1
|
Chavan DD, Thorat VM, Shete AS, Bhosale RR, Patil SJ, Tiwari DD. Current Perspectives on Development and Applications of Cocrystals in the Pharmaceutical and Medical Domain. Cureus 2024; 16:e70328. [PMID: 39463569 PMCID: PMC11513178 DOI: 10.7759/cureus.70328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024] Open
Abstract
In recent years, the design of pharmaceutical cocrystals has garnered significant attention. The process of cocrystallization offers a remarkable opportunity to develop drug products with enhanced properties such as improved stability, solubility, hygroscopicity, dissolution rate, and bioavailability. This detailed review delves into this evolving area, thereby exploring its relevance in pharmaceutical formulation by defining cocrystals and their practical applications and also by discussing methods for their preparation as well as characterization. It also contrasts traditional and innovative techniques for cocrystal formation. Historically, cocrystals have been synthesized using methods like solvent evaporation, grinding, and slurry techniques; however, each has its own set of limitations under specific conditions. The latest trends in cocrystal formation lean toward more advanced approaches such as spray-drying, hot melt extrusion, and supercritical fluid technology, as well as the cutting-edge technique of laser irradiation. The aim behind developing new methods is not just to address the limitations of traditional cocrystallization techniques but also to streamline the process by introducing simpler steps and enabling a continuous production workflow for cocrystal products. In general, this full-length review article offers a report on various techniques available for the creation of pharmaceutical cocrystals, along with the methods for their evaluation. Moreover, it includes reporting developments and diverse applications of cocrystals along with the commercially available cocrystals in the pharmaceutical as well as medical domains.
Collapse
Affiliation(s)
- Dhanashri D Chavan
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Vandana M Thorat
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Amol S Shete
- Department of Pharmaceutics, Krishna Institute of Pharmacy, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Rohit R Bhosale
- Department of Pharmaceutics, Krishna Foundation's Jaywant Institute of Pharmacy, Karad, IND
| | - Sarika J Patil
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Devkumar D Tiwari
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| |
Collapse
|
2
|
Okur AC, Erni P, Ouali L, Benczedi D, Amstad E. Controlling the crystal structure of succinic acid via microfluidic spray-drying. RSC Adv 2023; 13:7731-7737. [PMID: 36909742 PMCID: PMC9993402 DOI: 10.1039/d2ra06380h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/01/2023] [Indexed: 03/14/2023] Open
Abstract
Many properties of materials, including their dissolution kinetics, hardness, and optical appearance, depend on their structure. Unfortunately, it is often difficult to control the structure of low molecular weight organic compounds that have a high propensity to crystallize if they are formulated from solutions wherein they have a high mobility. This limitation can be overcome by formulating these compounds within small airborne drops that rapidly dry, thereby limiting the time molecules have to arrange into the thermodynamically most stable phase. Such drops can be formed with a surface acoustic wave (SAW)-based spray-drier. In this paper, we demonstrate that the structure of a model low molecular weight compound relevant to applications in pharmacology and food, succinic acid, can be readily controlled with the supersaturation rate. Succinic acid particles preserve the metastable structure over at least 3 months if the initial succinic acid concentration is below 2% of its saturation concentration such that the supersaturation rate is high. We demonstrate that also the stability of the metastable phases against their transformation into the most stable phase increases with decreasing initial solute concentration and hence with increasing supersaturation rate of the spray-dried solution. These insights open up new opportunities to control the crystal structure and therefore properties of low molecular weight compounds that have a high propensity to crystallize.
Collapse
Affiliation(s)
- Aysu Ceren Okur
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL) Lausanne 1015 Switzerland
| | - Philipp Erni
- Firmenich SA, Corporate R&D Division PO Box 239 CH-1211 Geneva 8 Switzerland
| | - Lahoussine Ouali
- Firmenich SA, Corporate R&D Division PO Box 239 CH-1211 Geneva 8 Switzerland
| | - Daniel Benczedi
- Firmenich SA, Corporate R&D Division PO Box 239 CH-1211 Geneva 8 Switzerland
| | - Esther Amstad
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL) Lausanne 1015 Switzerland
| |
Collapse
|
3
|
Wathoni N, Sari WA, Elamin KM, Mohammed AFA, Suharyani I. A Review of Coformer Utilization in Multicomponent Crystal Formation. Molecules 2022; 27:8693. [PMID: 36557827 PMCID: PMC9786674 DOI: 10.3390/molecules27248693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 12/13/2022] Open
Abstract
Most recently discovered active pharmaceutical molecules and market-approved medicines are poorly soluble in water, resulting in limited drug bioavailability and therapeutic effectiveness. The application of coformers in a multicomponent crystal method is one possible strategy to modulate a drug's solubility. A multicomponent crystal is a solid phase formed when several molecules of different substances crystallize in a crystal lattice with a certain stoichiometric ratio. The goal of this review paper is to comprehensively describe the application of coformers in the formation of multicomponent crystals as solutions for pharmaceutically active ingredients with limited solubility. Owing to their benefits including improved physicochemical profile of pharmaceutically active ingredients, multicomponent crystal methods are predicted to become increasingly prevalent in the development of active drug ingredients in the future.
Collapse
Affiliation(s)
- Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Research Center of Biopolymer for Drug and Cosmetic Delivery, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Wuri Ariestika Sari
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Khaled M. Elamin
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | | | - Ine Suharyani
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Sekolah Tinggi Farmasi Muhammadiyah Cirebon, Jl. Cideng Indah No.3, Cirebon 45153, Indonesia
| |
Collapse
|
4
|
Thakore SD, Reddy KV, Dantuluri AK, Patel D, Kumawat A, Sihorkar V, Ghoroi C, Bansal AK. Application of Twin-Screw Melt Granulation to Overcome the Poor Tabletability of a High Dose Drug. Pharm Res 2022; 39:3241-3257. [PMID: 36002616 DOI: 10.1007/s11095-022-03369-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 08/14/2022] [Indexed: 12/27/2022]
Abstract
Pharmaceutical tablet manufacturing has seen a paradigm shift toward continuous manufacturing and twin-screw granulation-based technologies have catalyzed this shift. Twin-screw granulator can simultaneously perform unit operations like mixing, granulation, and drying of the granules. The present study investigates the impact of polymer concentration and processing parameters of twin-screw melt granulation, on flow properties and compaction characteristics of a model drug having high dose and poor tabletability. Acetaminophen (AAP) and polyvinylpyrrolidone vinyl acetate (PVPVA) were used as a model drug (90-95% w/w) and polymeric binder (5-10%w/w), respectively, for the current study. Feed rate (~650-1150 g/h), extruder screw speed (150-300 rpm), and temperature (60-150°C) were used as processing variables. Results showed the reduction in particle size of drug in the extrudates (D90 of 15-25 μm from ~80 μm), irrespective of processing condition, while flow properties were a function of polymer concentration. Overall, good flowability of the products and their tablets with optimum tensile strength can be obtained through using high polymer concentration (i.e., 10% w/w), lower feed rate (~650 g/h), lower extruder screw speed (150 rpm), and higher processing temperatures (up to 120°C). The findings from the current study can be useful for continuous manufacturing of tablets of high dose drugs with minimal excipient loading in the final dosage form.
Collapse
Affiliation(s)
- Samarth D Thakore
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Katangur Vishruth Reddy
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Ajay K Dantuluri
- Ashland (India) Pvt. Ltd., MN Park Synergy Square 3, Building No.2700, II Floor, Lalgadi Malakpet Village, Turkapally, Shamirpet, Hyderabad, Telangana, 500078, India
| | - Deepika Patel
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Akshant Kumawat
- DryProTech lab, Chemical Engineering, Indian Institute of Technology-Gandhinagar, Palaj, Gujarat, 382355, India
| | - Vaibhav Sihorkar
- Ashland (India) Pvt. Ltd., MN Park Synergy Square 3, Building No.2700, II Floor, Lalgadi Malakpet Village, Turkapally, Shamirpet, Hyderabad, Telangana, 500078, India.,Sai Life Sciences Ltd, L4-01 & 02, SLN Terminus Survey No. 133, Gachibowli- Miyapur Rd, Gachibowli, Telangana, 500032, India
| | - Chinmay Ghoroi
- DryProTech lab, Chemical Engineering, Indian Institute of Technology-Gandhinagar, Palaj, Gujarat, 382355, India
| | - Arvind K Bansal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab, 160062, India.
| |
Collapse
|
5
|
Patel RD, Raval MK. Differential scanning calorimetry: A screening tool for the development of diacerein eutectics. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
6
|
Kumar Bandaru R, Rout SR, Kenguva G, Gorain B, Alhakamy NA, Kesharwani P, Dandela R. Recent Advances in Pharmaceutical Cocrystals: From Bench to Market. Front Pharmacol 2021; 12:780582. [PMID: 34858194 PMCID: PMC8632238 DOI: 10.3389/fphar.2021.780582] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/11/2021] [Indexed: 12/02/2022] Open
Abstract
The pharmacokinetics profile of active pharmaceutical ingredients (APIs) in the solid pharmaceutical dosage forms is largely dependent on the solid-state characteristics of the chemicals to understand the physicochemical properties by particle size, size distribution, surface area, solubility, stability, porosity, thermal properties, etc. The formation of salts, solvates, and polymorphs are the conventional strategies for altering the solid characteristics of pharmaceutical compounds, but they have their own limitations. Cocrystallization approach was established as an alternative method for tuning the solubility, permeability, and processability of APIs by introducing another compatible molecule/s into the crystal structure without affecting its therapeutic efficacy to successfully develop the formulation with the desired pharmacokinetic profile. In the present review, we have grossly focused on cocrystallization, particularly at different stages of development, from design to production. Furthermore, we have also discussed regulatory guidelines for pharmaceutical industries and challenges associated with the design, development and production of pharmaceutical cocrystals with commercially available cocrystal-based products.
Collapse
Affiliation(s)
- Ravi Kumar Bandaru
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology-Indian Oil Bhubaneswar Campus, Bhubaneswar, India
| | - Smruti Rekha Rout
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology-Indian Oil Bhubaneswar Campus, Bhubaneswar, India
| | - Gowtham Kenguva
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology-Indian Oil Bhubaneswar Campus, Bhubaneswar, India
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology-Indian Oil Bhubaneswar Campus, Bhubaneswar, India
| |
Collapse
|
7
|
Jia Q, Wang J, Zhang S, Zhang J, Liu N, Kou K. Investigation of the solid-liquid ternary phase diagrams of 2HNIW·HMX cocrystal. RSC Adv 2021; 11:9542-9549. [PMID: 35423470 PMCID: PMC8695502 DOI: 10.1039/d1ra00057h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/20/2021] [Indexed: 01/20/2023] Open
Abstract
The influence of temperature and solvent on the solid–liquid ternary phase diagrams of the 2HNIW·HMX cocrystal has been investigated. Ternary phase diagrams were constructed for the 2HNIW·HMX cocrystal in acetonitrile and ethyl acetate at 15 °C and 25 °C. HMX and HNIW showed inconsistent dissolution behavior and congruent dissolution behavior in acetonitrile and ethyl acetate, respectively. In the HMX–HNIW–acetonitrile system, the 2HNIW·HMX cocrystal has a narrow thermodynamically stable region at both temperatures. The cocrystal exhibits a wider thermodynamically stable region in the HMX–HNIW–ethyl acetate system. The results show that the choice of solvent has a crucial influence on the dissolution behavior of the cocrystal and the size and position of each region in the phase diagram, while the temperature has no apparent effect on the overall appearance of the phase diagram. By properly selecting the ratios, the 2HNIW·HMX cocrystal could be prepared by the isothermal slurry conversion crystallization method. The ternary phase diagrams of 2HNIW·HMX cocrystal system in ethyl acetate at 15 °C. In the HMX–HNIW–ethyl acetate system, HMX and HNIW showed congruent dissolution behavior, and the cocrystal exhibits a wider thermodynamically stable region.![]()
Collapse
Affiliation(s)
- Qian Jia
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
| | - Jia Wang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
| | - Shijie Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
| | - Jiaoqiang Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
| | - Ning Liu
- Xi'an Modern Chemistry Institute Xi'an Shaanxi 710065 China
| | - Kaichang Kou
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
| |
Collapse
|
8
|
Zhao C, Li W, Li Z, Hu W, Zhang S, Wu S. Preparation and solid-state characterization of dapsone pharmaceutical cocrystals through the supramolecular synthon strategy. CrystEngComm 2021. [DOI: 10.1039/d1ce00945a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on the design concept of supramolecular synthons, “–NH2⋯Npyridine” was used to prepare cocrystals of DAP: (1 : 1) and (2 : 1) DAP-PYR, which could be transformed into each other by mechanochemistry.
Collapse
Affiliation(s)
- Chenyang Zhao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wanya Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Zhonghua Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Weiguo Hu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- North China Pharmaceutical Group Co., Ltd., Shijiazhuang, P. R. China
| | - Suoqing Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- North China Pharmaceutical Group Co., Ltd., Shijiazhuang, P. R. China
| | - Songgu Wu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
9
|
Ternary Phase Diagram Development and Production of Niclosamide-Urea Co-Crystal by Spray Drying. J Pharm Sci 2020; 110:2063-2073. [PMID: 33285181 DOI: 10.1016/j.xphs.2020.11.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/10/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022]
Abstract
In this work, a ternary phase diagram was developed for a Niclosamide-urea co-crystal (NCS-UR) in isopropanol (IPA) using a combination of slurry and solvent addition methods. The ternary phase diagram showed that solubility of Niclosamide and urea differed by an order of magnitude in IPA, leading to an incongruently saturating system. Spray drying was explored as a method to generate NCS-UR. Co-crystals with small, uniform particle size were successfully prepared by spray drying from equimolar solutions with yield up to 73%. Co-crystals were phase pure by X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) from all conditions explored. Somewhat similar particles were obtained at inlet temperature of 70 °C (mean size of 2.0 μm) compared to 85 °C (2.8-3.4 μm). Based on the TPD, isolating phase pure co-crystal through solution crystallization in IPA would require excess urea. However, spray drying did not require excess co-former. The in-vitro solubility of NCS-UR was compared to anhydrous NCS in biorelevant media. NCS-UR did not give improvement in solubility at 1 h or 24 h. Overall, this work showed that spray drying is a feasible process for preparing phase pure co-crystals for an incongruently saturating system and simultaneously generating micron size particles.
Collapse
|
10
|
Ray E, Vaghasiya K, Sharma A, Shukla R, Khan R, Kumar A, Verma RK. Autophagy-Inducing Inhalable Co-crystal Formulation of Niclosamide-Nicotinamide for Lung Cancer Therapy. AAPS PharmSciTech 2020; 21:260. [PMID: 32944787 DOI: 10.1208/s12249-020-01803-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022] Open
Abstract
Niclosamide (NIC), an anthelminthic drug, is found to be promising in overcoming the problem of various types of drug-resistant cancer. In spite of strong anti-proliferative effect, NIC shows low aqueous solubility, leading to poor bioavailability. To overcome this limitation, and enhance its physicochemical properties and pharmacokinetic profile, we used co-crystallization technique as a promising strategy. In this work, we brought together the crystal and particle engineering at a time using spray drying to enhance physicochemical and aerodynamic properties of co-crystal particle for inhalation purpose. We investigated the formation and evaluation of pharmaceutical co-crystals of niclosamide-nicotinamide (NIC-NCT) prepared by rapid, continuous and scalable spray drying method and compared with conventional solvent evaporation technique. The newly formed co-crystal was evaluated by XRPD, FTIR, Raman spectroscopy and DSC, which showed an indication of formation of H bonds between drug (NIC) and co-former (NCT) as a major binding force in co-crystal development. The particle geometry of co-crystals including spherical shape, size 1-5 μm and aerodynamic properties (ED, 97.1 ± 8.9%; MMAD, 3.61 ± 0.87 μm; FPF, 71.74 ± 6.9% and GSD 1.46) attributes suitable for inhalation. For spray-dried co-crystal systems, an improvement in solubility characteristics (≥ 14.8-fold) was observed, relative to pure drug. To investigate the anti-proliferative activity, NIC-NCT co-crystals were investigated on A549 human lung adenomas cells, which showed a superior cytotoxic activity compared with pure drug. Mechanistically, NIC-NCT co-crystals enhanced autophagic flux in cancer cell which demonstrates autophagy-mediated cell death as shown by confocal microscopy. This technique could help in improving bioavailability of drug, hence reducing the need for high dosages and signifying a novel paradigm for future clinical applications.
Collapse
|
11
|
Panzade PS, Shendarkar GR. Pharmaceutical cocrystal: a game changing approach for the administration of old drugs in new crystalline form. Drug Dev Ind Pharm 2020; 46:1559-1568. [PMID: 32799687 DOI: 10.1080/03639045.2020.1810270] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pharmaceutical cocrystals are still gaining the interest of the researchers due to their potential to alter physicochemical, mechanical, and pharmacokinetic properties of active pharmaceutical ingredients without negotiating therapeutic action. The diverse new applications of cocrystals, like taste masking, reduced toxicity, patenting opportunities, commercial potential, etc. act as driving force to the rising interest of the pharmaceutical industries. Initially, cocrystals from the view of regulatory authorities, design strategies, cocrystal preparation in brief with special emphasis on scalable and solvent-free hot melt extrusion method, and practical guide to characterization have been provided. The special focus has been given to the biopharmaceutical attributes of the cocrystal. Finally, challenges before and after cocrystal preparation are presented in this review along with some commercial examples of the cocrystals.
Collapse
Affiliation(s)
- Prabhakar S Panzade
- Center for Research in Pharmaceutical Sciences, Nanded Pharmacy College, Nanded, India.,Srinath College of Pharmacy, Waluj, India
| | | |
Collapse
|
12
|
Murali A, Sarswat PK, Free ML. Minimizing electron-hole pair recombination through band-gap engineering in novel ZnO-CeO 2-rGO ternary nanocomposite for photoelectrochemical and photocatalytic applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:25042-25056. [PMID: 32342410 DOI: 10.1007/s11356-020-08990-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/22/2020] [Indexed: 05/27/2023]
Abstract
A novel ZnO-CeO2-rGO (ZCG) ternary nanocomposite with varying ZnO/CeO2 weight proportions was synthesized by a hydrothermal process for photoelectrochemical water splitting and photocatalytic application. XRD diffraction peaks of ZCG nanocomposites displayed the patterns of ZnO and CeO2 nanoparticles, and SEM revealed irregular flake-like particles, which were uniformly decorated on the rGO matrix. Increase in the intensity ratio of D and G bands from Raman spectra revealed changes in oxygen bonding in the ZnO-rGO (ZG) and ZCG nanocomposites. The shift in the band edge positions and the decrease in the band gap with increase in the cerium oxide content in ZCG composites were observed from UV-Vis and Mott-Schottky plots. XPS results showed that Ce3+ fraction increased with an increase in the cerium oxide content in ZCG nanocomposites. The ZCG3 (85:15) nanocomposite exhibited decreased electron-hole recombination rate as evidenced from the photoluminescence and electrochemical impedance spectroscopy Nyquist plots. The characteristic frequency in Bode's plot shifted to a lower frequency for the ZCG3 electrode demonstrating low interfacial charge transfer resistance, and ZCG3 photoelectrode displayed a higher photocurrent density of 0.69 mA/cm2 at 1.5 V compared with other photoelectrode. The optimized and highly efficient ZCG3 nanocomposite exhibited improved photocatalytic degradation of methylene blue (MB) with a reaction rate constant of 0.0201 min-1. Combination of defects in the form of Ce3+ ion and surface oxygen vacancies coupled with rGO as the electron acceptor improved the charge carrier density and carrier transport in addition to the formation Schottky-type junction and the presence of an internal electric field.
Collapse
Affiliation(s)
- Arun Murali
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Prashant K Sarswat
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Michael L Free
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
13
|
Tawfeek HM, Chavan T, Kunda NK. Effect of Spray Drying on Amorphization of Indomethacin Nicotinamide Cocrystals; Optimization, Characterization, and Stability Study. AAPS PharmSciTech 2020; 21:181. [PMID: 32607628 DOI: 10.1208/s12249-020-01732-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/14/2020] [Indexed: 01/16/2023] Open
Abstract
Cocrystals have gained a lot of consideration regarding its superior role in enhancement of solubility and dissolution of the included API. Cocrystals could be converted to coamorphous systems via different techniques like milling and quench cooling; however, the use of spray-drying technique has not been investigated before. So, the aim of this study was to explore the effect of spray drying on the amorphization of indomethacin/nicotinamide, INDNIC, as model cocrystals. Spray-drying operating parameters were optimized using the Taguchi design of experiment for maximum powder yield and low moisture content. The obtained INDNIC spray-dried cocrystals were characterized for their degree of crystallinity, morphology, moisture content, and dissolution performance. In addition, stability study was performed at different temperature and humidity conditions. Experimental design results delineate that spray-drying inlet temperature and cocrystal concentrations as the most influential factors for maximum powder yield and low moisture content. Powder X-ray diffraction and differential scanning calorimetry studies revealed the conversion of INDNIC cocrystals to a partial coamorphous or coamorphous structure without dissociation of INDNIC molecular structure. INDNIC coamorphous powders showed a significantly higher release of IND compared with cocrystals and remain physically stable for 2 months when stored in the refrigerator.
Collapse
|
14
|
Thakur PS, Thakore SD, Bansal AK. Role of Surface Characteristics of Mannitol in Crystallization of Fenofibrate During Spray Drying. J Pharm Sci 2020; 109:1105-1114. [DOI: 10.1016/j.xphs.2019.10.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/22/2019] [Accepted: 10/30/2019] [Indexed: 01/13/2023]
|
15
|
Investigation of Ternary Phase Diagrams of Carbamazepine–Nicotinamide Cocrystal in Ethanol and Ethanol/Ethyl Acetate Mixtures at 298.15 K and 313.15 K. J SOLUTION CHEM 2020. [DOI: 10.1007/s10953-019-00944-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Haneef J, Chadha R. Sustainable synthesis of ambrisentan – syringic acid cocrystal: employing mechanochemistry in the development of novel pharmaceutical solid form. CrystEngComm 2020. [DOI: 10.1039/c9ce01818b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Development of the pharmaceutical cocrystal of ambrisentan with syringic acid via mechanochemistry as a greener and sustainable methodology with improved biopharmaceutical parameters.
Collapse
Affiliation(s)
- Jamshed Haneef
- Department of Pharmaceutical Chemistry
- School of Pharmaceutical Education and Research
- Jamia Hamdard
- New Delhi 110 062
- India
| | - Renu Chadha
- University Institute of Pharmaceutical Sciences
- UGC-Centre of Advanced Studies (CAS)
- Panjab University
- Chandigarh 160 014
- India
| |
Collapse
|
17
|
Solaimalai R, Shinde G, Dharamsi A, Kokare C. Exploring the novel green eutectic solvent for the synthesis of 4-hydroxy-2-methyl- N-2-pyridinyl-2 H-1,2,-benzothiazine-3-carboxamide 1,1-dioxide with benzoic acid cocrystal using a co-grinding technique. NEW J CHEM 2020. [DOI: 10.1039/d0nj03570j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the present study, the suitability of a green eutectic solvent, a mixture of menthol and camphor for cocrystal synthesis has been investigated to improve the biopharmaceutical properties of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Rajalakshmi Solaimalai
- Department of Pharmaceutics
- Parul Institute of Pharmacy
- Parul University
- Vadodara-391760
- India
| | | | - Abhay Dharamsi
- Department of Pharmaceutics
- Parul Institute of Pharmacy
- Parul University
- Vadodara-391760
- India
| | - Chandrakant Kokare
- Department of Pharmaceutics
- Sinhgad Institute of Pharmacy
- Pune-411041
- India
| |
Collapse
|
18
|
Chaves Júnior JV, Dos Santos JAB, Lins TB, de Araújo Batista RS, de Lima Neto SA, de Santana Oliveira A, Nogueira FHA, Gomes APB, de Sousa DP, de Souza FS, Aragão CFS. A New Ferulic Acid-Nicotinamide Cocrystal With Improved Solubility and Dissolution Performance. J Pharm Sci 2019; 109:1330-1337. [PMID: 31821823 DOI: 10.1016/j.xphs.2019.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/22/2019] [Accepted: 12/03/2019] [Indexed: 10/25/2022]
Abstract
Among the various strategies for increasing aqueous solubility of pharmaceutical substances, cocrystals have been emerging as a promising alternative. The ferulic acid (FEA) is a molecule with limited aqueous solubility, but with an interesting pharmacological activity, highlighting its antitumor potential. This study presents the characterization and physicochemical properties of a new cocrystal based on FEA and nicotinamide (NIC). The FEA-NIC cocrystal was obtained by solvent evaporation technique and physicochemically characterized by differential scanning calorimetry, powder X-ray diffraction, Fourier transform infrared spectroscopy, solid-state nuclear magnetic resonance and scanning electron microscopy. The content determination and dissolution profile in different media were analyzed by high-performance liquid chromatography. The results obtained with the characterization techniques indicated the obtainment of an anhydrous cocrystal of FEA and NIC at a 1:1 molar ratio. The method was reproducible and obtained a high yield, of approximately 99%. In addition, a 70% increase in the FEA solubility in the cocrystal and a better dissolution performance than the physical mixture in pH 6.8 were achieved.
Collapse
Affiliation(s)
- José Venâncio Chaves Júnior
- Department of Pharmacy, Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal 59010-115, Brazil
| | - Jonh Anderson Borges Dos Santos
- Department of Pharmacy, Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal 59010-115, Brazil
| | - Taynara Batista Lins
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-970, Brazil
| | | | | | - Artur de Santana Oliveira
- Department of Pharmacy, Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal 59010-115, Brazil
| | - Fernando Henrique Andrade Nogueira
- Department of Pharmacy, Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal 59010-115, Brazil
| | - Ana Paula Barreto Gomes
- Department of Pharmacy, Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal 59010-115, Brazil
| | | | - Fábio Santos de Souza
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-970, Brazil
| | - Cícero Flávio Soares Aragão
- Department of Pharmacy, Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal 59010-115, Brazil.
| |
Collapse
|
19
|
Zhou F, Zhou J, Zhang H, Tong HH, Nie J, Li L, Zhang Y, Du J, Ma A, Yang X, Zhou Z. Structure determination and in vitro/vivo study on carbamazepine-naringenin (1:1) cocrystal. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
20
|
Sathisaran I, Dalvi SV. Cocrystallization of carbamazepine with amides: Cocrystal and eutectic phases with improved dissolution. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Panzade P, Shendarkar G. Superior Solubility and Dissolution of Zaltoprofen via Pharmaceutical Cocrystals. Turk J Pharm Sci 2019; 16:310-316. [PMID: 32454729 DOI: 10.4274/tjps.galenos.2018.15013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 06/07/2018] [Indexed: 12/01/2022]
Abstract
Objectives Pharmaceutical cocrystals are a promising tool to enhance the solubility and dissolution of poorly soluble drugs. Zaltoprofen (ZFN) is nonsteroidal anti-inflammatory drug with a prevalent solubility problem. The present study was undertaken to enhance the solubility and dissolution of ZFN through pharmaceutical cocrystals by screening various coformers. Materials and Methods Cocrystals of ZFN were prepared in 1:1 and 1:2 ratio of drug:coformer by the dry grinding method. The melting point and solubility of the crystalline phase were determined. The potential cocrystals were characterized by differential scanning calorimetry (DSC), infrared spectroscopy, and powder X-ray diffraction (PXRD). Cocrystals were subjected to dissolution rate and stability study. Results ZFN-nicotinamide (NIC) cocrystals demonstrated deviation in melting point and solubility. The cocrystals were obtained in both 1:1 and 1:2 ratios with NIC. The infrared analysis noticeably indicated the shifting of characteristic bands of ZFN. The crystallinity of the cocrystals was evident from the XRPD pattern and notable difference in the 2θ values of intense peaks. The DSC spectra of the cocrystals exhibited altered endotherms analogous to melting point. The cocrystals showed a faster dissolution rate and a 55% increase in the extent of dissolution compared to pure drug. The cocrystals were stable at room temperature and accelerated conditions. Conclusion The prepared cocrystals exhibited greater solubility and dissolution compared to the pure drug and were stable at room temperature and accelerated conditions.
Collapse
Affiliation(s)
- Prabhakar Panzade
- Center for Research in Pharmaceutical Sciences, Nanded Pharmacy College, Opp. Kasturba Matruseva Kendra, Sham Nagar, Nanded, India
| | - Giridhar Shendarkar
- Center for Research in Pharmaceutical Sciences, Nanded Pharmacy College, Opp. Kasturba Matruseva Kendra, Sham Nagar, Nanded, India
| |
Collapse
|
22
|
Emodin-nicotinamide (1:2) cocrystal identified by thermal screening to improve emodin solubility. Int J Pharm 2019; 557:26-35. [DOI: 10.1016/j.ijpharm.2018.12.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/19/2018] [Accepted: 12/09/2018] [Indexed: 01/04/2023]
|
23
|
Ahuja D, Svärd M, Rasmuson ÅC. Investigation of solid–liquid phase diagrams of the sulfamethazine–salicylic acid co-crystal. CrystEngComm 2019. [DOI: 10.1039/c9ce00124g] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ternary phase diagrams for sulfamethazine–salicylic acid co-crystal have been constructed in three solvent systems.
Collapse
Affiliation(s)
- Dipali Ahuja
- Synthesis and Solid State Pharmaceutical Centre
- Bernal Institute
- Department of Chemical Sciences
- University of Limerick
- Ireland
| | - Michael Svärd
- Synthesis and Solid State Pharmaceutical Centre
- Bernal Institute
- Department of Chemical Sciences
- University of Limerick
- Ireland
| | - Åke C. Rasmuson
- Synthesis and Solid State Pharmaceutical Centre
- Bernal Institute
- Department of Chemical Sciences
- University of Limerick
- Ireland
| |
Collapse
|
24
|
Quantitative investigation of particle formation of a model pharmaceutical formulation using single droplet evaporation experiments and X-ray tomography. ADV POWDER TECHNOL 2018. [DOI: 10.1016/j.apt.2018.09.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Wicaksono Y, Setyawan D, Siswandono S. Multicomponent Crystallization of Ketoprofen-nicotinamide for Improving the Solubility and Dissolution Rate. CHEMISTRY JOURNAL OF MOLDOVA 2018. [DOI: 10.19261/cjm.2018.493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
26
|
Gajda M, Nartowski KP, Pluta J, Karolewicz B. The role of the polymer matrix in solvent-free hot melt extrusion continuous process for mechanochemical synthesis of pharmaceutical cocrystal. Eur J Pharm Biopharm 2018; 131:48-59. [DOI: 10.1016/j.ejpb.2018.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/24/2018] [Accepted: 07/02/2018] [Indexed: 12/30/2022]
|
27
|
do Amaral LH, do Carmo FA, Amaro MI, de Sousa VP, da Silva LCRP, de Almeida GS, Rodrigues CR, Healy AM, Cabral LM. Development and Characterization of Dapsone Cocrystal Prepared by Scalable Production Methods. AAPS PharmSciTech 2018; 19:2687-2699. [PMID: 29968042 DOI: 10.1208/s12249-018-1101-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/05/2018] [Indexed: 12/20/2022] Open
Abstract
In this study, the formation of caffeine/dapsone (CAF/DAP) cocrystals by scalable production methods, such as liquid-assisted grinding (LAG) and spray drying, was investigated in the context of the potential use of processed cocrystal powder for pulmonary delivery. A CAF/DAP cocrystal (1:1 M ratio) was successfully prepared by slow evaporation from both acetone and ethyl acetate. Acetone, ethyl acetate, and ethanol were all successfully used to prepare cocrystals by LAG and spray drying. The powders obtained were characterized by X-ray diffractometry (XRD), differential scanning calorimetry (DSC), thermogravimetry (TGA), and Fourier transform infrared spectroscopy (FTIR). Laser diffraction analysis indicated a median particle size (D50) for spray-dried powders prepared from acetone, ethanol, and ethyl acetate of 5.4 ± 0.7, 5.2 ± 0.1, and 5.1 ± 0.0 μm respectively, which are appropriate sizes for pulmonary delivery by means of a dry powder inhaler. The solubility of the CAF/DAP cocrystal in phosphate buffer pH 7.4, prepared by spray drying using acetone, was 506.5 ± 31.5 μg/mL, while pure crystalline DAP had a measured solubility of 217.1 ± 7.8 μg/mL. In vitro cytotoxicity studies using Calu-3 cells indicated that the cocrystals were not toxic at concentrations of 0.1 and of 1 mM of DAP, while an in vitro permeability study suggested caffeine may contribute to the permeation of DAP by hindering the efflux effect. The results obtained indicate that the CAF/DAP cocrystal, particularly when prepared by the spray drying method, represents a possible suitable approach for inhalation formulations with applications in pulmonary pathologies.
Collapse
|
28
|
Patil S, Agarwal P, Rojatkar S, Mahadik K. Electrosprayed Forskolin Cocrystals with Enhanced Aqueous Solubility. ACTA ACUST UNITED AC 2018. [DOI: 10.1080/22297928.2018.1467277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Sharvil Patil
- Bharati Vidyapeeth Deemed University, Poona College of Pharmacy, Department of Pharmaceutics, Erandwane, Pune-411 038, Maharashtra, India
| | - Piyush Agarwal
- Bharati Vidyapeeth Deemed University, Poona College of Pharmacy, Department of Pharmaceutics, Erandwane, Pune-411 038, Maharashtra, India
| | - Supada Rojatkar
- Research & Development Centre in Pharmaceutical Sciences and Applied Chemistry, Bharati Vidyapeeth Deemed University, Poona College of Pharmacy Campus, Erandwane, Pune-411038, Maharashtra, India
| | - Kakasaheb Mahadik
- Bharati Vidyapeeth Deemed University, Poona College of Pharmacy, Department of Pharmaceutics, Erandwane, Pune-411 038, Maharashtra, India
| |
Collapse
|
29
|
Synthesis and structure identification of 2-amino-4, 6- dimethyl pyrimidine with gallic acid and pimelic acid. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.03.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Rodrigues M, Baptista B, Lopes JA, Sarraguça MC. Pharmaceutical cocrystallization techniques. Advances and challenges. Int J Pharm 2018; 547:404-420. [PMID: 29890258 DOI: 10.1016/j.ijpharm.2018.06.024] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/11/2022]
Abstract
Cocrystals are homogenous (single-phase) crystalline structures composed by two or more components in a definite stoichiometric ratio bonded together by noncovalent bonds. Pharmaceutical industry has been showing interest in cocrystals due to their ability to improve active pharmaceutical ingredients (API's) properties, such as solubility, dissolution, bioavailability, stability and processability. The necessity for high-throughput screening methods and methods capable of producing cocrystals in an industrial scale still hinders the use of cocrystals by the pharmaceutical industry. The aim of this review is to present an extensive overview of the cocrystallization methods, focusing in the specificities of each technique, its advantages and disadvantages. The review is divided into solvent-based and solvent-free methods. The most appropriate methods to the different stages of cocrystals manufacture, from the screening phase to industrial production are identified. The use of continuous and scalable methods in cocrystal production as well as the implementation of quality-by-design and process analytical technology concepts are also addressed.
Collapse
Affiliation(s)
- Marisa Rodrigues
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Bárbara Baptista
- Research Institute for Medicines (iMed.Lisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - João Almeida Lopes
- Research Institute for Medicines (iMed.Lisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Mafalda Cruz Sarraguça
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
31
|
Emami S, Siahi-Shadbad M, Adibkia K, Barzegar-Jalali M. Recent advances in improving oral drug bioavailability by cocrystals. ACTA ACUST UNITED AC 2018; 8:305-320. [PMID: 30397585 PMCID: PMC6209825 DOI: 10.15171/bi.2018.33] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/04/2018] [Accepted: 05/05/2018] [Indexed: 12/18/2022]
Abstract
![]()
Introduction: Oral drug delivery is the most favored route of drug administration. However, poor oral bioavailability is one of the leading reasons for insufficient clinical efficacy. Improving oral absorption of drugs with low water solubility and/or low intestinal membrane permeability is an active field of research. Cocrystallization of drugs with appropriate coformers is a promising approach for enhancing oral bioavailability.
Methods: In the present review, we have focused on recent advances that have been made in improving oral absorption through cocrystallization. The covered areas include supersaturation and its importance on oral absorption of cocrystals, permeability of cocrystals through membranes, drug-coformer pharmacokinetic (PK) interactions, conducting in vivo-in vitro correlations for cocrystals. Additionally, a discussion has been made on the integration of nanocrystal technology with supramolecular design. Marketed cocrystal products and PK studies in human subjects are also reported.
Results: Considering supersaturation and consequent precipitation properties is necessary when evaluating dissolution and bioavailability of cocrystals. Appropriate excipients should be included to control precipitation kinetics and to capture solubility advantage of cocrystals. Beside to solubility, cocrystals may modify membrane permeability of drugs. Therefore, cocrystals can find applications in improving oral bioavailability of poorly permeable drugs. It has been shown that cocrystals may interrupt cellular integrity of cellular monolayers which can raise toxicity concerns. Some of coformers may interact with intestinal absorption of drugs through changing intestinal blood flow, metabolism and inhibiting efflux pumps. Therefore, caution should be taken into account when conducting bioavailability studies. Nanosized cocrystals have shown a high potential towards improving absorption of poorly soluble drugs.
Conclusions: Cocrystals have found their way from the proof-of-principle stage to the clinic. Up to now, at least two cocrystal products have gained approval from regulatory bodies. However, there are remaining challenges on safety, predicting in vivo behavior and revealing real potential of cocrystals in the human.
Collapse
Affiliation(s)
- Shahram Emami
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Siahi-Shadbad
- Department of Pharmaceutical and Food Control, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Barzegar-Jalali
- Biotechnology Research Center, and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
32
|
Zhao Z, Liu G, Lin Q, Jiang Y. Co-Crystal of Paracetamol and Trimethylglycine Prepared by a Supercritical CO2
Anti-Solvent Process. Chem Eng Technol 2018. [DOI: 10.1002/ceat.201700638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ziyi Zhao
- South China University of Technology; School of Chemistry and Chemical Engineering; 381 Wushan Street 510640 Guangzhou China
| | - Guijin Liu
- South China University of Technology; School of Chemistry and Chemical Engineering; 381 Wushan Street 510640 Guangzhou China
- Honz Pharmaceutical Co. Ltd.; 6 Yaogu 3rd Road 570311 Haikou China
| | - Qing Lin
- South China University of Technology; School of Chemistry and Chemical Engineering; 381 Wushan Street 510640 Guangzhou China
| | - Yanbin Jiang
- South China University of Technology; School of Chemistry and Chemical Engineering; 381 Wushan Street 510640 Guangzhou China
| |
Collapse
|
33
|
Emami S, Siahi-Shadbad M, Barzegar-Jalali M, Adibkia K. Feasibility of electrospray deposition for rapid screening of the cocrystal formation and single step, continuous production of pharmaceutical nanococrystals. Drug Dev Ind Pharm 2018; 44:1034-1047. [PMID: 29347850 DOI: 10.1080/03639045.2018.1430821] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVES This study employed electrospray deposition (ESD) for simultaneous synthesis and particle engineering of cocrystals. SIGNIFICANCE Exploring new methods for the efficient production of cocrystals with desired particle properties is an essential demand. METHODS The possibility of cocrystal formation by ESD was examined for indomethacin-saccharin, indomethacin-nicotinamide, naproxen-nicotinamide, and naproxen-iso-nicotinamide cocrystals. Solutions of the drug and coformer at stoichiometric ratios were sprayed to a high electric field which caused rapid evaporation of the solvent and the formation of fine particles. The phase purity, size, and morphology of products were compared with reference cocrystals. Experiments were performed to evaluate the effects of stoichiometric ratio, concentration and solvent type on the cocrystal formation. Physical stability and dissolution properties of the electrosprayed cocrystals were also compared with reference cocrystals. RESULTS ESD was found to be an efficient and rapid method to produce cocrystals for all studied systems other than indomethacin-nicotinamide. Pure cocrystals only formed at a specific drug:coformer ratio. The solvent type has a weak effect on the cocrystal formation and morphology. Electrosprayed cocrystals exhibited nano to micrometer sizes with distinct morphologies with comparable physical stability with reference cocrystals. Nanococrystals of indomethacin-saccharin with a mean size of 219 nm displayed a threefold higher dissolution rate than solvent evaporated cocrystal. CONCLUSION ESD successfully was utilized to produce pure cocrystals of poorly soluble drugs with different morphologies and sizes ranging from nano to micrometer sizes in one step. This study highlighted the usefulness of ESD for simultaneous preparation and particle engineering of pharmaceutical cocrystals.
Collapse
Affiliation(s)
- Shahram Emami
- a Drug Applied Research Center and Faculty of Pharmacy , Tabriz University of Medical Sciences , Tabriz , Iran.,b Student Research Committee , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mohammadreza Siahi-Shadbad
- c Department of Pharmaceutical and Food Control, Faculty of Pharmacy , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mohammad Barzegar-Jalali
- d Biotechnology Research Center, and Faculty of Pharmacy , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Khosro Adibkia
- e Research Center for Pharmaceutical Nanotechnology and Faculty of Pharmacy , Tabriz University of medical sciences , Tabriz , Iran
| |
Collapse
|
34
|
Cerreia Vioglio P, Chierotti MR, Gobetto R. Pharmaceutical aspects of salt and cocrystal forms of APIs and characterization challenges. Adv Drug Deliv Rev 2017; 117:86-110. [PMID: 28687273 DOI: 10.1016/j.addr.2017.07.001] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/23/2017] [Accepted: 07/03/2017] [Indexed: 11/28/2022]
Abstract
In recent years many efforts have been devoted to the screening and the study of new solid-state forms of old active pharmaceutical ingredients (APIs) with salification or co-crystallization processes, thus modulating final properties without changing the pharmacological nature. Salts, hydrates/solvates, and cocrystals are the common solid-state forms employed. They offer the intriguing possibility of exploring different pharmaceutical properties for a single API in the quest of enhancing the final drug product. New synthetic strategies and advanced characterization techniques have been recently proposed in this hot topic for pharmaceutical companies. This paper reviews the recent progresses in the field particularly focusing on the characterization challenges encountered when the nature of the solid-state form must be determined. The aim of this article is to offer the state-of-the-art on this subject in order to develop new insights and to promote cooperative efforts in the fascinating field of API salt and cocrystal forms.
Collapse
Affiliation(s)
| | - Michele R Chierotti
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Roberto Gobetto
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy.
| |
Collapse
|
35
|
Advanced methodologies for cocrystal synthesis. Adv Drug Deliv Rev 2017; 117:178-195. [PMID: 28712924 DOI: 10.1016/j.addr.2017.07.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 11/21/2022]
Abstract
Pharmaceutical cocrystals are multicomponent systems composed of two or more molecules and held together by H-bonding. Currently, cocrystals provide exciting opportunities in the pharmaceutical industry for the development and manufacturing of new medicines by improving poor physical properties of Active Pharmaceutical Ingredients (APIs) such as processability, solubility, stability and bioavailability. According to the recent reclassification, cocrystals are considered as drug polymorph rather a new API which has a significant impact on drug development, regulatory submissions and intellectual property protection. This review summarizes recent trends and advances in synthesis, manufacturing and scale - up of cocrystals. The operational principles of several cocrystals manufacturing technologies are discussed including their advantages and disadvantages in terms of crystal quality, purity stability, throughput and limitations in large scale production.
Collapse
|
36
|
Malamatari M, Ross SA, Douroumis D, Velaga SP. Experimental cocrystal screening and solution based scale-up cocrystallization methods. Adv Drug Deliv Rev 2017; 117:162-177. [PMID: 28811184 DOI: 10.1016/j.addr.2017.08.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 08/04/2017] [Accepted: 08/10/2017] [Indexed: 12/20/2022]
Abstract
Cocrystals are crystalline single phase materials composed of two or more different molecular and/or ionic compounds generally in a stoichiometric ratio which are neither solvates nor simple salts. If one of the components is an active pharmaceutical ingredient (API), the term pharmaceutical cocrystal is often used. There is a growing interest among drug development scientists in exploring cocrystals, as means to address physicochemical, biopharmaceutical and mechanical properties and expand solid form diversity of the API. Conventionally, coformers are selected based on crystal engineering principles, and the equimolar mixtures of API and coformers are subjected to solution-based crystallization that are commonly employed in polymorph and salt screening. However, the availability of new knowledge on cocrystal phase behaviour in solid state and solutions has spurred the development and implementation of more rational experimental cocrystal screening as well as scale-up methods. This review aims to provide overview of commonly employed solid form screening techniques in drug development with an emphasis on cocrystal screening methodologies. The latest developments in understanding and the use of cocrystal phase diagrams in both screening and solution based scale-up methods are also presented. Final section is devoted to reviewing the state of the art research covering solution based scale-up cocrystallization process for different cocrystals besides more recent continuous crystallization methods.
Collapse
|
37
|
Du S, Wang Y, Wu S, Yu B, Shi P, Bian L, Zhang D, Hou J, Wang J, Gong J. Two novel cocrystals of lamotrigine with isomeric bipyridines and in situ monitoring of the cocrystallization. Eur J Pharm Sci 2017; 110:19-25. [PMID: 28587788 DOI: 10.1016/j.ejps.2017.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 11/25/2022]
Abstract
Crystal engineering strategy was applied to develop new solid forms of lamotrigine. Two novel cocrystals of lamotrigine forming with 4,4'-bipyridine (2:1) and 2,2'-bipyridine cocrystal (1:1.5) were successfully obtained by neat grinding and liquid assisted grinding. The novel cocrystals were fully characterized and confirmed by X-ray diffraction, thermal and spectroscopic analysis. DXRxi Raman microscope was also used to identify the cocrystals. The factors such as solvent and the structure of coformers which influenced the cocrystal formation were discussed. Furthermore, the novel cocrystals were both obtained by slurry crystallization. Process analytical technologies including focused beam reflectance measurement and attenuated total reflectance Fourier Transform Infrared were applied to investigate the cocrystallization process and the mechanism. HPLC analysis showed that the dissolution rate and the solubility of the two novel cocrystals were both improved.
Collapse
Affiliation(s)
- Shichao Du
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin University, Tianjin, China
| | - Yan Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin University, Tianjin, China
| | - Songgu Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin University, Tianjin, China
| | - Bo Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin University, Tianjin, China
| | - Peng Shi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin University, Tianjin, China
| | - Lin Bian
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Dejiang Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin University, Tianjin, China
| | - Jie Hou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin University, Tianjin, China
| | - Jingkang Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin University, Tianjin, China; Key Laboratory Modern Drug Delivery and High Efficiency in Tianjin University, Tianjin, China
| | - Junbo Gong
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin University, Tianjin, China; Key Laboratory Modern Drug Delivery and High Efficiency in Tianjin University, Tianjin, China.
| |
Collapse
|
38
|
Patil S, Ujalambkar V, Mahadik A. Electrospray technology as a probe for cocrystal synthesis: Influence of solvent and coformer structure. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Al-Khattawi A, Bayly A, Phillips A, Wilson D. The design and scale-up of spray dried particle delivery systems. Expert Opin Drug Deliv 2017; 15:47-63. [DOI: 10.1080/17425247.2017.1321634] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Andrew Bayly
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
| | | | - David Wilson
- Chemical Development, AstraZeneca, Macclesfield, UK
| |
Collapse
|
40
|
Halliwell RA, Bhardwaj RM, Brown CJ, Briggs NEB, Dunn J, Robertson J, Nordon A, Florence AJ. Spray Drying as a Reliable Route to Produce Metastable Carbamazepine Form IV. J Pharm Sci 2017; 106:1874-1880. [PMID: 28431966 DOI: 10.1016/j.xphs.2017.03.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/16/2017] [Accepted: 03/27/2017] [Indexed: 11/28/2022]
Abstract
Carbamazepine (CBZ) is an active pharmaceutical ingredient used in the treatment of epilepsy that can form at least 5 polymorphic forms. Metastable form IV was originally discovered from crystallization with polymer additives; however, it has not been observed from subsequent solvent-only crystallization efforts. This work reports the reproducible formation of phase pure crystalline form IV by spray drying of methanolic CBZ solution. Characterization of the material was carried out using diffraction, scanning electron microscopy, and differential scanning calorimetry. In situ Raman spectroscopy was used to monitor the spray-dried product during the spray drying process. This work demonstrates that spray drying provides a robust method for the production of form IV CBZ, and the combination of high supersaturation and rapid solid isolation from solution overcomes the apparent limitation of more traditional solution crystallization approaches to produce metastable crystalline forms.
Collapse
Affiliation(s)
- Rebecca A Halliwell
- EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation, c/o Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, UK
| | - Rajni M Bhardwaj
- EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation, c/o Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, UK
| | - Cameron J Brown
- EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation, c/o Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, UK.
| | - Naomi E B Briggs
- EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation, c/o Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, UK
| | - Jaclyn Dunn
- Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - John Robertson
- EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation, c/o Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, UK
| | - Alison Nordon
- Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Alastair J Florence
- EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation, c/o Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, UK
| |
Collapse
|
41
|
Lin SY. Simultaneous screening and detection of pharmaceutical co-crystals by the one-step DSC–FTIR microspectroscopic technique. Drug Discov Today 2017; 22:718-728. [DOI: 10.1016/j.drudis.2016.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/07/2016] [Accepted: 12/02/2016] [Indexed: 11/17/2022]
|
42
|
Wang N, Hao H, Lu H, Xu R. Molecular recognition and self-assembly mechanism of cocrystallization processes. CrystEngComm 2017. [DOI: 10.1039/c7ce00713b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Schematic diagram of MC_U cocrystal formation during cooling crystallization, represented by real-time Raman, ATR-FTIR and FBRM data.
Collapse
Affiliation(s)
- Na Wang
- National Engineering Research Centre of Industrial Crystallization Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- PR China
| | - Hongxun Hao
- National Engineering Research Centre of Industrial Crystallization Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- PR China
| | - Haijiao Lu
- National Engineering Research Centre of Industrial Crystallization Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- PR China
| | - Ruilin Xu
- National Engineering Research Centre of Industrial Crystallization Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- PR China
| |
Collapse
|
43
|
|
44
|
Patil S, Kulkarni J, Mahadik K. Exploring the Potential of Electrospray Technology in Cocrystal Synthesis. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b01938] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sharvil Patil
- Department of Pharmaceutics, Bharati Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune−411 038, Maharashtra, India
| | - Jui Kulkarni
- Department of Pharmaceutics, Bharati Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune−411 038, Maharashtra, India
| | - Kakasaheb Mahadik
- Department of Pharmaceutics, Bharati Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune−411 038, Maharashtra, India
| |
Collapse
|
45
|
Duarte Í, Andrade R, Pinto JF, Temtem M. Green production of cocrystals using a new solvent-free approach by spray congealing. Int J Pharm 2016; 506:68-78. [DOI: 10.1016/j.ijpharm.2016.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 10/22/2022]
|
46
|
Cysewski P, Przybyłek M, Ziółkowska D, Mroczyńska K. Exploring the cocrystallization potential of urea and benzamide. J Mol Model 2016; 22:103. [PMID: 27052722 PMCID: PMC4823316 DOI: 10.1007/s00894-016-2964-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 03/14/2016] [Indexed: 11/09/2022]
Abstract
The cocrystallization landscape of benzamide and urea interacting with aliphatic and aromatic carboxylic acids was studied both experimentally and theoretically. Ten new cocrystals of benzamide were synthesized using an oriented samples approach via a fast dropped evaporation technique. Information about types of known bi-component cocrystals augmented with knowledge of simple binary eutectic mixtures was used for the analysis of virtual screening efficiency among 514 potential pairs involving aromatic carboxylic acids interacting with urea or benzamide. Quantification of intermolecular interaction was achieved by estimating the excess thermodynamic functions of binary liquid mixtures under supercooled conditions within a COSMO-RS framework. The smoothed histograms suggest that slightly more potential pairs of benzamide are characterized in the attractive region compared to urea. Finally, it is emphasized that prediction of cocrystals of urea is fairly direct, while it remains ambiguous for benzamide paired with carboxylic acids. The two known simple eutectics of urea are found within the first two quartiles defined by excess thermodynamic functions, and all known cocrystals are outside of this range belonging to the third or fourth quartile. On the contrary, such a simple separation of positive and negative cases of benzamide miscibility in the solid state is not observed. The difference in properties between urea and benzamide R2,2(8) heterosynthons is also documented by alterations of substituent effects. Intermolecular interactions of urea with para substituted benzoic acid analogues are stronger compared to those of benzamide. Also, the amount of charge transfer from amide to aromatic carboxylic acid and vice versa is more pronounced for urea. However, in both cases, the greater the electron withdrawing character of the substituent, the higher the binding energy, and the stronger the supermolecule polarization via the charge transfer mechanism.
Collapse
Affiliation(s)
- Piotr Cysewski
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum of Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-950, Bydgoszcz, Poland.
| | - Maciej Przybyłek
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum of Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-950, Bydgoszcz, Poland
| | - Dorota Ziółkowska
- Research Laboratory, Faculty of Chemical Technology and Engineering, University of Technology and Life Sciences in Bydgoszcz, Seminaryjna 3, 85-326, Bydgoszcz, Poland
| | - Karina Mroczyńska
- Research Laboratory, Faculty of Chemical Technology and Engineering, University of Technology and Life Sciences in Bydgoszcz, Seminaryjna 3, 85-326, Bydgoszcz, Poland
| |
Collapse
|
47
|
Thipparaboina R, Kumar D, Chavan RB, Shastri NR. Multidrug co-crystals: towards the development of effective therapeutic hybrids. Drug Discov Today 2016; 21:481-90. [DOI: 10.1016/j.drudis.2016.02.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/14/2015] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
|
48
|
Przybyłek M, Ziółkowska D, Mroczyńska K, Cysewski P. Propensity of salicylamide and ethenzamide cocrystallization with aromatic carboxylic acids. Eur J Pharm Sci 2016; 85:132-40. [DOI: 10.1016/j.ejps.2016.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/13/2016] [Accepted: 02/15/2016] [Indexed: 11/26/2022]
|
49
|
Singh C, Koduri LSK, Singh A, Suresh S. Novel potential for optimization of antitubercular therapy: Pulmonary delivery of rifampicin lipospheres. Asian J Pharm Sci 2015. [DOI: 10.1016/j.ajps.2015.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
50
|
Sarraguça MC, Ribeiro PRS, Dos Santos AO, Lopes JA. Batch Statistical Process Monitoring Approach to a Cocrystallization Process. J Pharm Sci 2015; 104:4099-4108. [PMID: 26308877 DOI: 10.1002/jps.24623] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/28/2015] [Accepted: 08/04/2015] [Indexed: 01/22/2023]
Abstract
Cocrystals are defined as crystalline structures composed of two or more compounds that are solid at room temperature held together by noncovalent bonds. Their main advantages are the increase of solubility, bioavailability, permeability, stability, and at the same time retaining active pharmaceutical ingredient bioactivity. The cocrystallization between furosemide and nicotinamide by solvent evaporation was monitored on-line using near-infrared spectroscopy (NIRS) as a process analytical technology tool. The near-infrared spectra were analyzed using principal component analysis. Batch statistical process monitoring was used to create control charts to perceive the process trajectory and define control limits. Normal and non-normal operating condition batches were performed and monitored with NIRS. The use of NIRS associated with batch statistical process models allowed the detection of abnormal variations in critical process parameters, like the amount of solvent or amount of initial components present in the cocrystallization.
Collapse
Affiliation(s)
- Mafalda C Sarraguça
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto Rua Jorge Viterbo Ferreira, 228, 4050-313, Portugal
| | - Paulo R S Ribeiro
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto Rua Jorge Viterbo Ferreira, 228, 4050-313, Portugal; NUPFARQ, Centro de Ciências Sociais, Saúde e Tecnologia, Universidade Federal do Maranhão (UFMA), Imperatriz CP:65.900-410, MA, Brazil
| | - Adenilson O Dos Santos
- Centro de Ciências Sociais, Sa úde e Tecnologia, Universidade Federal do Maranhão (UFMA), Imperatriz CP:65.900-410, MA, Brazil
| | - João A Lopes
- iMed, Departamento de Farmácia Galénica e Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal.
| |
Collapse
|