/000368444] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 09/18/2014] [Indexed: 11/19/2022]
Abstract
Combined ATR-FTIR (attenuated total reflection-Fourier transform infrared) spectroscopy and tape-stripping experiments in vitro on porcine ear skin were used to investigate the spatial distribution of different surfactants in the stratum corneum (SC). To reveal a possible connection between the size of the formed micelles and skin penetration, dynamic light-scattering measurements of the aqueous surfactant solutions were also taken. Compared to an alkyl polyglycoside and sucrose laurate, a deeper skin penetration of the anionic surfactants sodium dodecyl sulfate (SDS) und sodium lauryl ether sulfate (SLES) could be related to a smaller size of the formed micelles. Beside the differences in spatial distribution, a link between the physical presence of anionic surfactants in the SC and a decrease of skin hydration was found. Furthermore, the incorporation of SDS and SLES into the SC, even after a brief, consumer-orientated washing procedure with commercially available hair shampoos, was confirmed.
Collapse
Affiliation(s)
- Magdalena Hoppel
- Research Platform 'Characterisation of Drug Delivery Systems on Skin and Investigations of Involved Mechanisms', University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
40
|
Gonçalves RP, da Silva FFF, Picciani PHS, Dias ML. Morphology and Thermal Properties of Core-Shell PVA/PLA Ultrafine Fibers Produced by Coaxial Electrospinning. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/msa.2015.62022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Validation of the combined ATR-FTIR/tape stripping technique for monitoring the distribution of surfactants in the stratum corneum. Int J Pharm 2014; 472:88-93. [DOI: 10.1016/j.ijpharm.2014.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/07/2014] [Indexed: 11/20/2022]
|
42
|
Amores S, Domenech J, Colom H, Calpena AC, Clares B, Gimeno Á, Lauroba J. An improved cryopreservation method for porcine buccal mucosa in ex vivo drug permeation studies using Franz diffusion cells. Eur J Pharm Sci 2014; 60:49-54. [DOI: 10.1016/j.ejps.2014.04.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 04/21/2014] [Accepted: 04/26/2014] [Indexed: 10/25/2022]
|
43
|
Simultaneous analysis of skin penetration of surfactant and active drug from fluorosurfactant-based microemulsions. Eur J Pharm Biopharm 2014; 88:34-9. [PMID: 24892508 DOI: 10.1016/j.ejpb.2014.04.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/17/2014] [Accepted: 04/28/2014] [Indexed: 11/21/2022]
Abstract
The purpose of this study was to investigate the penetrated amount of the incorporated model drug diclofenac-sodium and of a fluorosurfactant as specific vehicle constituent of topically applied microemulsions at the same time. To this end, the penetration depth of each compound was elucidated through tape stripping studies by the simultaneous quantification of diclofenac-sodium and the fluorosurfactant from the same sample. A new approach was made by using the very sensitive and specific (19)F NMR (nuclear magnetic resonance) for quantification of the fluorinated vehicle component. The tape stripping experiments with the microemulsions showed an almost similar penetration velocity of diclofenac-sodium and fluorosurfactant, suggesting that the surfactant within the microemulsion-structure intensified the stratum corneum uptake of the incorporated active constituent. Moreover, ATR-FTIR studies on porcine ear skin revealed significant shifts of the CH₂ stretching absorbances, which are associated with an enhanced disorder of the SC lipids resulting in a decreased skin barrier function, after application of the microemulsions. However, the application of pure fluorosurfactant did not cause any shifts in the CH₂ stretching absorbances. It can be thereby concluded that the prepared microemulsions exerted specific effects on skin integrity resulting in a "push" of diclofenac-sodium penetration.
Collapse
|
44
|
Madheswaran T, Baskaran R, Yong CS, Yoo BK. Enhanced topical delivery of finasteride using glyceryl monooleate-based liquid crystalline nanoparticles stabilized by cremophor surfactants. AAPS PharmSciTech 2014; 15:44-51. [PMID: 24222268 DOI: 10.1208/s12249-013-0034-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/10/2013] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to investigate the capability of two surfactants, Cremophor RH 40 (RH) and Cremophor EL (EL), to prepare liquid crystalline nanoparticles (LCN) and to study its influence on the topical delivery of finasteride (FNS). FNS-loaded LCN was formulated with the two surfactants and characterized for size distribution, morphology, entrapment efficiency, in vitro drug release, and skin permeation/retention. Influence of FNS-loaded LCN on the conformational changes on porcine skin was also studied using attenuated total reflectance Fourier-transform infrared spectroscopy. Transmission electron microscopical image confirmed the formation of LCN. The average particle size of formulations was in the range of 165.1-208.6 and 153.7-243.0 nm, respectively. The formulations prepared with higher surfactant concentrations showed faster release and significantly increased skin permeation. Specifically, LCN prepared with RH 2.5% presented higher permeation flux (0.100 ± 0.005 μgcm(-2)h(-1)) compared with lower concentration (0.029 ± 0.007 μgcm(-2)h(-1)). Typical spectral bands of lipid matrix of porcine skin were shifted to higher wavenumber, indicating increased degree of disorder of the lipid acyl chains which might cause fluidity increase of stratum corneum. Taken together, Cremophor surfactants exhibited a promising potential to stabilize the LCN and significantly augmented the skin permeation of FNS.
Collapse
|
45
|
Hoppel M, Mahrhauser D, Stallinger C, Wagner F, Wirth M, Valenta C. Natural polymer-stabilized multiple water-in-oil-in-water emulsions: a novel dermal drug delivery system for 5-fluorouracil. J Pharm Pharmacol 2013; 66:658-67. [DOI: 10.1111/jphp.12194] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 11/16/2013] [Indexed: 12/26/2022]
Abstract
Abstract
Objectives
The aim of this study was to create multiple water-in-oil-in-water (W/O/W) emulsions with an increased long-term stability as skin delivery systems for the hydrophilic model drug 5-fluorouracil.
Methods
Multiple W/O/W emulsions were prepared in a one-step emulsification process, and were characterized regarding particle size, microstructure and viscosity. In-vitro studies on porcine skin with Franz-type diffusion cells, tape stripping experiments and attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR) were performed.
Key findings
The addition of Solagum AX, a natural polymer mixture of acacia and xanthan gum, led to multiple W/O/W emulsions with a remarkably increased long-term stability in comparison to formulations without a thickener. The higher skin diffusion of 5-fluorouracil from the multiple emulsions compared with an O/W-macroemulsion could be explained by ATR-FTIR. Shifts to higher wave numbers and increase of peak areas of the asymmetric and symmetric CH2 stretching vibrations confirmed a transition of parts of the skin lipids from an ordered to a disordered state after impregnation of porcine skin with the multiple emulsions.
Conclusions
Solagum AX is highly suitable for stabilization of the created multiple emulsions. Moreover, these formulations showed superiority over a simple O/W-macroemulsion regarding skin permeation and penetration of 5-fluorouracil.
Collapse
Affiliation(s)
- Magdalena Hoppel
- Research Platform ‘Characterisation of Drug Delivery Systems on Skin and Investigations of Involved Mechanisms’, University of Vienna, Vienna, Austria
| | - Denise Mahrhauser
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Christina Stallinger
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Florian Wagner
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Michael Wirth
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Claudia Valenta
- Research Platform ‘Characterisation of Drug Delivery Systems on Skin and Investigations of Involved Mechanisms’, University of Vienna, Vienna, Austria
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| |
Collapse
|