1
|
Di Vito Nolfi M, Vecchiotti D, Flati I, Verzella D, Di Padova M, Alesse E, Capece D, Zazzeroni F. EV-Mediated Chemoresistance in the Tumor Microenvironment: Is NF-κB a Player? Front Oncol 2022; 12:933922. [PMID: 35814425 PMCID: PMC9257640 DOI: 10.3389/fonc.2022.933922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Drug resistance is a major impediment to patient survival and remains the primary cause of unsuccessful cancer therapy. Drug resistance occurs in many tumors and is frequently induced by chemotherapy which triggers a defensive response both in cancerous and cancer-associated cells that constitute the tumor microenvironment (TME). Cell to cell communication within the TME is often mediated by extracellular vesicles (EVs) which carry specific tumor-promoting factors able to activate survival pathways and immune escape mechanisms, thus sustaining tumor progression and therapy resistance. NF-κB has been recognized as a crucial player in this context. NF-κB activation is involved in EVs release and EVs, in turn, can trigger NF-κB pathway activation in specific contexts, based on secreting cytotype and their specific delivered cargo. In this review, we discuss the role of NF-κB/EVs interplay that sustain chemoresistance in the TME by focusing on the molecular mechanisms that underlie inflammation, EVs release, and acquired drug resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Daria Capece
- *Correspondence: Francesca Zazzeroni, ; Daria Capece,
| | | |
Collapse
|
2
|
Elfadadny A, El-Husseiny HM, Abugomaa A, Ragab RF, Mady EA, Aboubakr M, Samir H, Mandour AS, El-Mleeh A, El-Far AH, Abd El-Aziz AH, Elbadawy M. Role of multidrug resistance-associated proteins in cancer therapeutics: past, present, and future perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:49447-49466. [PMID: 34355314 DOI: 10.1007/s11356-021-15759-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Cancer, a major public health problem, is one of the world's top leading causes of death. Common treatments for cancer include cytotoxic chemotherapy, surgery, targeted drugs, endocrine therapy, and immunotherapy. However, despite the outstanding achievements in cancer therapies during the last years, resistance to conventional chemotherapeutic agents and new targeted drugs is still the major challenge. In the present review, we explain the different mechanisms involved in cancer therapy and the detailed outlines of cancer drug resistance regarding multidrug resistance-associated proteins (MRPs) and their role in treatment failures by common chemotherapeutic agents. Further, different modulators of MRPs are presented. Finally, we outlined the models used to analyze MRP transporters and proposed a future impact that may set up a base or pave the way for many researchers to investigate the cancer MRP further.
Collapse
Affiliation(s)
- Ahmed Elfadadny
- Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour, El-Beheira, 22511, Egypt
| | - Hussein M El-Husseiny
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
| | - Amira Abugomaa
- Faculty of Veterinary Medicine, Mansoura University, Mansoura, Dakahliya, 35516, Egypt
| | - Rokaia F Ragab
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, El-Beheira, 22511, Egypt
| | - Eman A Mady
- Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
| | - Mohamed Aboubakr
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
| | - Haney Samir
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ahmed S Mandour
- Department of Veterinary Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Amany El-Mleeh
- Department of Pharmacology, Faculty of Veterinary Medicine, Menoufia University, Shibin El Kom, Egypt
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, El-Beheira, 22511, Egypt
| | - Ayman H Abd El-Aziz
- Animal Husbandry and Animal Wealth Development Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Mohamed Elbadawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt.
| |
Collapse
|
3
|
Liu K, Mao W, Liu B, Li T, Wang X, Pei L, Cao J, Wang F. Prostaglandin E2 promotes Staphylococcus aureus infection via EP4 receptor in bovine endometrium. Microb Pathog 2021; 158:105019. [PMID: 34107344 DOI: 10.1016/j.micpath.2021.105019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
Prostaglandin E2 (PGE2) enhances Staphylococcus aureus infection but its mechanism is not well understood. Here, we examined the effect of PGE2 on Staphylococcal Protein A (SPA) expression in bovine endometrium and determined the role of select PGE2 receptors (i.e., EP2 and EP4) in adhesion and internalization of S. aureus. S. aureus isolate SA113 was used for in vitro infection of bovine endometrial tissues and epithelial cells, with treatment conditions consisting of untreated control, SA113 treatment, SA113 + PGE2, SA113 + PGE2 + EP2 receptor antagonist (AH-6809), and SA113 + PGE2 + EP4 receptor antagonist (AH-23848). Immunofluorescence assay revealed that PGE2 could promote SPA expression in S. aureus-infected bovine endometrial tissues. PGE2 also enhanced the adhesion and internalization of S. aureus in bovine endometrial cells. The addition of EP4 antagonist, but not the EP2 antagonist, abrogated the ability of PGE2 to promote S. aureus SPA expression, adhesion, and internalization in endometrial cells. Our findings suggest that S. aureus infection in the endometrium is enhanced by PGE2 through the EP4 receptor. This result is essential for the development of new approach to treating S. aureus infection, such as the application of EP4 antagonist as an adjunct drug treatment.
Collapse
Affiliation(s)
- Kun Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018, Hohhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Anima Disease, Ministry of Agriculture, Hohhot, China; Laboratory of Veterinary Pathology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
| | - Wei Mao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018, Hohhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Anima Disease, Ministry of Agriculture, Hohhot, China.
| | - Bo Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018, Hohhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Anima Disease, Ministry of Agriculture, Hohhot, China.
| | - Tingting Li
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018, Hohhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Anima Disease, Ministry of Agriculture, Hohhot, China.
| | - Xinfei Wang
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018, Hohhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Anima Disease, Ministry of Agriculture, Hohhot, China.
| | - Le Pei
- Veterinary Research Institute, Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, China.
| | - Jinshan Cao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018, Hohhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Anima Disease, Ministry of Agriculture, Hohhot, China.
| | - Fenglong Wang
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
| |
Collapse
|
4
|
Alaaeddine RA, Elzahhar PA, AlZaim I, Abou-Kheir W, Belal ASF, El-Yazbi AF. The Emerging Role of COX-2, 15-LOX and PPARγ in Metabolic Diseases and Cancer: An Introduction to Novel Multi-target Directed Ligands (MTDLs). Curr Med Chem 2021; 28:2260-2300. [PMID: 32867639 DOI: 10.2174/0929867327999200820173853] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 11/22/2022]
Abstract
Emerging evidence supports an intertwining framework for the involvement of different inflammatory pathways in a common pathological background for a number of disorders. Of importance are pathways involving arachidonic acid metabolism by cyclooxygenase-2 (COX-2) and 15-lipoxygenase (15-LOX). Both enzyme activities and their products are implicated in a range of pathophysiological processes encompassing metabolic impairment leading to adipose inflammation and the subsequent vascular and neurological disorders, in addition to various pro- and antitumorigenic effects. A further layer of complexity is encountered by the disparate, and often reciprocal, modulatory effect COX-2 and 15-LOX activities and metabolites exert on each other or on other cellular targets, the most prominent of which is peroxisome proliferator-activated receptor gamma (PPARγ). Thus, effective therapeutic intervention with such multifaceted disorders requires the simultaneous modulation of more than one target. Here, we describe the role of COX-2, 15-LOX, and PPARγ in cancer and complications of metabolic disorders, highlight the value of designing multi-target directed ligands (MTDLs) modifying their activity, and summarizing the available literature regarding the rationale and feasibility of design and synthesis of these ligands together with their known biological effects. We speculate on the potential impact of MTDLs in these disorders as well as emphasize the need for structured future effort to translate these early results facilitating the adoption of these, and similar, molecules in clinical research.
Collapse
Affiliation(s)
- Rana A Alaaeddine
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Perihan A Elzahhar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Ahmed S F Belal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| |
Collapse
|
5
|
Di Micco S, Terracciano S, Ruggiero D, Potenza M, Vaccaro MC, Fischer K, Werz O, Bruno I, Bifulco G. Identification of 2-(thiophen-2-yl)acetic Acid-Based Lead Compound for mPGES-1 Inhibition. Front Chem 2021; 9:676631. [PMID: 34046398 PMCID: PMC8144515 DOI: 10.3389/fchem.2021.676631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
We report the implementation of our in silico/synthesis pipeline by targeting the glutathione-dependent enzyme mPGES-1, a valuable macromolecular target in both cancer therapy and inflammation therapy. Specifically, by using a virtual fragment screening approach of aromatic bromides, straightforwardly modifiable by the Suzuki-Miyaura reaction, we identified 3-phenylpropanoic acid and 2-(thiophen-2-yl)acetic acid to be suitable chemical platforms to develop tighter mPGES-1 inhibitors. Among these, compounds 1c and 2c showed selective inhibitory activity against mPGES-1 in the low micromolar range in accordance with molecular modeling calculations. Moreover, 1c and 2c exhibited interesting IC50 values on A549 cell lines compared to CAY10526, selected as reference compound. The most promising compound 2c induced the cycle arrest in the G0/G1 phase at 24 h of exposure, whereas at 48 and 72 h, it caused an increase of subG0/G1 fraction, suggesting an apoptosis/necrosis effect.
Collapse
Affiliation(s)
- Simone Di Micco
- European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | | | - Dafne Ruggiero
- Dipartimento di Farmacia, University degli Studi di Salerno, Fisciano, Italy
| | - Marianna Potenza
- Dipartimento di Farmacia, University degli Studi di Salerno, Fisciano, Italy
| | - Maria C Vaccaro
- Dipartimento di Farmacia, University degli Studi di Salerno, Fisciano, Italy
| | - Katrin Fischer
- Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Oliver Werz
- Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Ines Bruno
- Dipartimento di Farmacia, University degli Studi di Salerno, Fisciano, Italy
| | - Giuseppe Bifulco
- Dipartimento di Farmacia, University degli Studi di Salerno, Fisciano, Italy
| |
Collapse
|
6
|
Gao J, Wang C, Wei W. The effects of drug transporters on the efficacy of methotrexate in the treatment of rheumatoid arthritis. Life Sci 2021; 268:118907. [PMID: 33428880 DOI: 10.1016/j.lfs.2020.118907] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
The ATP-binding cassette (ABC) and solute carrier (SLC) transporter families consist of common drug transporters that mediate the efflux and uptake of drugs, respectively, and play an important role in the absorption, distribution, metabolism and excretion of drugs in vivo. Rheumatoid arthritis (RA) is an autoimmune disease characterized by erosive arthritis, and there are many RA patients worldwide. Methotrexate (MTX), the first-choice treatment for RA, can reduce the level of inflammation, prevent joint erosion and functional damage, and greatly reduce pain in RA patients. However, many patients show resistance to MTX, greatly affecting the efficacy of MTX. Many factors, such as irrational drug use and heredity, are associated with drug resistance. Considering the effect of drug transporters on drugs, many studies have compared the expression of drug transporters in drug-resistant and drug-sensitive patients, and abnormal transporter expression and transport activity have been found in patients with MTX resistance. Thus, drug transporters are involved in drug resistance. This article reviews the effects of transporters on the efficacy of MTX in the treatment of RA.
Collapse
Affiliation(s)
- Jinzhang Gao
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Chun Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China.
| |
Collapse
|
7
|
Monteleone NJ, Lutz CS. miR-708-5p enhances erlotinib/paclitaxel efficacy and overcomes chemoresistance in lung cancer cells. Oncotarget 2020; 11:4699-4721. [PMID: 33473256 PMCID: PMC7771713 DOI: 10.18632/oncotarget.27840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022] Open
Abstract
Lung cancer is a collection of aggressive tumors generally not diagnosed until late-stage, resulting in high mortality rates. The vast majority of non-small cell lung cancer (NSCLC) patients undergo combinatory chemotherapeutic treatment, which initially reduces tumor growth, but frequently becomes ineffective due to toxicity and resistance. Researchers have identified multiple signaling pathways involved in lung cancer chemoresistance, including cyclooxygenase-2 (COX-2)/microsomal prostaglandin E synthase-1 (mPGES-1) derived prostaglandin E2 (PGE2). While COX-2 inhibitors have shown promise in the clinic, their use is limited due to severe side effects. One novel approach to effectively suppress COX-2 signaling is through microRNA (miRNA). MiRNAs are small-noncoding RNAs commonly misexpressed in cancer. One tumor suppressive miRNA, miR-708-5p, has been shown to repress pro-resistant signaling pathways, including COX-2 and mPGES-1. Here, we demonstrate that chemotherapies reduce COX-2 expression, possibly through induction of miR-708-5p. Moreover, combination treatment of erlotinib (ERL) or paclitaxel (PAC) with miR-708-5p enhances COX-2 and mPGES-1 protein suppression. We also show that combination chemotherapeutic and miR-708-5p treatment intensifies the anti-proliferative and pro-apoptotic effects of ERL and PAC. We also created ERL and PAC resistant lung cancer cell lines, which have increased COX-2 expression and diminished miR-708-5p levels compared to naïve lung cancer cells. While ERL and PAC treatments do not alter resistant cell phenotype alone, combination treatment with miR-708-5p partially restores the chemotherapies' anti-proliferative effects and fully restores their pro-apoptotic qualities. These data suggest miR-708-5p may have potential combinatory therapeutic value to more efficaciously treat lung tumors while overcoming chemoresistance.
Collapse
Affiliation(s)
- Nicholas J Monteleone
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical & Health Sciences, New Jersey Medical School, School of Graduate Studies, Newark, NJ 07103, USA
| | - Carol S Lutz
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical & Health Sciences, New Jersey Medical School, School of Graduate Studies, Newark, NJ 07103, USA
| |
Collapse
|
8
|
Gholamian Dehkordi N, Mirzaei SA, Elahian F. Pharmacodynamic mechanisms of anti-inflammatory drugs on the chemosensitization of multidrug-resistant cancers and the pharmacogenetics effectiveness. Inflammopharmacology 2020; 29:49-74. [PMID: 33070257 DOI: 10.1007/s10787-020-00765-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/27/2020] [Indexed: 01/07/2023]
Abstract
Drug resistance as a remarkable issue in cancer treatment is associated with inflammation which occurs through complex chemical reactions in the tumor microenvironment. Recent studies have implicated that glucocorticoids and NSAIDs are mainly useful combinations for inflammatory response modulation in chemotherapeutic protocols for cancer treatment. Immunosuppressive actions of glucocorticoids and NSAIDs are mainly mediated by the transrepression or activation regulation of inflammatory genes with different DNA-bound transcription factors including AP-1, NFAT, NF-κB, STAT and also, varying functions of COX enzymes in cancer cells. Interestingly, many investigations have proved the benefits of these anti-inflammatory agents in the quenching of multidrug resistance pathways. Numerous analyses on the ABC transporter promoters showed conserved nucleotide sequences with several DNA response elements that participate in transcriptional regulation. Furthermore, genetic variations in nucleotide sequences of membrane transporters were strongly associated with changes in these transporters' expression or function and a substantial impact on systemic drug exposure and toxicity. It appeared that several polymorphisms in MDR transporter genes especially MDR1 have influenced the regulatory mechanisms and explained differences in glucocorticoid responses.
Collapse
Affiliation(s)
- Neda Gholamian Dehkordi
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Abbas Mirzaei
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Elahian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
9
|
Vaidya FU, Sufiyan Chhipa A, Mishra V, Gupta VK, Rawat SG, Kumar A, Pathak C. Molecular and cellular paradigms of multidrug resistance in cancer. Cancer Rep (Hoboken) 2020; 5:e1291. [PMID: 33052041 PMCID: PMC9780431 DOI: 10.1002/cnr2.1291] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The acquisition of resistance to chemotherapy is a major hurdle in the successful application of cancer therapy. Several anticancer approaches, including chemotherapies, radiotherapy, surgery and targeted therapies are being employed for the treatment of cancer. However, cancer cells reprogram themselves in multiple ways to evade the effect of these therapies, and over a period of time, the drug becomes inactive due to the development of multi-drug resistance (MDR). MDR is a complex phenomenon where malignant cells become insensitive to anticancer drugs and attain the ability to survive even after several exposures of anticancer drugs. In this review, we have discussed the molecular and cellular paradigms of multidrug resistance in cancer. RECENT FINDINGS An Extensive research in cancer biology revealed that drug resistance in cancer is the result of perpetuated intracellular and extracellular mechanisms such as drug efflux, drug inactivation, drug target alteration, oncogenic mutations, altered DNA damage repair mechanism, inhibition of programmed cell death signaling, metabolic reprogramming, epithelial mesenchymal transition (EMT), inherent cell heterogeneity, epigenetic changes, redox imbalance, or any combination of these mechanisms. An inevitable cross-link between inflammation and drug resistance has been discussed. This review provided insight molecular mechanism to understand the vulnerabilities of cancer cells to develop drug resistance. CONCLUSION MDR is an outcome of interplays between multiple intricate pathways responsible for the inactivation of drug and development of resistance. MDR is a major obstacle in regimens of successful application of anti-cancer therapy. An improved understanding of the molecular mechanism of multi drug resistance and cellular reprogramming can provide a promising opportunity to combat drug resistance in cancer and intensify anti-cancer therapy for the upcoming future.
Collapse
Affiliation(s)
- Foram U. Vaidya
- Cell Biology Laboratory, School of Biological Sciences & BiotechnologyIndian Institute of Advanced ResearchGandhinagarIndia
| | - Abu Sufiyan Chhipa
- Cell Biology Laboratory, School of Biological Sciences & BiotechnologyIndian Institute of Advanced ResearchGandhinagarIndia
| | - Vinita Mishra
- Cell Biology Laboratory, School of Biological Sciences & BiotechnologyIndian Institute of Advanced ResearchGandhinagarIndia
| | | | | | - Ajay Kumar
- Department of ZoologyBanaras Hindu UniversityVaranasiIndia
| | - Chandramani Pathak
- Cell Biology Laboratory, School of Biological Sciences & BiotechnologyIndian Institute of Advanced ResearchGandhinagarIndia
| |
Collapse
|
10
|
Liu JC, Narva S, Zhou K, Zhang W. A Review on the Antitumor Activity of Various Nitrogenous-based Heterocyclic Compounds as NSCLC Inhibitors. Mini Rev Med Chem 2019; 19:1517-1530. [DOI: 10.2174/1389557519666190312152358] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 11/22/2022]
Abstract
At present, cancers have been causing deadly fears to humans and previously unpredictable
losses to health. Especially, lung cancer is one of the most common causes of cancer-related mortality
accounting for approximately 15% of all cancer cases worldwide. While Non-Small Cell Lung Carcinomas
(NSCLCs) makes up to 80% of lung cancer cases. The patient compliance has been weakening
because of serious drug resistance and adverse drug effects. Therefore, there is an urgent need for the
development of novel structural agents to inhibit NSCLCs. Nitrogen-containing heterocyclic compounds
exhibit wide range of biological properties, especially antitumor activity. We reviewed some
deadly defects of clinical medicines for the lung cancer therapy and importance of nitrogen based heterocyclic
derivatives against NSCLCs. Nitrogen heterocycles exhibit significant antitumor activity
against NSCLCs. Nitrogen heterocyclic hybrids could be developed as multi-target-directed NSCLC
inhibitors and it is believed that the review is significant for rational designs and new ideas in the development
of nitrogen heterocyclic-based drugs.
Collapse
Affiliation(s)
- Jia-Chun Liu
- Laboratory of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Suresh Narva
- Laboratory of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Kang Zhou
- Laboratory of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wen Zhang
- Laboratory of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
11
|
Yaneff A, Sahores A, Gómez N, Carozzo A, Shayo C, Davio C. MRP4/ABCC4 As a New Therapeutic Target: Meta-Analysis to Determine cAMP Binding Sites as a Tool for Drug Design. Curr Med Chem 2019; 26:1270-1307. [PMID: 29284392 DOI: 10.2174/0929867325666171229133259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 12/01/2017] [Accepted: 12/14/2017] [Indexed: 02/06/2023]
Abstract
MRP4 transports multiple endogenous and exogenous substances and is critical not only for detoxification but also in the homeostasis of several signaling molecules. Its dysregulation has been reported in numerous pathological disorders, thus MRP4 appears as an attractive therapeutic target. However, the efficacy of MRP4 inhibitors is still controversial. The design of specific pharmacological agents with the ability to selectively modulate the activity of this transporter or modify its affinity to certain substrates represents a challenge in current medicine and chemical biology. The first step in the long process of drug rational design is to identify the therapeutic target and characterize the mechanism by which it affects the given pathology. In order to develop a pharmacological agent with high specific activity, the second step is to systematically study the structure of the target and identify all the possible binding sites. Using available homology models and mutagenesis assays, in this review we recapitulate the up-to-date knowledge about MRP structure and aligned amino acid sequences to identify the candidate MRP4 residues where cyclic nucleotides bind. We have also listed the most relevant MRP inhibitors studied to date, considering drug safety and specificity for MRP4 in particular. This meta-analysis platform may serve as a basis for the future development of inhibitors of MRP4 cAMP specific transport.
Collapse
Affiliation(s)
- Agustín Yaneff
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Sahores
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Gómez
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro Carozzo
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carina Shayo
- Instituto de Biologia y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Carlos Davio
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
12
|
Dong Y, Cao H, Liang Z. A Curated Target Gene Pool Assisting Early Disease Prediction and Patient-Specific Treatment for Small Cell Lung Cancer. J Comput Biol 2018; 25:576-585. [PMID: 29741913 DOI: 10.1089/cmb.2017.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hundreds of genes have been linked to small cell lung cancer (SCLC), presenting multiple levels of connections with the disease. The question is whether these genes are sufficient as genetic biomarkers for the early diagnosis and personalized treatment of SCLC. An SCLC genetic database was developed through comprehensive ResNet relationship data analysis, where 557 SCLC target genes were curated. Multiple levels of associations between these genes and SCLC were studied. Then, a sparse representation-based variable selection (SRVS) was employed for gene selection for four SCLC gene expression data sets, followed by a case-control classification. Results were compared with that of analysis of variance (ANOVA)-based gene selection approaches. Using SRVS, a gene vector was selected for each data set, leading to significant higher classification accuracy compared with randomly selected genes (100%, 77.12%, 100%, and 100%; permutation p values: 0.017, 0.00060, 0.012, and 0.0066). The SRVS method outperformed ANOVA in terms of classification ratio. The genes were selected within the 557 SCLC gene pool, showing data set and method specificity. Our results suggested that for a given SCLC patient group, there might exist a gene vector in the 557 curated SCLC genes that possess significant prediction power. SRVS is effective for identifying the optimum gene subset targeting personalized treatment.
Collapse
Affiliation(s)
- Yan Dong
- 1 Department of Geriatrics, Second People's Hospital of Lianyungang , Lianyungang, China
| | - Hongbao Cao
- 2 Department of Genomics Research, R&D Solutions, Elsevier, Inc. , Rockville, Maryland.,3 Unit on Statistical Genomics , NIMH/NIH, Bethesda, Maryland
| | - Zhigang Liang
- 4 Department of Thoracic Surgery, Ningbo First Hospital , Ningbo, China
| |
Collapse
|
13
|
Feng D, Zhao T, Yan K, Liang H, Liang J, Zhou Y, Zhao W, Ling B. Gonadotropins promote human ovarian cancer cell migration and invasion via a cyclooxygenase 2-dependent pathway. Oncol Rep 2017; 38:1091-1098. [PMID: 28677781 DOI: 10.3892/or.2017.5784] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 06/22/2017] [Indexed: 11/06/2022] Open
Abstract
It is generally accepted that ovarian cancer is associated with local elevation of gonadotropins (FSH and LH), with repeated ovulation and accompanying expression of inducible cyclooxygenase 2 (COX2). However, the roles of gonadotropins and the concomitant elevation of COX2 in the development of ovarian cancer have not been fully characterized. Herein, we report that excessive FSH/LH exposure did not induce proliferation in ovarian cancer cell lines but significantly promoted cell migration and invasion. Moreover, FSH/LH treatment rapidly upregulated COX2 expression within 24 h, whereas COX1 expression remained unchanged. Further results showed that enhancement of epithelial-mesenchymal transition (EMT) and upregulation of matrix metalloproteinase (MMP)2 and MMP9 contributed to the stimulatory effect of gonadotropins on cell migration and invasion; these effects were sufficiently blocked by a selective COX2 inhibitor. In conclusion, the present study suggests that gonadotropin-induced migration and invasion in ovarian cancer may be caused by EMT and MMP upregulation via a COX2-dependent pathway.
Collapse
Affiliation(s)
- Dingqing Feng
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Tingting Zhao
- Department of Obstetrics, Wuxi Maternity and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Keqin Yan
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Haiyan Liang
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Jing Liang
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Weidong Zhao
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Bin Ling
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| |
Collapse
|
14
|
The wound-healing effect of 7,3',4'-trimethoxyflavone through increased levels of prostaglandin E 2 by 15-hydroxyprostaglandin dehydrogenase inhibition. Biotechnol Lett 2017; 39:1575-1582. [PMID: 28664315 DOI: 10.1007/s10529-017-2386-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/22/2017] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To find an inhibitor of 15-hydroxyprostaglandin dehydrogenase (15-PGDH) that rapidly metabolises Prostaglandin E2 (PGE2) as a mediator of wound healing, we examined seven flavonoids for this role. RESULTS 7,3',4'-Trimethoxyflavone (TMF) had the lowest IC50 value of 0.34 µM for 15-PGDH inhibition but >400 µM for cytotoxicity, indicating a high therapeutic index. TMF elevated PGE2 levels in a concentration-dependent manner in both A549 lung cancer and HaCaT cells. It also significantly increased mRNA expression of multidrug resistance-associated protein 4 (MRP4) and of prostaglandin transporter (PGT) slightly in HaCaT cells. In addition, TMF facilitated in vitro wound healing in a HaCaT scratch model, which was completely inhibited by adding both 15-PGDH and NAD+ as cofactor, confirming the involvement of PGE2 in its wound healing effect. CONCLUSION TMF with a high therapeutic index can facilitate wound healing through PGE2 elevation by 15-PGDH inhibition.
Collapse
|
15
|
Feasibility of the functional expression of the human organic anion transporting polypeptide 1B1 (OATP1B1) and its genetic variant 521T/C in the mouse liver. Eur J Pharm Sci 2017; 96:28-36. [PMID: 27619346 DOI: 10.1016/j.ejps.2016.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/16/2016] [Accepted: 09/09/2016] [Indexed: 11/22/2022]
Abstract
The objective of this study was to examine the feasibility of functional expression of the human organic anion transporting polypeptide 1B1 (hOATP1B1) forms in the liver of the mouse. After the mouse received the gene of interest (i.e., luciferase as the reporter or hOATP1B1) via hydrodynamic gene delivery (HGD) method, the expression was found to be liver-specific while alterations in the serum biochemistry and hepatocyte histology were apparently transient and reversible. The reporter activity was also detected in the plasma, but not in the blood cell in mice that received HGD, suggesting that the protein is probably released due to transiently increased permeability in hepatocytes by HGD. Using this delivery condition, the expression of hOATP1B1 was readily detected in the liver, but not in other tissues, of the mice receiving HGD for the transporter gene. Compared with the sham control mice, the uptake of pravastatin into the liver increased significantly in mice receiving hOATP1B1 wild type; the uptake parameters decreased consistently in mice expressing the 521T>C variant compared with that of the wild type control. These observations suggest that the functional expression of human transporter gene in mice is feasible, further suggesting that this treatment is practically useful in the pharmacokinetic studies for hOATP1B1 substrates.
Collapse
|
16
|
Eren D, Betul YM. Revealing the effect of 6-gingerol, 6-shogaol and curcumin on mPGES-1, GSK-3β and β-catenin pathway in A549 cell line. Chem Biol Interact 2016; 258:257-65. [PMID: 27645308 DOI: 10.1016/j.cbi.2016.09.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/21/2016] [Accepted: 09/15/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND AIM In our study, anticancer effects of 6-gingerol, 6-shogaol from ginger and curcumin from turmeric were investigated and the results were compared with each other. We aimed to reveal their effects on microsomal prostaglandine E2 synthase 1 (mPGES-1) which is related with cancer progression and inflammation as well as β-catenin and glycogen synthase kinase 3β (GSK-3β) that are the main components of Wnt/GSK3 pathway. As it is known activation of GSK-3β and high levels of mPGES-1 pathway leads to cell proliferation and aggravates cancer progression. Therefore both of them are potential targets for cancer therapy. 6-shogaol and 6-gingerol' s effect on this pathway is not known very well up to now while curcumin that is known as an mPGES-1 inhibitor has anticancer properties via this pathway and many other pathways. Besides being in Zingiberaceae family, ginger's 6-gingerol and 6-shogaol have a molecular similarity with turmeric's curcumin. In our study we investigated their effects using a popular non small lung cancer cell line named A549 which expresses mPGES-1 and has active GSK3β pathway. IL-1β was used for inducing mPGES-1 and enabling the cancer characteristics such as cell proliferation. So compounds that inactivates or decreases the level of these components might be potential anticancer agents. MATERIALS AND METHODS A549 cells were incubated with interleukin 1β (IL-1β) for 24 h in order to maintain mPGES-1 enzyme induction. Experiments were performed both on IL-1β and non-IL-1β group. Real time cell analysis was performed to determine the cytotoxicity. Samples for western blotting and RT-PCR were collected after 24 h incubation with compounds to determine the amount of mPGES-1, GSK-3β, p-GSK-3β, β-catenin protein and mRNA. PGE2 which is the end product of mPGES-1 was measured by using ELISA kit. RESULTS As a result of cell profile assay, cells exposed to IL-1β proliferate faster than non-IL-1β ones. This shows that induced mPGES-1 might play a role through GSK3β pathway and 24 h IC50 value of 6-shogaol is 62 μM. IL-1β increased protein and mRNA levels of mPGES-1, p-GSK-3β, β-catenin and GSK-3β in control group. Effects of curcumin and 6-shogaol on these parameters were against IL-1β's effect while 6-gingerol was not effective at all. Furthermore, 6-shogaol and curcumin might be effective on GSK3β pathway via lowering PGE2 levels. CONCLUSION We saw that 6-shogaol is as effective as curcumin on this pathway and our study shows that 6-shogaol might show its anticancer properties via mPGES-1 and GSK3β pathway. May be these results might used for designing in vivo studies in future.
Collapse
Affiliation(s)
- Demirpolat Eren
- Erciyes University, Faculty of Pharmacy, Department of Pharmacology, Kayseri, Turkey.
| | - Yerer Mukerrem Betul
- Erciyes University, Faculty of Pharmacy, Department of Pharmacology, Kayseri, Turkey.
| |
Collapse
|
17
|
Apoptosis Activation in Human Lung Cancer Cell Lines by a Novel Synthetic Peptide Derived from Conus californicus Venom. Toxins (Basel) 2016; 8:38. [PMID: 26861394 PMCID: PMC4773791 DOI: 10.3390/toxins8020038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is one of the most common types of cancer in men and women and a leading cause of death worldwide resulting in more than one million deaths per year. The venom of marine snails Conus contains up to 200 pharmacologically active compounds that target several receptors in the cell membrane. Due to their diversity and specific binding properties, Conus toxins hold great potential as source of new drugs against cancer. We analyzed the cytotoxic effect of a 17-amino acid synthetic peptide (s-cal14.1a) that is based on a native toxin (cal14.1a) isolated from the sea snail Conus californicus. Cytotoxicity studies in four lung cancer cell lines were complemented with measurement of gene expression of apoptosis-related proteins Bcl-2, BAX and the pro-survival proteins NFκB-1 and COX-2, as well as quantification of caspase activity. Our results showed that H1299 and H1437 cell lines treated with s-call4.1a had decreased cell viability, activated caspases, and reduced expression of the pro-survival protein NFκB-1. To our knowledge, this is the first report describing activation of apoptosis in human lung cancer cell lines by s-cal14.1a and we offer insight into the possible mechanism of action.
Collapse
|
18
|
Fan Y, Wang Y, Wang K. Prostaglandin E2 stimulates normal bronchial epithelial cell growth through induction of c-Jun and PDK1, a kinase implicated in oncogenesis. Respir Res 2015; 16:149. [PMID: 26684827 PMCID: PMC4699375 DOI: 10.1186/s12931-015-0309-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 12/04/2015] [Indexed: 02/05/2023] Open
Abstract
Background Cyclooxygenase-2-derived prostaglandin E2 (PGE2), a bioactive eicosanoid, has been implicated in many biological processes including reproduction, inflammation and tumor growth. We previously showed that PGE2 stimulated lung cancer cell growth and progression through PGE2 receptor EP2/EP4-mediated kinase signaling pathways. However, the role of PGE2 in controlling lung airway epithelial cell phenotype remains unknown. We evaluated the effects of c-Jun and 3-phosphoinositede dependent protein kinase-1 (PDK1) in mediating epithelial cell hyperplasia induced by PGE2. Method The bronchial epithelial cell lines BEAS-2B and HBEc14-KT were cultured and then treated with PGE2. PDK1 small interfering RNA (siRNA) and a PDK1 inhibitor, an antagonist of the PGE2 receptor subtype EP4 and EP4 siRNA, c-Jun siRNA, and overexpressions of c-Jun and PDK1 have been used to evaluate the effects on cell proliferation. Results We demonstrated that PGE2 increased normal bronchial epithelial cell proliferation through induction of PDK1, an ankyrin repeat-containing Ser/Thr kinase implicated in the induction of apoptosis and the suppression of tumor growth. PDK1 siRNA and a PDK1 inhibitor blocked the effects of PGE2 on normal cell growth. The PGE2-induced PDK1 expression was blocked by an antagonist of the PGE2 receptor subtype EP4 and by EP4 siRNA. In addition, we showed that induction of PDK1 by PGE2 was associated with induction of the transcription factor, c-Jun protein. Silencing of c-Jun using siRNA and point mutations of c-Jun sites in the PDK1 gene promoter resulted in blockade of PDK1 expression and promoter activity induced by PGE2. In contrast, overexpression of c-Jun induced PDK1 gene promoter activity and expression followed increased cell proliferation. Conclusion PGE2 increases normal bronchial epithelial cell proliferation through increased PDK1 gene expression that is dependent on EP4 and induction of c-Jun. Therewith, our data suggest a new role of c-Jun and PDK1 in mediating epithelial cell hyperplasia induced by PGE2.
Collapse
Affiliation(s)
- Yu Fan
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China. .,Department of Radiotherapy, Sichuan Cancer Hospital, Chengdu, Sichuan Province, 610041, China.
| | - Ye Wang
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China.
| | - Ke Wang
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China.
| |
Collapse
|
19
|
Lu S, Yang Y, Du Y, Cao LL, Li M, Shen C, Hou T, Zhao Y, Wang H, Deng D, Wang L, He Q, Zhu WG. The transcription factor c-Fos coordinates with histone lysine-specific demethylase 2A to activate the expression of cyclooxygenase-2. Oncotarget 2015; 6:34704-17. [PMID: 26430963 PMCID: PMC4741484 DOI: 10.18632/oncotarget.5474] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/15/2015] [Indexed: 11/25/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) is overexpressed in a variety of human epithelial cancers, including lung cancer, and is highly associated with a poor prognosis and a low survival rate. Understanding how COX-2 is regulated in response to carcinogens will offer insight into designing anti-cancer strategies and preventing cancer development. Here, we analyzed COX-2 expression in several human lung cancer cell lines and found that COX-2 expression was absent in the H719 and H460 cell lines by a DNA methylation-independent mechanism. The re-expression of COX-2 was observed after 12-O-tetradecanoylphorbol-13-acetate (TPA) treatment in both cell lines. Further investigation found that H3K36 dimethylation was significantly reduced near the COX-2 promoter because histone demethylase 2A (KDM2A) was recruited to the COX-2 promoter after TPA treatment. In addition, the transcription factor c-Fos was found to be required to recruit KDM2A to the COX-2 promoter for reactivation of COX-2 in response to TPA treatment in both the H719 and H460 cell lines. Together, our data reveal a novel mechanism by which the carcinogen TPA activates COX-2 expression by regulating H3K36 dimethylation near the COX-2 promoter.
Collapse
Affiliation(s)
- Shaoli Lu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Yang Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Yipeng Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Lin-lin Cao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Meiting Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Changchun Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Tianyun Hou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Ying Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Haiying Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Dajun Deng
- Department of Etiology, Peking University School of Oncology and Beijing Cancer Hospital & Institute, Beijing 100142, China
| | - Lina Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Qihua He
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing 100871, China
| | - Wei-Guo Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
- Peking University-Tsinghua University Joint Center for Life Sciences, Beijing 100751, China
| |
Collapse
|
20
|
Abstract
Deregulated inflammatory response plays a pivotal role in the initiation, development and progression of tumours. Potential molecular mechanism(s) that drive the establishment of an inflammatory-tumour microenvironment is not entirely understood owing to the complex cross-talk between pro-inflammatory and tumorigenic mediators such as cytokines, chemokines, oncogenes, enzymes, transcription factors and immune cells. These molecular mediators are critical linchpins between inflammation and cancer, and their activation and/or deactivation are influenced by both extrinsic (i.e. environmental and lifestyle) and intrinsic (i.e. hereditary) factors. At present, the research pertaining to inflammation-associated cancers is accumulating at an exponential rate. Interest stems from hope that new therapeutic strategies against molecular mediators can be identified to assist in cancer treatment and patient management. The present review outlines the various molecular and cellular inflammatory mediators responsible for tumour initiation, progression and development, and discusses the critical role of chronic inflammation in tumorigenesis.
Collapse
|
21
|
Wen J, Luo J, Huang W, Tang J, Zhou H, Zhang W. The Pharmacological and Physiological Role of Multidrug-Resistant Protein 4. J Pharmacol Exp Ther 2015; 354:358-75. [PMID: 26148856 DOI: 10.1124/jpet.115.225656] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 06/30/2015] [Indexed: 12/11/2022] Open
Abstract
Multidrug-resistant protein 4 (MRP4), a member of the C subfamily of ATP-binding cassette transporters, is distributed in a variety of tissues and a number of cancers. As a drug transporter, MRP4 is responsible for the pharmacokinetics and pharmacodynamics of numerous drugs, especially antiviral drugs, antitumor drugs, and diuretics. In this regard, the functional role of MRP4 is affected by a number of factors, such as genetic mutations; tissue-specific transcriptional regulations; post-transcriptional regulations, including miRNAs and membrane internalization; and substrate competition. Unlike other C family members, MRP4 is in a pivotal position to transport cellular signaling molecules, through which it is tightly connected to the living activity and physiologic processes of cells and bodies. In the context of several cancers in which MRP4 is overexpressed, MRP4 inhibition shows striking effects against cancer progression and drug resistance. In this review, we describe the role of MRP4 more specifically in both healthy conditions and disease states, with an emphasis on its potential as a drug target.
Collapse
Affiliation(s)
- Jiagen Wen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| | - Jianquan Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| | - Weihua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| | - Jie Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| |
Collapse
|
22
|
Zhang YK, Wang YJ, Gupta P, Chen ZS. Multidrug Resistance Proteins (MRPs) and Cancer Therapy. AAPS JOURNAL 2015; 17:802-12. [PMID: 25840885 DOI: 10.1208/s12248-015-9757-1] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/23/2015] [Indexed: 12/21/2022]
Abstract
The ATP-binding cassette (ABC) transporters are members of a protein superfamily that are known to translocate various substrates across membranes, including metabolic products, lipids and sterols, and xenobiotic drugs. Multidrug resistance proteins (MRPs) belong to the subfamily C in the ABC transporter superfamily. MRPs have been implicated in mediating multidrug resistance by actively extruding chemotherapeutic substrates. Moreover, some MRPs are known to be essential in physiological excretory or regulatory pathways. The importance of MRPs in cancer therapy is also implied by their clinical insights. Modulating the function of MRPs to re-sensitize chemotherapeutic agents in cancer therapy shows great promise in cancer therapy; thus, multiple MRP inhibitors have been developed recently. This review article summarizes the structure, distribution, and physiological as well as pharmacological function of MRP1-MRP9 in cancer chemotherapy. Several novel modulators targeting MRPs in cancer therapy are also discussed.
Collapse
Affiliation(s)
- Yun-Kai Zhang
- College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA,
| | | | | | | |
Collapse
|
23
|
Bhat IA, Rasool R, Qasim I, Masoodi KZ, Paul SA, Bhat BA, Ganaie FA, Aziz SA, Shah ZA. COX-2 overexpression and -8473 T/C polymorphism in 3' UTR in non-small cell lung cancer. Tumour Biol 2014; 35:11209-18. [PMID: 25113252 DOI: 10.1007/s13277-014-2420-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/29/2014] [Indexed: 01/07/2023] Open
Abstract
A new class of compounds targeting cyclooxygenase 2 (COX-2) together with other different clinically used therapeutic strategies has recently shown a promise for the chemoprevention of several solid tumors including lung cancer. The aim was to study the possible role of COX-2 -8473 T/C NP and its expression in the pathogenesis of non-small cell lung cancer. One hundred ninety non-small cell lung cancer (NSCLC) patients and 200 healthy age-, sex-, and smoking-matched controls were used for polymorphic analysis, and 48 histopathologically confirmed NSCLC patients were analyzed for COX-2 messenger RNA (mRNA) and protein expression. Our results showed that the frequencies of variant genotypes 8473 CT/CC were significantly less common in the cases (30.0%) than in the controls (36%), suggesting that the 8473 C variant allele is related with lower susceptibility in NSCLC (OR = 0.79, 95% CI 0.54-1.4). However, the frequency of COX-2 -8473 TC and CC genotypes were significantly associated with age in NSCLC (P = 0.02). Quantitative real-time expression analysis showed a significant increase in the COX-2 mRNA in tumor tissues as compared to their adjacent normal tissues [delta cycle threshold (ΔCT) = 9.25 ± 4.67 vs 5.63 ± 3.85, P = 0.0001]. Multivariate logistic regression analyses revealed that the COX-2 expression was associated significantly with age (P = 0.044). Also, an increasing trend was observed in stages I and II and in female patients compared to stages III and IV and male patients, respectively, but no statistical significance was observed. However, COX-2 mRNA expression shown no association with the -8473 C variant allele. Our findings indicate that the COX-2 T8473C polymorphism may contribute to NSCLC cancer susceptibility in the Kashmiri population, while our expression analysis revealed a significant increase of COX-2 in tumor tissues as compared to their adjacent normal tissues, suggesting that it could become an important therapeutic marker in NSCLC in the future.
Collapse
Affiliation(s)
- Imtiyaz A Bhat
- Department of Immunology and Molecular Medicine, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar, Kashmir, 190011, India,
| | | | | | | | | | | | | | | | | |
Collapse
|