1
|
Kuriya K, Goto S, Kobayashi E, Nishio M, Nakamura M, Umekawa H. Cholesterol-lowering activity of adzuki bean (Vigna angularis) polyphenols. Mol Biol Rep 2023:10.1007/s11033-023-08481-7. [PMID: 37160631 DOI: 10.1007/s11033-023-08481-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 04/21/2023] [Indexed: 05/11/2023]
Abstract
BACKGROUND Adzuki beans (ABs; Vigna angularis) were reported to show potential for prevention of cholesterol absorption and lowering of the blood cholesterol level. However, the main active compounds and some cellular effects remain unknown. In this study, we evaluated the potential cholesterol-lowering effects of (+)-catechin 7-O-β-D-glucopyranoside (C7G) and (+)-epicatechin 7-O-β-D-glucopyranoside (E7G), identified as abundant polyphenols in ABs. METHODS AND RESULTS To investigate the cholesterol-lowering activity in vitro, cholesterol micelles, bile acids, and Caco-2 cells as an intestinal model were used in the study. C7G and E7G each inhibited micellar solubility in a dose-dependent manner, and their inhibitory activity was as strong as that of (+)-catechin (IC50 values: C7G, 0.23 ± 0.03 mg/ml; E7G, 0.22 ± 0.02 mg/ml; (+)-catechin, 0.26 ± 0.11 mg/ml). The AB polyphenols showed binding activity toward bile acids and changed them into an insoluble form. When Caco-2 cells were treated with C7G or E7G, the amount of incorporated cholesterol was significantly decreased compared with vehicle-treated control cells, and no cytotoxicity was observed under the experimental conditions used. Meanwhile, quantitative real-time PCR revealed that the mRNA level of the cholesterol transporter NPC1L1 remained unchanged in the treated cells. CONCLUSIONS Taken together, the present findings suggest that C7G and E7G are the main active compounds in ABs, and have the ability to inhibit micellar solubility, bind to bile acids, and suppress cholesterol absorption. The present study supports the health benefits of ABs as a medicinal food and the application of AB polyphenols as medicinal supplements to suppress cholesterol elevation.
Collapse
Affiliation(s)
- Kenji Kuriya
- Department of Life Sciences, Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514-8507, Japan.
| | - Sayaka Goto
- Department of Life Sciences, Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514-8507, Japan
| | - Erina Kobayashi
- Department of Life Sciences, Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514-8507, Japan
| | - Masahiro Nishio
- Department of Life Sciences, Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514-8507, Japan
| | | | - Hayato Umekawa
- Department of Life Sciences, Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
2
|
Hersi F, Sebastian A, Tarazi H, Srinivasulu V, Mostafa A, Allayeh AK, Zeng C, Hachim IY, Liu SL, Abu-Yousef IA, Majdalawieh AF, Zaher DM, Omar HA, Al-Tel TH. Discovery of novel papain-like protease inhibitors for potential treatment of COVID-19. Eur J Med Chem 2023; 254:115380. [PMID: 37075625 PMCID: PMC10106510 DOI: 10.1016/j.ejmech.2023.115380] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/09/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
The recent emergence of different SARS-CoV-2 variants creates an urgent need to develop more effective therapeutic agents to prevent COVID-19 outbreaks. Among SARS-CoV-2 essential proteases is papain-like protease (SARS-CoV-2 PLpro), which plays multiple roles in regulating SARS-CoV-2 viral spread and innate immunity such as deubiquitinating and deISG15ylating (interferon-induced gene 15) activities. Many studies are currently focused on targeting this protease to tackle SARS-CoV-2 infection. In this context, we performed a phenotypic screening using an in-house pilot compounds collection possessing a diverse skeleta against SARS-CoV-2 PLpro. This screen identified SIMR3030 as a potent inhibitor of SARS-CoV-2. SIMR3030 has been shown to exhibit deubiquitinating activity and inhibition of SARS-CoV-2 specific gene expression (ORF1b and Spike) in infected host cells and possessing virucidal activity. Moreover, SIMR3030 was demonstrated to inhibit the expression of inflammatory markers, including IFN-α, IL-6, and OAS1, which are reported to mediate the development of cytokine storms and aggressive immune responses. In vitro absorption, distribution, metabolism, and excretion (ADME) assessment of the drug-likeness properties of SIMR3030 demonstrated good microsomal stability in liver microsomes. Furthermore, SIMR3030 demonstrated very low potency as an inhibitor of CYP450, CYP3A4, CYP2D6 and CYP2C9 which rules out any potential drug-drug interactions. In addition, SIMR3030 showed moderate permeability in Caco2-cells. Critically, SIMR3030 has maintained a high in vivo safety profile at different concentrations. Molecular modeling studies of SIMR3030 in the active sites of SARS-CoV-2 and MERS-CoV PLpro were performed to shed light on the binding modes of this inhibitor. This study demonstrates that SIMR3030 is a potent inhibitor of SARS-CoV-2 PLpro that forms the foundation for developing new drugs to tackle the COVID-19 pandemic and may pave the way for the development of novel therapeutics for a possible future outbreak of new SARS-CoV-2 variants or other Coronavirus species.
Collapse
Affiliation(s)
- Fatema Hersi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Anusha Sebastian
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hamadeh Tarazi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Vunnam Srinivasulu
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, Environment and Climate Change Institute, National Research Centre, Giza, 12622, Egypt
| | - Abdou Kamal Allayeh
- Virology Lab 176, Water Pollution Research Department, Environment and Climate Change Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Cong Zeng
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, 43210, USA; Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Ibrahim Y Hachim
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, 43210, USA; Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Imad A Abu-Yousef
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - Amin F Majdalawieh
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - Dana M Zaher
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hany A Omar
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| | - Taleb H Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
3
|
Chen J, Yuan Z, Tu Y, Hu W, Xie C, Ye L. Experimental and computational models to investigate intestinal drug permeability and metabolism. Xenobiotica 2023; 53:25-45. [PMID: 36779684 DOI: 10.1080/00498254.2023.2180454] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Oral administration is the preferred route for drug administration that leads to better therapy compliance. The intestine plays a key role in the absorption and metabolism of oral drugs, therefore, new intestinal models are being continuously proposed, which contribute to the study of intestinal physiology, drug screening, drug side effects, and drug-drug interactions.Advances in pharmaceutical processes have produced more drug formulations, causing challenges for intestinal models. To adapt to the rapid evolution of pharmaceuticals, more intestinal models have been created. However, because of the complexity of the intestine, few models can take all aspects of the intestine into account, and some functions must be sacrificed to investigate other areas. Therefore, investigators need to choose appropriate models according to the experimental stage and other requirements to obtain the desired results.To help researchers achieve this goal, this review summarised the advantages and disadvantages of current commonly used intestinal models and discusses possible future directions, providing a better understanding of intestinal models.
Collapse
Affiliation(s)
- Jinyuan Chen
- Institute of Scientific Research, Southern Medical University, Guangzhou, P.R. China.,TCM-Integrated Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Ziyun Yuan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Yifan Tu
- Boehringer-Ingelheim, Connecticut, P.R. USA
| | - Wanyu Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Cong Xie
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Ling Ye
- TCM-Integrated Hospital, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
4
|
Application of Fucoidan in Caco-2 Model Establishment. Pharmaceuticals (Basel) 2022; 15:ph15040418. [PMID: 35455415 PMCID: PMC9024647 DOI: 10.3390/ph15040418] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 11/17/2022] Open
Abstract
The Caco-2 model is a common cell model for material intestinal absorption in vitro, which usually takes 21 days to establish. Although some studies have shown that adding puromycin (PM) can shorten the model establishment period to 7 days, this still requires a long modeling time. Therefore, exploring a shorter modeling method can reduce the experimental costs and promote the development and application of the model. Fucoidan is an acidic polysaccharide with various biological activities. Our study showed that the transepithelial electrical resistance (TEER) value could reach 600 Ω·cm2 on the fourth day after the addition of fucoidan and puromycin, which met the applicable standards of the model (>500 Ω). Moreover, the alkaline phosphatase (AKP) activity, fluorescein sodium transmittance, and cell morphology of this model all met the requirements of model establishment. Fucoidan did not affect the absorption of macromolecular proteins and drugs. The results indicate that fucoidan can be applied to establish the Caco-2 model and can shorten the model establishment period to 5 days.
Collapse
|
5
|
Rowaiye AB, Ogugua AJ, Ibeanu G, Bur D, Asala MT, Ogbeide OB, Abraham EO, Usman HB. Identifying potential natural inhibitors of Brucella melitensis Methionyl-tRNA synthetase through an in-silico approach. PLoS Negl Trop Dis 2022; 16:e0009799. [PMID: 35312681 PMCID: PMC8970508 DOI: 10.1371/journal.pntd.0009799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/31/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
Background Brucellosis is an infectious disease caused by bacteria of the genus Brucella. Although it is the most common zoonosis worldwide, there are increasing reports of drug resistance and cases of relapse after long term treatment with the existing drugs of choice. This study therefore aims at identifying possible natural inhibitors of Brucella melitensis Methionyl-tRNA synthetase through an in-silico approach. Methods Using PyRx 0.8 virtual screening software, the target was docked against a library of natural compounds obtained from edible African plants. The compound, 2-({3-[(3,5-dichlorobenzyl) amino] propyl} amino) quinolin-4(1H)-one (OOU) which is a co-crystallized ligand with the target was used as the reference compound. Screening of the molecular descriptors of the compounds for bioavailability, pharmacokinetic properties, and bioactivity was performed using the SWISSADME, pkCSM, and Molinspiration web servers respectively. The Fpocket and PLIP webservers were used to perform the analyses of the binding pockets and the protein ligand interactions. Analysis of the time-resolved trajectories of the Apo and Holo forms of the target was performed using the Galaxy and MDWeb servers. Results The lead compounds, Strophanthidin and Isopteropodin are present in Corchorus olitorius and Uncaria tomentosa (Cat’s-claw) plants respectively. Isopteropodin had a binding affinity score of -8.9 kcal / ml with the target and had 17 anti-correlating residues in Pocket 1 after molecular dynamics simulation. The complex formed by Isopteropodin and the target had a total RMSD of 4.408 and a total RMSF of 9.8067. However, Strophanthidin formed 3 hydrogen bonds with the target at ILE21, GLY262 and LEU294, and induced a total RMSF of 5.4541 at Pocket 1. Conclusion Overall, Isopteropodin and Strophanthidin were found to be better drug candidates than OOU and they showed potentials to inhibit the Brucella melitensis Methionyl-tRNA synthetase at Pocket 1, hence abilities to treat brucellosis. In-vivo and in-vitro investigations are needed to further evaluate the efficacy and toxicity of the lead compounds. The cure for brucellosis involves a long course of treatment with a combination of antibiotics. However, some of the drugs are not recommended for very young children and pregnant women. Moreover, cases of relapse and resistance to these drugs are reported. With the Brucella Methionyl-tRNA synthetase as a target, molecular docking and virtual screening was used to identify possible drug candidates from a library of 1524 compounds obtained from edible African plants. Two lead compounds, Strophanthidin and Isopteropodin usually present in Corchorus olitorius and Uncaria tomentosa (Cat’s claw) plants showed potentials to inhibit the Brucella melitensis Methionyl-tRNA synthetase. Their bioactivities were also confirmed in their molecular dynamic simulation with the target protein. Consequently, both compounds have potentials for safety and efficacy in the treatment of brucellosis.
Collapse
Affiliation(s)
| | - Akwoba Joseph Ogugua
- Department of Veterinary Public Health and Preventive Medicine, University of Nigeria, Nsukka, Nigeria
- * E-mail:
| | - Gordon Ibeanu
- Department of Pharmaceutical Science, North Carolina Central University, Durham, North Carolina, United States of America
| | - Doofan Bur
- Department of Medical Biotechnology, National Biotechnology Development Agency, Abuja, Nigeria
| | - Mercy Titilayo Asala
- Department of Medical Biotechnology, National Biotechnology Development Agency, Abuja, Nigeria
| | | | | | - Hamzah Bundu Usman
- Department of Plant Science and Biotechnology, Federal University Gusau, Gusau, Nigeria
| |
Collapse
|
6
|
Kleiner Y, Pöverlein C, Klädtke J, Kurz M, König HF, Becker J, Mihajlovic S, Zubeil F, Marner M, Vilcinskas A, Schäberle TF, Hammann P, Schuler SMM, Bauer A. The Discovery and Structure-Activity Evaluation of (+)-Floyocidin B and Synthetic Analogs. ChemMedChem 2021; 17:e202100644. [PMID: 34699131 PMCID: PMC9298916 DOI: 10.1002/cmdc.202100644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Indexed: 11/29/2022]
Abstract
Tuberculosis represents one of the ten most common courses of death worldwide and the emergence of multidrug‐resistant M. tuberculosis makes the discovery of novel anti‐tuberculosis active structures an urgent priority. Here, we show that (+)‐floyocidin B representing the first example of a novel dihydroisoquinoline class of fungus‐derived natural products, displays promising antitubercular hit properties. (+)‐Floyocidin B was identified by activity‐guided extract screening and its structure was unambiguously determined by total synthesis. The absolute configuration was deduced from a key synthesis intermediate by single crystal X‐ray diffraction analysis. A hit series was generated by the isolation of further natural congeners and the synthesis of analogs of (+)‐floyocidin B. Extensive biological and physicochemical profiling of this series revealed first structure‐activity relationships and set the basis for further optimization and development of this novel antitubercular scaffold.
Collapse
Affiliation(s)
- Yolanda Kleiner
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME) (Germany), Ohlebergsweg 12, 35392, Giessen, Germany
| | - Christoph Pöverlein
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Jannike Klädtke
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME) (Germany), Ohlebergsweg 12, 35392, Giessen, Germany.,Biotest AG, Landsteinerstraße 5, 63303, Dreieich, Germany
| | - Michael Kurz
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Henrik F König
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME) (Germany), Ohlebergsweg 12, 35392, Giessen, Germany.,Institute of Organic Chemistry, Institute of Inorganic and Analytical Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Jonathan Becker
- Institute of Organic Chemistry, Institute of Inorganic and Analytical Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Sanja Mihajlovic
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME) (Germany), Ohlebergsweg 12, 35392, Giessen, Germany
| | - Florian Zubeil
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME) (Germany), Ohlebergsweg 12, 35392, Giessen, Germany.,Bruker Daltonik GmbH, Fahrenheitstraße 4, 28359, Bremen, Germany
| | - Michael Marner
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME) (Germany), Ohlebergsweg 12, 35392, Giessen, Germany
| | - Andreas Vilcinskas
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME) (Germany), Ohlebergsweg 12, 35392, Giessen, Germany.,Institute for Insect Biotechnology, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Till F Schäberle
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME) (Germany), Ohlebergsweg 12, 35392, Giessen, Germany.,Institute for Insect Biotechnology, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Peter Hammann
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926, Frankfurt am Main, Germany.,Infectious Diseases - Natural Product Research Evotec International GmbH, Marie-Curie-Straße 7, 37079, Goettingen, Germany
| | - Sören M M Schuler
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME) (Germany), Ohlebergsweg 12, 35392, Giessen, Germany.,Infectious Diseases - Natural Product Research Evotec International GmbH, Marie-Curie-Straße 7, 37079, Goettingen, Germany
| | - Armin Bauer
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| |
Collapse
|
7
|
Xu Y, Shrestha N, Préat V, Beloqui A. An overview of in vitro, ex vivo and in vivo models for studying the transport of drugs across intestinal barriers. Adv Drug Deliv Rev 2021; 175:113795. [PMID: 33989702 DOI: 10.1016/j.addr.2021.05.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022]
Abstract
Oral administration is the most commonly used route for drug delivery owing to its cost-effectiveness, ease of administration, and high patient compliance. However, the absorption of orally delivered compounds is a complex process that greatly depends on the interplay between the characteristics of the drug/formulation and the gastrointestinal tract. In this contribution, we review the different preclinical models (in vitro, ex vivo and in vivo) from their development to application for studying the transport of drugs across intestinal barriers. This review also discusses the advantages and disadvantages of each model. Furthermore, the authors have reviewed the selection and validation of these models and how the limitations of the models can be addressed in future investigations. The correlation and predictability of the intestinal transport data from the preclinical models and human data are also explored. With the increasing popularity and prevalence of orally delivered drugs/formulations, sophisticated preclinical models with higher predictive capacity for absorption of oral formulations used in clinical studies will be needed.
Collapse
Affiliation(s)
- Yining Xu
- University of Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium.
| | - Neha Shrestha
- University of Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium.
| | - Véronique Préat
- University of Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium.
| | - Ana Beloqui
- University of Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium.
| |
Collapse
|
8
|
Price E, Kalvass JC, DeGoey D, Hosmane B, Doktor S, Desino K. Global Analysis of Models for Predicting Human Absorption: QSAR, In Vitro, and Preclinical Models. J Med Chem 2021; 64:9389-9403. [PMID: 34152772 DOI: 10.1021/acs.jmedchem.1c00669] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Models intended to predict intestinal absorption are an essential part of the drug development process. Although many models exist for capturing intestinal absorption, many questions still exist around the applicability of these models to drug types like "beyond rule of 5" (bRo5) and low absorption compounds. This presents a challenge as current models have not been rigorously tested to understand intestinal absorption. Here, we assembled a large, structurally diverse dataset of ∼1000 compounds with known in vitro, preclinical, and human permeability and/or absorption data. In silico (quantitative structure-activity relationship), in vitro (Caco-2), and in vivo (rat) models were statistically evaluated for predictive performance against this human intestinal absorption dataset. We expect this evaluation to serve as a resource for DMPK scientists and medicinal/computational chemists to increase their understanding of permeability and absorption model utility and applications for academia and industry.
Collapse
Affiliation(s)
- Edward Price
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - J Cory Kalvass
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - David DeGoey
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Balakrishna Hosmane
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Stella Doktor
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Kelly Desino
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
9
|
Ahmed I, Leach DN, Wohlmuth H, De Voss JJ, Blanchfield JT. Caco-2 Cell Permeability of Flavonoids and Saponins from Gynostemma pentaphyllum: the Immortal Herb. ACS OMEGA 2020; 5:21561-21569. [PMID: 32905390 PMCID: PMC7469392 DOI: 10.1021/acsomega.0c02180] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/23/2020] [Indexed: 05/10/2023]
Abstract
Gynostemma pentaphyllum (the immortal herb) has been an important component of Chinese Traditional Medicine for millennia. Recent clinical studies have revealed that the plant exhibits numerous beneficial biological activities, making it of interest to the pharmaceutical industry. An extract of the herb contains over 200 individual secondary metabolites including flavonol glycosides and dammarane saponins. To focus attention on the compounds most likely to be responsible for the biological activities, this study predicts the potential oral bioavailability of nine dammarane saponins and five flavonol glycosides from G. pentaphyllum using the Caco-2 cell monolayer permeability model. Two flavonoids, 8 and 9, and four saponins, 10, 11, 12, and 14, exhibited high permeability across the monolayers. The results indicated that a higher degree of glycosylation-facilitated permeability, suggestive of active transport. This study demonstrates the utility of the Caco-2 permeability assay as a method of identifying possible bioavailable compounds from medicinal herbal extracts.
Collapse
Affiliation(s)
- Iftekhar Ahmed
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - David N. Leach
- Integria
Healthcare Limited, 2728 Logan Road, Eight Mile Plains, QLD 4113, Australia
| | - Hans Wohlmuth
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Integria
Healthcare Limited, 2728 Logan Road, Eight Mile Plains, QLD 4113, Australia
- NICM
Health Research Institute, Western Sydney
University, Westmead, Sydney, NSW 2145, Australia
| | - James J. De Voss
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Joanne T. Blanchfield
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
10
|
Zhou Y, Gaucher C, Fries I, Hobekkaya MA, Martin C, Leonard C, Deschamps F, Sapin-Minet A, Parent M. Challenging development of storable particles for oral delivery of a physiological nitric oxide donor. Nitric Oxide 2020; 104-105:1-10. [PMID: 32771473 DOI: 10.1016/j.niox.2020.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/28/2020] [Accepted: 08/03/2020] [Indexed: 12/31/2022]
Abstract
Nitric oxide (NO) deficiency is often associated with several acute and chronic diseases. NO donors and especially S-nitrosothiols such as S-nitrosoglutathione (GSNO) have been identified as promising therapeutic agents. Although their permeability through the intestinal barrier have recently be proved, suitable drug delivery systems have to be designed for their oral administration. This is especially challenging due to the physico-chemical features of these drugs: high hydrophilicity and high lability. In this paper, three types of particles were prepared with an Eudragit® polymer: nanoparticles and microparticles obtained with a water-in-oil-in-water emulsion/evaporation process versus microparticles obtained with a solid-in-oil-in-water emulsion/evaporation process. They had a similar encapsulation efficiency (around 30%), and could be freeze-dried then be stored at least one month without modification of their critical attributes (size and GSNO content). However, microparticles had a slightly slower in vitro release of GSNO than nanoparticles, and were able to boost by a factor of two the drug intestinal permeability (Caco-2 model). Altogether, this study brings new data about GSNO intestinal permeability and three ready-to-use formulations suitable for further preclinical studies with oral administration.
Collapse
Affiliation(s)
- Yi Zhou
- Université de Lorraine, CITHEFOR, F-54000, Nancy, France
| | | | - Isabelle Fries
- Université de Lorraine, CITHEFOR, F-54000, Nancy, France
| | | | | | - Clément Leonard
- StaniPharm, 5 Rue Jacques Monod, BP 10, 54250, Champigneulles, France
| | - Frantz Deschamps
- StaniPharm, 5 Rue Jacques Monod, BP 10, 54250, Champigneulles, France
| | | | | |
Collapse
|
11
|
Cai D, Han C, Liu C, Ma X, Qian J, Zhou J, Li Y, Sun Y, Zhang C, Zhu W. Chitosan-capped enzyme-responsive hollow mesoporous silica nanoplatforms for colon-specific drug delivery. NANOSCALE RESEARCH LETTERS 2020; 15:123. [PMID: 32488526 PMCID: PMC7266918 DOI: 10.1186/s11671-020-03351-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/11/2020] [Indexed: 06/06/2023]
Abstract
An enzyme-responsive colon-specific delivery system was developed based on hollow mesoporous silica spheres (HMSS) to which biodegradable chitosan (CS) was attached via cleavable azo bonds (HMSS-N=N-CS). Doxorubicin (DOX) was encapsulated in a noncrystalline state in the hollow cavity and mesopores of HMSS with the high loading amount of 35.2%. In vitro drug release proved that HMSS-N=N-CS/DOX performed enzyme-responsive drug release. The grafted CS could increase the biocompatibility and stability and reduce the protein adsorption on HMSS. Gastrointestinal mucosa irritation and cell cytotoxicity results indicated the good biocompatibility of HMSS and HMSS-N=N-CS. Cellular uptake results indicated that the uptake of DOX was obviously increased after HMSS-N=N-CS/DOX was preincubated with a colonic enzyme mixture. HMSS-N=N-CS/DOX incubated with colon enzymes showed increased cytotoxicity, and its IC50 value was three times lower than that of HMSS-N=N-CS/DOX group without colon enzymes. The present work lays the foundation for subsequent research on mesoporous carriers for oral colon-specific drug delivery.
Collapse
Affiliation(s)
- Defu Cai
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, 161006, China
| | - Cuiyan Han
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, China
| | - Chang Liu
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, China
| | - Xiaoxing Ma
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, China
| | - Jiayi Qian
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, China
| | - Jianwen Zhou
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, 161006, China
| | - Yue Li
- Department of Andrology, HeiLongJiang Hospital of Traditional Chinese Medicine, Harbin, 150036, China
| | - Yiming Sun
- Department of Andrology, HeiLongJiang Hospital of Traditional Chinese Medicine, Harbin, 150036, China
| | - Changting Zhang
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, China
| | - Wenquan Zhu
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, China.
| |
Collapse
|
12
|
Suzuki K, Taniyama K, Aoyama T, Watanabe Y. Evaluation of the Role of P-glycoprotein (P-gp)-Mediated Efflux in the Intestinal Absorption of Common Substrates with Elacridar, a P-gp Inhibitor, in Rats. Eur J Drug Metab Pharmacokinet 2020; 45:385-392. [PMID: 32078103 DOI: 10.1007/s13318-019-00602-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVES P-glycoprotein (P-gp) has been shown previously to contribute to the intestinal absorption of verapamil, diltiazem, tacrolimus, colchicine and indinavir in situ; however, its contribution in vivo is unknown. The present study aimed to evaluate the in vivo involvement of P-gp using elacridar as its inhibitor to distinguish the contribution of P-gp from cytochrome P450 (CYP) 3A. METHODS Fexofenadine (5 mg/kg) and buspirone (1 mg/kg) were used as probe substrates of P-gp and CYP3A, respectively. Each dual substrate (1 or 2 mg/kg) was orally administered to rats after elacridar pre-treatment (3 mg/kg). Additionally, verapamil, diltiazem or tacrolimus was orally co-administered with fexofenadine. RESULTS Elacridar drastically increased the area under the plasma concentration-time curve (AUC0-t) of oral fexofenadine by 8.6-fold; however, it did not affect the AUC0-t of oral buspirone. Therefore, elacridar inhibited P-gp without affecting CYP3A. The absorption of oral verapamil, diltiazem and tacrolimus was not influenced by elacridar pre-treatment, and the increase in the AUC0-t of fexofenadine was approximately 3-fold when co-administered with each substrate; the minimal effect of elacridar was attributable to the limited contribution of P-gp but not to their self-inhibition against the transporter. Conversely, elacridar significantly increased the AUC0-t of colchicine (5.3-fold) and indinavir (2.0-fold), indicating that P-gp contributes to their absorption. CONCLUSIONS Elacridar is useful for distinguishing the contribution of P-gp from CYP3A to the absorption of drugs in rats. The in vivo contribution of P-gp is minimal for high permeable compounds owing to their fraction absorbed of nearly 1.0.
Collapse
Affiliation(s)
- Kei Suzuki
- Exploratory Research Section III, Exploratory Research Laboratories, Drug Research Department, TOA EIYO LTD., 1, Yuno-tanaka, Iizaka-machi, Fukushima-shi, Fukushima, 960-0280, Japan.
| | - Kazuhiro Taniyama
- Exploratory Research Section III, Exploratory Research Laboratories, Drug Research Department, TOA EIYO LTD., 1, Yuno-tanaka, Iizaka-machi, Fukushima-shi, Fukushima, 960-0280, Japan.
| | - Takao Aoyama
- Faculty of Pharmaceutical Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Yoshiaki Watanabe
- Exploratory Research Section III, Exploratory Research Laboratories, Drug Research Department, TOA EIYO LTD., 1, Yuno-tanaka, Iizaka-machi, Fukushima-shi, Fukushima, 960-0280, Japan
| |
Collapse
|
13
|
Suzuki K, Taniyama K, Aoyama T, Watanabe Y. Usefulness of novobiocin as a selective inhibitor of intestinal breast cancer resistance protein (Bcrp) in rats. Xenobiotica 2020; 50:1121-1127. [DOI: 10.1080/00498254.2019.1708514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Kei Suzuki
- Exploratory Research Laboratories, Drug Research department, TOA EIYO LTD., Fukushima, Japan
| | - Kazuhiro Taniyama
- Exploratory Research Laboratories, Drug Research department, TOA EIYO LTD., Fukushima, Japan
| | - Takao Aoyama
- Faculty of Pharmaceutical Science, Tokyo University of Science, Chiba, Japan
| | - Yoshiaki Watanabe
- Exploratory Research Laboratories, Drug Research department, TOA EIYO LTD., Fukushima, Japan
| |
Collapse
|
14
|
Sirirak T, Syed Musthafa K, Lethongkam S, Yuenyongsawad S, Voravuthikunchai SP. Eleutherine americana
extract inhibits adherence to and invasion of Caco‐2 cells by commonly contaminated
Campylobacter
spp. in food. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Treechada Sirirak
- Department of Microbiology, Faculty of Science Prince of Songkla University Songkhla Thailand
| | - Khadar Syed Musthafa
- Excellent Research Laboratory on Natural Products, Faculty of Science, and Natural Product Research Center of Excellence Prince of Songkla University Songkhla Thailand
| | - Sakkarin Lethongkam
- Excellent Research Laboratory on Natural Products, Faculty of Science, and Natural Product Research Center of Excellence Prince of Songkla University Songkhla Thailand
| | - Supreeya Yuenyongsawad
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences Prince of Songkla University Songkhla Thailand
| | - Supayang P. Voravuthikunchai
- Department of Microbiology, Faculty of Science Prince of Songkla University Songkhla Thailand
- Excellent Research Laboratory on Natural Products, Faculty of Science, and Natural Product Research Center of Excellence Prince of Songkla University Songkhla Thailand
| |
Collapse
|
15
|
Mehraban MH, Mansourian M, Ahrari S, HajiEbrahimi A, Odooli S, Motovali-Bashi M, Yousefi R, Ghasemi Y. Maltase-glucoamylase inhibition potency and cytotoxicity of pyrimidine-fused compounds: An in silico and in vitro approach. Comput Biol Chem 2019; 82:25-36. [PMID: 31255972 DOI: 10.1016/j.compbiolchem.2019.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/29/2019] [Accepted: 06/12/2019] [Indexed: 11/25/2022]
Abstract
The prevalence of diabetes mellitus has been incremented in the current century and the need for novel therapeutic compounds to treat this disease has been significantly increased. One of the most promising approaches is to inhibit intestinal alpha glucosidases. Based on our previous studies, four pyrimidine-fused heterocycles (PFH) were selected as they revealed satisfactory inhibitory action against mammalian α-glucosidase. The interaction of these compounds with both active domains of human maltase-glucoamylase (MGAM) and their effect on human Caco-2 cell line were investigated. The docking assessments suggested that binding properties of these ligands were almost similar to that of acarbose by establishing hydrogen bonds especially with Tyr1251 and Arg526 in both C-terminal and N-terminal MGAM, respectively. Also, these compounds indicated a stronger affinity for C-terminal of MGAM. L2 and L4 made tightly complexes with both terminals of MGAM which in turn revealed the importance of introducing pyrimidine scaffold and its hinge compartment. The results of molecular dynamics simulation analyses confirmed the docking data and showed deep penetration of L2 and L4 into the active site of MGAM. Based on cell cytotoxicity assessments, no significant cell death induction was observed. Hence, these functional MGAM inhibitors might be considered as new potential therapeutic compounds in treatment of diabetes and its complications.
Collapse
Affiliation(s)
- Mohammad Hossein Mehraban
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Genetics Division, Biology Department, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Mahboubeh Mansourian
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran; Department of Pharmacology, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Sajjad Ahrari
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali HajiEbrahimi
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Salman Odooli
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Motovali-Bashi
- Genetics Division, Biology Department, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Reza Yousefi
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
16
|
Cacopardo L, Costa J, Giusti S, Buoncompagni L, Meucci S, Corti A, Mattei G, Ahluwalia A. Real-time cellular impedance monitoring and imaging of biological barriers in a dual-flow membrane bioreactor. Biosens Bioelectron 2019; 140:111340. [PMID: 31154254 DOI: 10.1016/j.bios.2019.111340] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/18/2022]
Abstract
The generation of physiologically relevant in-vitro models of biological barriers can play a key role in understanding human diseases and in the development of more predictive methods for assessing toxicity and drug or nutrient absorption. Here, we present an advanced cell culture system able to mimic the dynamic environment of biological barriers while monitoring cell behaviour through real-time impedance measurements and imaging. It consists of a fluidic device with an apical and a basal flow compartment separated by a semi-permeable membrane. The main features of the device are the integration of sensing through transepithelial electrical impedance (TEEI) measurements and transparent windows for optical monitoring within a dual flow system. Caco-2 cells were cultured in the TEEI bioreactor under both flow and static conditions. Although no differences in the expression of peripheral actin and occludin were visible, the cells in dynamic conditions developed higher impedance values at low frequencies, indicative of a higher paracellular electrical impedance with respect to the static cultures. TEEI measurements at high frequency also enabled monitoring monolayer formation, which can be correlated with the observation of an RC behaviour in the impedance spectra. In particular, the cells subject to flow showed accelerated barrier formation and increased vitality with respect to the static controls, again highlighting the importance of dynamic conditions for epithelial cells.
Collapse
Affiliation(s)
- L Cacopardo
- Research Centre 'E. Piaggio', University of Pisa, Italy; Department of Information Engineering, University of Pisa, Italy
| | - J Costa
- Research Centre 'E. Piaggio', University of Pisa, Italy; Department of Information Engineering, University of Pisa, Italy
| | - S Giusti
- Research Centre 'E. Piaggio', University of Pisa, Italy; IVTech S.r.l, Pisa, Italy
| | | | - S Meucci
- Micronit Microtechnologies, Enschede, the Netherlands
| | - A Corti
- Research Centre 'E. Piaggio', University of Pisa, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - G Mattei
- Department of Information Engineering, University of Pisa, Italy
| | - A Ahluwalia
- Research Centre 'E. Piaggio', University of Pisa, Italy; Department of Information Engineering, University of Pisa, Italy.
| |
Collapse
|
17
|
Affiliation(s)
- Abdelaziz Ghanemi
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan Province, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| |
Collapse
|
18
|
Han C, Huang H, Dong Y, Sui X, Jian B, Zhu W. A Comparative Study of the Use of Mesoporous Carbon and Mesoporous Silica as Drug Carriers for Oral Delivery of the Water-Insoluble Drug Carvedilol. Molecules 2019; 24:molecules24091770. [PMID: 31067732 PMCID: PMC6539599 DOI: 10.3390/molecules24091770] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/20/2019] [Accepted: 05/06/2019] [Indexed: 11/29/2022] Open
Abstract
Mesoporous carriers have been extensively applied to improve the dissolution velocity and bioavailability of insoluble drugs. The goal of this work was to compare the drug-loading efficiency (LE) and drug-dissolution properties of mesoporous silica nanoparticles (MSN) and mesoporous carbon nanoparticles (MCN) as drug vectors oral delivery of water-insoluble drugs. For this purpose, MSN and MCN with similar particle size, surface area, and mesoporous diameter were prepared to precisely evaluate the effects of different textures on the drug-loading and dissolution behavior of insoluble drugs. Carvedilol (CAR), a Bio-pharmaceutic Classification System (BCS) class II drug, was loaded in the MSN and MCN by the solvent adsorption method and solvent evaporation method with different carrier–drug ratios. The carboxylated MCN (MCN–COOH) had a higher LE for CAR than MSN for both the two loading methods due to the strong adsorption effect and π–π stacking force with CAR. In vitro drug dissolution study showed that both MSN and MCN-COOH could improve the dissolution rate of CAR compared with the micronized CAR. In comparison to MSN, MCN-COOH displayed a slightly slower dissolution profile, which may be ascribed to the strong interaction between MCN-COOH and CAR. Observation of cell cytotoxicity and gastrointestinal mucosa irritation demonstrated the good biocompatibility of both MSN and MCN–COOH. The present study encourages further research of different carriers to determine their potential application in oral administration.
Collapse
Affiliation(s)
- Cuiyan Han
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China.
| | - Haitao Huang
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China.
| | - Yan Dong
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China.
| | - Xiaoyu Sui
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China.
| | - Baiyu Jian
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China.
| | - Wenquan Zhu
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China.
| |
Collapse
|
19
|
Pham-The H, Cabrera-Pérez MÁ, Nam NH, Castillo-Garit JA, Rasulev B, Le-Thi-Thu H, Casañola-Martin GM. In Silico Assessment of ADME Properties: Advances in Caco-2 Cell Monolayer Permeability Modeling. Curr Top Med Chem 2019; 18:2209-2229. [PMID: 30499410 DOI: 10.2174/1568026619666181130140350] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/16/2018] [Accepted: 11/19/2018] [Indexed: 11/22/2022]
Abstract
One of the main goals of in silico Caco-2 cell permeability models is to identify those drug substances with high intestinal absorption in human (HIA). For more than a decade, several in silico Caco-2 models have been made, applying a wide range of modeling techniques; nevertheless, their capacity for intestinal absorption extrapolation is still doubtful. There are three main problems related to the modest capacity of obtained models, including the existence of inter- and/or intra-laboratory variability of recollected data, the influence of the metabolism mechanism, and the inconsistent in vitro-in vivo correlation (IVIVC) of Caco-2 cell permeability. This review paper intends to sum up the recent advances and limitations of current modeling approaches, and revealed some possible solutions to improve the applicability of in silico Caco-2 permeability models for absorption property profiling, taking into account the above-mentioned issues.
Collapse
Affiliation(s)
- Hai Pham-The
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, Vietnam
| | - Miguel Á Cabrera-Pérez
- Unit of Modeling and Experimental Biopharmaceutics, Chemical Bioactive Center, Central University of Las Villas, Santa Clara, 54830, Villa Clara, Cuba.,Department of Engineering, Area of Pharmacy and Pharmaceutical Technology, Miguel Hernández University, 03550 Sant Juan d'Alacant, Alicante, Spain
| | - Nguyen-Hai Nam
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, Vietnam
| | - Juan A Castillo-Garit
- Unidad de Toxicologia Experimental, Universidad de Ciencias Medicas "Dr. Serafín Ruiz de Zarate Ruiz" de Villa Clara, Santa Clara, 50200, Villa Clara, Cuba
| | - Bakhtiyor Rasulev
- Department of Coatings and Polymer Materials, North Dakota State University, Fargo, ND, 58102, United States
| | - Huong Le-Thi-Thu
- School of Medicine and Pharmacy, Vietnam National University, 144 Xuan Thuy, Hanoi, Vietnam
| | - Gerardo M Casañola-Martin
- Department of Coatings and Polymer Materials, North Dakota State University, Fargo, ND, 58102, United States
| |
Collapse
|
20
|
Yu H, Bonetti J, Gaucher C, Fries I, Vernex-Loset L, Leroy P, Chaimbault P. Higher-energy collision-induced dissociation for the quantification by liquid chromatography/tandem ion trap mass spectrometry of nitric oxide metabolites coming from S-nitroso-glutathione in an in vitro model of the intestinal barrier. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:1-11. [PMID: 30248720 DOI: 10.1002/rcm.8287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE The potency of S-nitrosoglutathione (GSNO) as a nitric oxide (NO) donor to treat cardiovascular diseases (CVDs) has been highlighted in numerous studies. In order to study its bioavailability after oral administration, which represents the most convenient route for the chronic treatment of CVDs, it is essential to develop an analytical method permitting (i) the simultaneous measurement of GSNO metabolites, i.e. nitrite, S-nitrosothiols (RSNOs) and nitrate and (ii) to distinguish them from other sources (endogenous synthesis and diet). METHODS Exogenous GSNO was labeled with 15 N, and the GS15 NO metabolites after conversion into the nitrite ion were derivatized with 2,3-diaminonaphthalene. The resulting 2,3-naphthotriazole was quantified by liquid chromatography/tandem ion trap mass spectrometry (LC/ITMS/MS) in multiple reaction monitoring mode after Higher-energy Collision-induced Dissociation (HCD). Finally, the validated method was applied to an in vitro model of the intestinal barrier (monolayer of Caco-2 cells) to study GS15 NO intestinal permeability. RESULTS A LC/ITMS/MS method based on an original transition (m/z 171 to 156) for sodium 15 N-nitrite, GS15 NO and sodium 15 N-nitrate measurements was validated, with recoveries of 100.8 ± 3.8, 98.0 ± 2.7 and 104.1 ± 3.3%, respectively. Intra- and inter-day variabilities were below 13.4 and 12.6%, and the limit of quantification reached 5 nM (signal over blank = 4). The permeability of labeled GS15 NO (10-100 μM) was evaluated by calculating its apparent permeability coefficient (Papp ). CONCLUSIONS A quantitative LC/ITMS/MS method using HCD was developed for the first time to selectively monitor GS15 NO metabolites. The assay allowed evaluation of GS15 NO intestinal permeability and situated this drug candidate within the middle permeability class according to FDA guidelines. In addition, the present method has opened the perspective of a more fundamental work aiming at studying the fragmentation mechanism leading to the ion at m/z 156 in HCD tandem mass spectrometry in the presence of acetonitrile.
Collapse
Affiliation(s)
- Haiyan Yu
- CITHEFOR, Université de Lorraine, F-54000, Nancy, France
| | | | | | - Isabelle Fries
- CITHEFOR, Université de Lorraine, F-54000, Nancy, France
| | | | - Pierre Leroy
- CITHEFOR, Université de Lorraine, F-54000, Nancy, France
| | | |
Collapse
|
21
|
Rusli N, Amanah A, Kaur G, Adenan MI, Sulaiman SF, Wahab HA, Tan ML. The inhibitory effects of mitragynine on P-glycoprotein in vitro. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:481-496. [DOI: 10.1007/s00210-018-01605-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022]
|
22
|
Zheng Y, Feng G, Sun Y, Liu S, Pi Z, Song F, Liu Z. Study on the compatibility interactions of formula Ding-Zhi-Xiao-Wan based on their main components transport characteristics across Caco-2 monolayers model. J Pharm Biomed Anal 2018; 159:179-185. [DOI: 10.1016/j.jpba.2018.06.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/25/2018] [Accepted: 06/30/2018] [Indexed: 01/04/2023]
|
23
|
Fang Y, Liang F, Liu K, Qaiser S, Pan S, Xu X. Structure characteristics for intestinal uptake of flavonoids in Caco-2 cells. Food Res Int 2018; 105:353-360. [DOI: 10.1016/j.foodres.2017.11.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/17/2017] [Accepted: 11/19/2017] [Indexed: 12/20/2022]
|
24
|
Levina A, Crans DC, Lay PA. Speciation of metal drugs, supplements and toxins in media and bodily fluids controls in vitro activities. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.01.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
25
|
Wang Q, Kuang Y, Song W, Qian Y, Qiao X, Guo DA, Ye M. Permeability through the Caco-2 cell monolayer of 42 bioactive compounds in the TCM formula Gegen-Qinlian Decoction by liquid chromatography tandem mass spectrometry analysis. J Pharm Biomed Anal 2017; 146:206-213. [PMID: 28886521 DOI: 10.1016/j.jpba.2017.08.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 10/19/2022]
Abstract
Caco-2 cell monolayer model was used to evaluate the intestinal permeability of 42 bioactive compounds in the famous traditional Chinese medicine (TCM) formula Gegen-Qinlian Decoction (GQD). These compounds include alkaloids, flavonoids and glycosides, triterpenoid saponins, and coumarins. Their transportations across the cell monolayers in the forms of herb extract and formula extract were monitored by liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) analysis. Most alkaloids from Huang-Lian; flavonoid C-glycosides from Ge-Gen and Huang-Qin; O-glycosides from Ge-Gen, Huang-Qin and Gan-Cao; O-glucuronides from Huang-Qin; and coumarins from Gan-Cao exhibited favorable permeability. Their PAB values were >1.05×10-5cm/s, and efflux ratios (ER, PBA/PAB) were≤1.0. In contrast, triterpenoid saponins showed poor permeability (PAB≤1.50×10-6cm/s, ER≤1.5), indicating a paracellular diffusion mechanism. Furthermore, GQD could remarkably improve the intestinal transport of alkaloids in Huang-Lian, flavonoid C-glycosides in Ge-Gen, as well as coumarins and flavonoid O-glycosides in Gan-Cao. These results indicate herb-herb interactions in GQD.
Collapse
Affiliation(s)
- Qi Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Baojian Road 157, Nangang District, Harbin 150081, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Yi Kuang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Wei Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Yi Qian
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - De-An Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
26
|
Nagar S, Korzekwa RC, Korzekwa K. Continuous Intestinal Absorption Model Based on the Convection-Diffusion Equation. Mol Pharm 2017; 14:3069-3086. [PMID: 28712300 DOI: 10.1021/acs.molpharmaceut.7b00286] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Prediction of the rate and extent of drug absorption upon oral dosing needs models that capture the complexities of both the drug molecule and intestinal physiology. We report here the development of a continuous intestinal absorption model based on the convection-diffusion equation. The model includes explicit enterocyte apical membrane and intracellular lipid radial compartments along the length of the intestine. Physiologic functions along length x are built into the model and include velocity, diffusion, surface areas, and pH of the intestine. Also included are expression levels of the intestinal active uptake transporter OATP2B1 and efflux transporter P-gp. Oral dosing of solution as well as solid (with a dissolution function) was modeled for several drugs. The fraction absorbed (FA) and concentration-time (C-t) profiles were predicted and compared with clinical data. Overall, FA was well predicted upon oral (n = 21) or colonic dosing (n = 11), with four outliers. The overall accuracy (prediction of the correct bin) was 81% with outliers and 90% without outliers. Of the nine solution dosing data sets, six drugs were very well predicted with an exposure overlap coefficient (EOC) > 0.9 and predicted Cmax and Tmax values similar to those observed. Of the six solid dose formulations evaluated, the EOC values were > 0.9 for all drugs except budesonide. The observed precipitation of nifedipine at high doses was predicted by the model. Most of the poor predictions were for drugs that are known to be transporter substrates. As proof of concept, incorporating OATP2B1 and P-gp markedly improved the EOC and predicted Cmax and Tmax for fexofenadine. Finally, the continuous intestinal model accurately recapitulated the known relationships between drug absorption and permeability, solubility, and particle size. Together, these results indicate that this preliminary intestinal absorption model offers a simple and straightforward framework to build in complexities such as drug permeability, lipid partitioning, solubility, metabolism, and transport for improved prediction of the rate and extent of drug absorption.
Collapse
Affiliation(s)
- Swati Nagar
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy , Philadelphia, Pennsylvania 19140, United States
| | - Richard C Korzekwa
- Department of Physics, University of Texas , Austin, Texas 78712, United States
| | - Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy , Philadelphia, Pennsylvania 19140, United States
| |
Collapse
|
27
|
Jaroch K, Jaroch A, Bojko B. Cell cultures in drug discovery and development: The need of reliable in vitro-in vivo extrapolation for pharmacodynamics and pharmacokinetics assessment. J Pharm Biomed Anal 2017; 147:297-312. [PMID: 28811111 DOI: 10.1016/j.jpba.2017.07.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 07/16/2017] [Accepted: 07/19/2017] [Indexed: 12/21/2022]
Abstract
For ethical and cost-related reasons, use of animals for the assessment of mode of action, metabolism and/or toxicity of new drug candidates has been increasingly scrutinized in research and industrial applications. Implementation of the 3 "Rs"1; rule (Reduction, Replacement, Refinement) through development of in silico or in vitro assays has become an essential element of risk assessment. Physiologically based pharmacokinetic (PBPK2) modeling is the most potent in silico tool used for extrapolation of pharmacokinetic parameters to animal or human models from results obtained in vitro. Although, many types of in vitro assays are conducted during drug development, use of cell cultures is the most reliable one. Two-dimensional (2D) cell cultures have been a part of drug development for many years. Nowadays, their role is decreasing in favor of three-dimensional (3D) cell cultures and co-cultures. 3D cultures exhibit protein expression patterns and intercellular junctions that are closer to in vivo states in comparison to classical monolayer cultures. Co-cultures allow for examinations of the mutual influence of different cell lines. However, the complexity and high costs of co-cultures and 3D equipment exclude such methods from high-throughput screening (HTS).3In vitro absorption, distribution, metabolism, and excretion assessment, as well as drug-drug interaction (DDI), are usually performed with the use of various cell culture based assays. Progress in in silico and in vitro methods can lead to better in vitro-in vivo extrapolation (IVIVE4) outcomes and have a potential to contribute towards a significant reduction in the number of laboratory animals needed for drug research. As such, concentrated efforts need to be spent towards the development of an HTS in vitro platform with satisfactory IVIVE features.
Collapse
Affiliation(s)
- Karol Jaroch
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza 2 Street, 85-089 Bydgoszcz, Poland
| | - Alina Jaroch
- Department and Institute of Nutrition and Dietetics, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Dębowa 3 Street, 85-626 Bydgoszcz, Poland; Department and Clinic of Geriatrics, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Curie Sklodowskiej 9 Street, 85-094 Bydgoszcz, Poland
| | - Barbara Bojko
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza 2 Street, 85-089 Bydgoszcz, Poland.
| |
Collapse
|
28
|
Hong S, Moritz TJ, Rath CM, Tamrakar P, Lee P, Krucker T, Lee LP. Assessing Antibiotic Permeability of Gram-Negative Bacteria via Nanofluidics. ACS NANO 2017; 11:6959-6967. [PMID: 28605582 DOI: 10.1021/acsnano.7b02267] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
While antibiotic resistance is increasing rapidly, drug discovery has proven to be extremely difficult. Antibiotic resistance transforms some bacterial infections into deadly medical conditions. A significant challenge in antibiotic discovery is designing potent molecules that enter Gram-negative bacteria and also avoid active efflux mechanisms. Critical analysis in rational drug design has been hindered by the lack of effective analytical tools to analyze the bacterial membrane permeability of small molecules. We design, fabricate, and characterize the nanofluidic device that actively loads more than 200 single bacterial cells in a nanochannel array. We demonstrate a gigaohm seal between the nanochannel walls and the loaded bacteria, restricting small molecule transport to only occur through the bacterial cell envelope. Quantitation of clindamycin translocation through wild-type and efflux-deficient (ΔtolC) Escherichia coli strains via nanofluidic-interfaced liquid chromatography mass spectrometry shows higher levels of translocation for wild-type E. coli than for an efflux-deficient strain. We believe that the assessment of compound permeability in Gram-negative bacteria via the nanofluidic analysis platform will be an impactful tool for compound permeation and efflux studies in bacteria to assist rational antibiotic design.
Collapse
Affiliation(s)
| | - Tobias J Moritz
- Novartis Institutes for Biomedical Research , Emeryville, California 94608, United States
| | - Christopher M Rath
- Novartis Institutes for Biomedical Research , Emeryville, California 94608, United States
| | - Pramila Tamrakar
- Novartis Institutes for Biomedical Research , Emeryville, California 94608, United States
| | | | - Thomas Krucker
- Novartis Institutes for Biomedical Research , Emeryville, California 94608, United States
| | | |
Collapse
|
29
|
Brück S, Strohmeier J, Busch D, Drozdzik M, Oswald S. Caco-2 cells - expression, regulation and function of drug transporters compared with human jejunal tissue. Biopharm Drug Dispos 2016; 38:115-126. [DOI: 10.1002/bdd.2025] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/30/2016] [Accepted: 08/04/2016] [Indexed: 12/13/2022]
Affiliation(s)
- S. Brück
- Department of Clinical Pharmacology, Center of Drug Absorption and Transport; University Medicine; Greifswald Germany
| | - J. Strohmeier
- Department of Clinical Pharmacology, Center of Drug Absorption and Transport; University Medicine; Greifswald Germany
| | - D. Busch
- Department of Clinical Pharmacology, Center of Drug Absorption and Transport; University Medicine; Greifswald Germany
| | - M. Drozdzik
- Department of Experimental and Clinical Pharmacology; Pomeranian Medical University; Szczecin Poland
| | - S. Oswald
- Department of Clinical Pharmacology, Center of Drug Absorption and Transport; University Medicine; Greifswald Germany
| |
Collapse
|
30
|
O’Hagan S, Kell DB. The apparent permeabilities of Caco-2 cells to marketed drugs: magnitude, and independence from both biophysical properties and endogenite similarities. PeerJ 2015; 3:e1405. [PMID: 26618081 PMCID: PMC4655101 DOI: 10.7717/peerj.1405] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/25/2015] [Indexed: 12/25/2022] Open
Abstract
We bring together fifteen, nonredundant, tabulated collections (amounting to 696 separate measurements) of the apparent permeability (P app) of Caco-2 cells to marketed drugs. While in some cases there are some significant interlaboratory disparities, most are quite minor. Most drugs are not especially permeable through Caco-2 cells, with the median P app value being some 16 ⋅ 10(-6) cm s(-1). This value is considerably lower than those (1,310 and 230 ⋅ 10(-6) cm s(-1)) recently used in some simulations that purported to show that P app values were too great to be transporter-mediated only. While these values are outliers, all values, and especially the comparatively low values normally observed, are entirely consistent with transporter-only mediated uptake, with no need to invoke phospholipid bilayer diffusion. The apparent permeability of Caco-2 cells to marketed drugs is poorly correlated with either simple biophysical properties, the extent of molecular similarity to endogenous metabolites (endogenites), or any specific substructural properties. In particular, the octanol:water partition coefficient, logP, shows negligible correlation with Caco-2 permeability. The data are best explained on the basis that most drugs enter (and exit) Caco-2 cells via a multiplicity of transporters of comparatively weak specificity.
Collapse
Affiliation(s)
- Steve O’Hagan
- School of Chemistry & The Manchester Institute of Biotechnology and Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), The University of Manchester, Manchester, Lancs, United Kingdom
| | - Douglas B. Kell
- School of Chemistry & The Manchester Institute of Biotechnology and Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), The University of Manchester, Manchester, Lancs, United Kingdom
| |
Collapse
|
31
|
Mendes P, Oliver SG, Kell DB. Fitting Transporter Activities to Cellular Drug Concentrations and Fluxes: Why the Bumblebee Can Fly. Trends Pharmacol Sci 2015; 36:710-723. [PMID: 26538313 PMCID: PMC4642801 DOI: 10.1016/j.tips.2015.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/23/2015] [Accepted: 07/23/2015] [Indexed: 12/18/2022]
Abstract
A recent paper in this journal argued that reported expression levels, kcat and Km for drug transporters could be used to estimate the likelihood that drug fluxes through Caco-2 cells could be accounted for solely by protein transporters. It was in fact concluded that if five such transporters contributed ‘randomly’ they could account for the flux of the most permeable drug tested (verapamil) 35% of the time. However, the values of permeability cited for verapamil were unusually high; this and other drugs have much lower permeabilities. Even for the claimed permeabilities, we found that a single ‘random’ transporter could account for the flux 42% of the time, and that two transporters can achieve 10 · 10−6 cm·s−1 90% of the time. Parameter optimisation methods show that even a single transporter can account for Caco-2 drug uptake of the most permeable drug. Overall, the proposal that ‘phospholipid bilayer diffusion (of drugs) is negligible’ is not disproved by the calculations of ‘likely’ transporter-based fluxes. There has been recent debate as to the relative extents to which cellular transmembrane drug transports occur through any phospholipid bilayer region or is transporter-mediated only. Much recent evidence suggests (perhaps surprisingly) that phospholipid bilayer diffusion is negligible. A recent article in this journal suggested that the expression profile and kinetics of known transporters might not be adequate to explain the most active drug fluxes (of verapamil and propranolol) in Caco-2 cells via transporters only. We show with our own simulations that this is not in fact the case, especially when evolutionary selection is taken into account, and that the Haldane relation accounts straightforwardly for directional differences, even for equilibrative transporters. Typical protein transporters alone can easily account for measured drug fluxes in Caco-2 cells.
Collapse
Affiliation(s)
- Pedro Mendes
- School of Computer Science; Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester M1 7DN, UK; Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), The University of Manchester, 131, Princess St, Manchester M1 7DN, United Kingdom; Center for Quantitative Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT 06030-6033, USA
| | - Stephen G Oliver
- Cambridge Systems Biology Centre; Dept of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Douglas B Kell
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester M1 7DN, UK; Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), The University of Manchester, 131, Princess St, Manchester M1 7DN, United Kingdom; School of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom.
| |
Collapse
|
32
|
Quantitative aspects of drug permeation across in vitro and in vivo barriers. Eur J Pharm Sci 2015; 87:30-46. [PMID: 26493585 DOI: 10.1016/j.ejps.2015.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/16/2015] [Accepted: 10/17/2015] [Indexed: 01/09/2023]
Abstract
The kinetics of permeation across epithelial and endothelial cell sheets and across cell membranes is determinant for the pharmacokinetics of a drug. In vitro transport experiments with cultured cells or artificial barriers have tremendously improved the predictability of the in vivo behaviour of tested compounds. This article focuses on the parameters and calculation methods that are used to describe permeation quantitatively, with a focus on in vitro experiments and the prediction of intestinal absorption and blood-brain barrier passage. It shows under which in vitro experimental conditions standard calculations are adequate and under which conditions equations should be adapted to the experimental details. The impact of volume differences between donor and receiver compartments, pH gradients, addition of albumin, accumulation in the barrier and unidirectional transport by an efflux transporter on the results is shown in simulations. The article should make researchers aware of experimental factors that affect the outcome of a permeation experiment and how to account for this during data analysis. Finally, strategies to predict the in vivo behaviour of a compound based on the in vitro data are discussed. The goal of the article is to support researchers in choosing experimental conditions and calculation methods that deliver appropriate and reproducible results in permeation studies in vitro.
Collapse
|
33
|
Oltra-Noguera D, Mangas-Sanjuan V, Centelles-Sangüesa A, Gonzalez-Garcia I, Sanchez-Castaño G, Gonzalez-Alvarez M, Casabo VG, Merino V, Gonzalez-Alvarez I, Bermejo M. Variability of permeability estimation from different protocols of subculture and transport experiments in cell monolayers. J Pharmacol Toxicol Methods 2015; 71:21-32. [DOI: 10.1016/j.vascn.2014.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/13/2014] [Accepted: 11/13/2014] [Indexed: 10/24/2022]
|