1
|
Kumar R, Mehta P, Shankar KR, Rajora MAK, Mishra YK, Mostafavi E, Kaushik A. Nanotechnology-Assisted Metered-Dose Inhalers (MDIs) for High-Performance Pulmonary Drug Delivery Applications. Pharm Res 2022; 39:2831-2855. [PMID: 35552983 PMCID: PMC9097569 DOI: 10.1007/s11095-022-03286-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/03/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE Respiratory disorders pose a major threat to the morbidity and mortality to public health. Here we reviewed the nanotechnology based pulmonary drug delivery using metered dose inhalers. METHODS Major respiratory diseases such as chronic obstructive pulmonary diseases (COPD), asthma, acute lower respiratory tract infections, tuberculosis (TB) and lung cancer. At present, common treatments for respiratory disorders include surgery, radiation, immunotherapy, and chemotherapy or a combination. The major challenge is development of systemic delivery of the chemotherapeutic agents to the respiratory system. Conventional delivery of chemotherapy has various limitation and adverse side effected. Hence, targeted, and systemic delivery need to be developed. Towards this direction nanotechnology, based controlled, targeted, and systemic drug delivery systems are potential candidate to enhance therapeutic efficacy with minimum side effect. Among different route of administration, pulmonary delivery has unique benefits such as circumvents first pass hepatic metabolism and reduces dose and side effects. RESULTS Respiratory disorders pose a major threat to the morbidity and mortality to public health globally. Pulmonary delivery can be achieved through various drug delivery devices such as nebulizers, dry powder inhalers, and metered dose inhalers. Among them, metered dose inhalers are the most interesting and first choice of clinician over others. This review focused on nanotechnology based pulmonary drug delivery using metered dose inhalers. This report focused on delivery of various types of therapeutics using nanocarriers such as polymeric nanoparticles and micelles, dendrimers, lipid nanocarriers such as liposomes, solid lipid nanostructures and nanostructured lipid carriers, and other using metered dose inhalers discussed comprehensively. This report provides insight about the effect of parameters of MDI such as co-solvent, propellants, actuators shape, nozzle diameters, and jet lengths, and respiratory flow rate, and particle size of co-suspension of drug on aerodynamics and lung deposition of formulation. This review also provided the insight about various metered dose inhalers market scenario and digital metered dose inhalers. CONCLUSION This report concluded the clinical potential of metered dose inhalers, summary of current progress and future perspectives towards the smart digital metered dose inhalers development.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68105, USA.
| | - Piyush Mehta
- Pharmaceutical Technology Center, Department of Aerosol, Zydus Life Sciences Ltd., Ahmedabad, Gujarat, India
| | | | - Manju A K Rajora
- College of Nursing, All India Institute of Medical Sciences, New Delhi, 100029, India
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,NanoBioTech Laboratory, Health Systems Engineering, Department of Natural Sciences, Florida Polytechnic University, Lakeland, FL, USA
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Natural Sciences, Florida Polytechnic University, Lakeland, FL, USA.
| |
Collapse
|
2
|
Focaroli S, Jiang G, O’Connell P, Fahy JV, Healy AM. The Use of a Three-Fluid Atomising Nozzle in the Production of Spray-Dried Theophylline/Salbutamol Sulphate Powders Intended for Pulmonary Delivery. Pharmaceutics 2020; 12:E1116. [PMID: 33233520 PMCID: PMC7699582 DOI: 10.3390/pharmaceutics12111116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/02/2022] Open
Abstract
The aim of this study was to investigate the use of a three-fluid atomising nozzle in a lab-scale spray dryer for the production of dry powders intended for pulmonary delivery. Powders were composed of salbutamol sulphate and theophylline in different weight ratios. The three-fluid nozzle technology enabled powders containing a high theophylline content to be obtained, overcoming the problems associated with its relatively low solubility, by pumping two separate feed solutions (containing the two different active pharmaceutical ingredients (APIs)) into the spray dryer via two separate nozzle channels at different feed rates. The final spray-dried products were characterized in terms of morphology, solid-state properties and aerosolization performance, and were compared with an equivalent formulation prepared using a standard two-fluid atomising nozzle. Results confirmed that most of the powders made using the three-fluid atomising nozzle met the required standards for a dry powder inhaler formulation in terms of physical characteristics; however, aerosolization characteristics require improvement if the powders are to be considered suitable for pulmonary delivery.
Collapse
Affiliation(s)
- Stefano Focaroli
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, Dublin 2 D02, Ireland; (G.J.); (P.O.); (A.-M.H.)
| | - Guannan Jiang
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, Dublin 2 D02, Ireland; (G.J.); (P.O.); (A.-M.H.)
| | - Peter O’Connell
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, Dublin 2 D02, Ireland; (G.J.); (P.O.); (A.-M.H.)
| | - John V. Fahy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and Cardiovascular Research Institute, Health Sciences East, UCSF, 513 Parnassus Avenue, San Francisco, CA 94143, USA;
| | - Anne-Marie Healy
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, Dublin 2 D02, Ireland; (G.J.); (P.O.); (A.-M.H.)
- SSPC The SFI Research Centre for Pharmaceuticals, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2 D02, Ireland
| |
Collapse
|
3
|
Matera MG, Page CP, Calzetta L, Rogliani P, Cazzola M. Pharmacology and Therapeutics of Bronchodilators Revisited. Pharmacol Rev 2020; 72:218-252. [PMID: 31848208 DOI: 10.1124/pr.119.018150] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bronchodilators remain the cornerstone of the treatment of airway disorders such as asthma and chronic obstructive pulmonary disease (COPD). There is therefore considerable interest in understanding how to optimize the use of our existing classes of bronchodilator and in identifying novel classes of bronchodilator drugs. However, new classes of bronchodilator have proved challenging to develop because many of these have no better efficacy than existing classes of bronchodilator and often have unacceptable safety profiles. Recent research has shown that optimization of bronchodilation occurs when both arms of the autonomic nervous system are affected through antagonism of muscarinic receptors to reduce the influence of parasympathetic innervation of the lung and through stimulation of β 2-adrenoceptors (β 2-ARs) on airway smooth muscle with β 2-AR-selective agonists to mimic the sympathetic influence on the lung. This is currently achieved by use of fixed-dose combinations of inhaled long-acting β 2-adrenoceptor agonists (LABAs) and long-acting muscarinic acetylcholine receptor antagonists (LAMAs). Due to the distinct mechanisms of action of LAMAs and LABAs, the additive/synergistic effects of using these drug classes together has been extensively investigated. More recently, so-called "triple inhalers" containing fixed-dose combinations of both classes of bronchodilator (dual bronchodilation) and an inhaled corticosteroid in the same inhaler have been developed. Furthermore, a number of so-called "bifunctional drugs" having two different primary pharmacological actions in the same molecule are under development. This review discusses recent advancements in knowledge on bronchodilators and bifunctional drugs for the treatment of asthma and COPD. SIGNIFICANCE STATEMENT: Since our last review in 2012, there has been considerable research to identify novel classes of bronchodilator drugs, to further understand how to optimize the use of the existing classes of bronchodilator, and to better understand the role of bifunctional drugs in the treatment of asthma and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- M G Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy (M.G.M.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); and Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata," Rome, Italy (L.C., P.R., M.C.)
| | - C P Page
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy (M.G.M.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); and Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata," Rome, Italy (L.C., P.R., M.C.)
| | - L Calzetta
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy (M.G.M.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); and Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata," Rome, Italy (L.C., P.R., M.C.)
| | - P Rogliani
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy (M.G.M.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); and Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata," Rome, Italy (L.C., P.R., M.C.)
| | - M Cazzola
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy (M.G.M.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); and Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata," Rome, Italy (L.C., P.R., M.C.)
| |
Collapse
|
4
|
Newman SP. Delivering drugs to the lungs: The history of repurposing in the treatment of respiratory diseases. Adv Drug Deliv Rev 2018; 133:5-18. [PMID: 29653129 DOI: 10.1016/j.addr.2018.04.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 04/01/2018] [Accepted: 04/05/2018] [Indexed: 10/17/2022]
Abstract
The repurposing of drug delivery by the pulmonary route has been applied to treatment and prophylaxis of an increasingly wide range of respiratory diseases. Repurposing has been most successful for the delivery of inhaled bronchodilators and corticosteroids in patients with asthma and chronic obstructive pulmonary disease (COPD). Repurposing utilizes the advantages that the pulmonary route offers in terms of more targeted delivery to the site of action, the use of smaller doses, and a lower incidence of side-effects. Success has been more variable for other drugs and treatment indications. Pulmonary delivery is now well established for delivery of inhaled antibiotics in cystic fibrosis (CF), and in the treatment of pulmonary arterial hypertension (PAH). Other inhaled treatments such as those for idiopathic pulmonary fibrosis (IPF), lung transplant rejection or tuberculosis may also become routine. Repurposing has progressed in parallel with the development of new drugs, inhaler devices and formulations.
Collapse
|
5
|
Darweesh RS, Sakagami M. In vitro lung epithelial cell transport and anti-interleukin-8 releasing activity of liposomal ciprofloxacin. Eur J Pharm Sci 2018; 115:68-76. [PMID: 29337216 DOI: 10.1016/j.ejps.2018.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 11/28/2017] [Accepted: 01/08/2018] [Indexed: 01/14/2023]
Abstract
As a promising long-acting inhaled formulation, liposomal ciprofloxacin (Lipo-CPFX) was characterized in the in vitro human lung epithelial Calu-3 cell monolayer system, compared to ciprofloxacin in solution (CPFX). Its modulated absorptive transport and uptake, and sustained inhibitory activity against induced pro-inflammatory interleukin-8 (IL-8) release were examined. The absorptive transport and uptake kinetics for Lipo-CPFX and CPFX were determined at 0.1-50 mg/ml in the Transwell system. The Lipo-CPFX transport was then challenged for mechanistic exploration via cell energy depletion, a reduced temperature, endocytosis and/or lipid fusion inhibition, and addition of excess non-loaded liposomes. The inhibitory activities of Lipo-CPFX and CPFX against lipopolysaccharide (LPS)-induced IL-8 release were assessed in a co-incubation or pre-incubation mode. In the tight Calu-3 cell monolayers, Lipo-CPFX yielded 15-times slower ciprofloxacin flux of absorptive transport and 5-times lower cellular drug uptake than CPFX. Its transport appeared to be transcellular; kinetically linear, proportional to encapsulated ciprofloxacin concentration; and consistent with the cell energy-independent lipid bilayer fusion mechanism. Lipo-CPFX was equipotent to CPFX in the anti-IL-8 releasing activity upon 24 h co-incubation with LPS. Additionally, Lipo-CPFX, but not CPFX, retained the anti-IL-8 releasing activity even 24 h after pre-incubation. In conclusion, Lipo-CPFX enabled slower absorptive lung epithelial cell transport and uptake of ciprofloxacin, apparently via the lipid bilayer fusion mechanism, and the sustained inhibitory activity against LPS-induced IL-8 release, compared to CPFX.
Collapse
Affiliation(s)
- Ruba S Darweesh
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, 410 N. 12th Street, Richmond, Virginia, 23298, USA.; Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22,110, Jordan
| | - Masahiro Sakagami
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, 410 N. 12th Street, Richmond, Virginia, 23298, USA..
| |
Collapse
|
6
|
Patel BS, Rahman MM, Rumzhum NN, Oliver BG, Verrills NM, Ammit AJ. Theophylline Represses IL-8 Secretion from Airway Smooth Muscle Cells Independently of Phosphodiesterase Inhibition. Novel Role as a Protein Phosphatase 2A Activator. Am J Respir Cell Mol Biol 2017; 54:792-801. [PMID: 26574643 DOI: 10.1165/rcmb.2015-0308oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Theophylline is an old drug experiencing a renaissance owing to its beneficial antiinflammatory effects in chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease. Multiple modes of antiinflammatory action have been reported, including inhibition of the enzymes that degrade cAMP-phosphodiesterase (PDE). Using primary cultures of airway smooth muscle (ASM) cells, we recently revealed that PDE4 inhibitors can potentiate the antiinflammatory action of β2-agonists by augmenting cAMP-dependent expression of the phosphatase that deactivates mitogen-activated protein kinase (MAPK)-MAPK phosphatase (MKP)-1. Therefore, the aim of this study was to address whether theophylline repressed cytokine production in a similar, PDE-dependent, MKP-1-mediated manner. Notably, theophylline did not potentiate cAMP release from ASM cells treated with the long-acting β2-agonist formoterol. Moreover, theophylline (0.1-10 μM) did not increase formoterol-induced MKP-1 messenger RNA expression nor protein up-regulation, consistent with the lack of cAMP generation. However, theophylline (at 10 μM) was antiinflammatory and repressed secretion of the neutrophil chemoattractant cytokine IL-8, which is produced in response to TNF-α. Because theophylline's effects were independent of PDE4 inhibition or antiinflammatory MKP-1, we then wished to elucidate the novel mechanisms responsible. We investigated the impact of theophylline on protein phosphatase (PP) 2A, a master controller of multiple inflammatory signaling pathways, and show that theophylline increases TNF-α-induced PP2A activity in ASM cells. Confirmatory results were obtained in A549 lung epithelial cells. PP2A activators have beneficial effects in ex vivo and in vivo models of respiratory disease. Thus, our study is the first to link theophylline with PP2A activation as a novel mechanism to control respiratory inflammation.
Collapse
Affiliation(s)
| | | | - Nowshin N Rumzhum
- 1 Faculty of Pharmacy, University of Sydney, New South Wales, Australia
| | - Brian G Oliver
- 2 Woolcock Institute of Medical Research, University of Sydney, New South Wales, Australia.,3 School of Life Sciences, University of Technology, Sydney, New South Wales, Australia; and
| | - Nicole M Verrills
- 4 School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, New South Wales
| | - Alaina J Ammit
- 1 Faculty of Pharmacy, University of Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Malamatari M, Somavarapu S, Kachrimanis K, Bloxham M, Taylor KMG, Buckton G. Preparation of theophylline inhalable microcomposite particles by wet milling and spray drying: The influence of mannitol as a co-milling agent. Int J Pharm 2017; 514:200-211. [PMID: 27863663 DOI: 10.1016/j.ijpharm.2016.06.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 11/16/2022]
Abstract
Inhalable theophylline particles with various amounts of mannitol were prepared by combining wet milling in isopropanol followed by spray drying. The effect of mannitol as a co-milling agent on the micromeritic properties, solid state and aerosol performance of the engineered particles was investigated. Crystal morphology modelling and geometric lattice matching calculations were employed to gain insight into the intermolecular interactions that may influence the mechanical properties of theophylline and mannitol. The addition of mannitol facilitated the size reduction of the needle-like crystals of theophylline and also their assembly in microcomposites by forming a porous structure of mannitol nanocrystals wherein theophylline particles are embedded. The microcomposites were found to be in the same crystalline state as the starting material(s) ensuring their long-term physical stability upon storage. Incorporation of mannitol resulted in microcomposite particles with smaller size, more spherical shape and increased porosity. The aerosol performance of the microcomposites was markedly enhanced compared to the spray-dried suspension of theophylline wet milled without mannitol. Overall, wet co-milling with mannitol in an organic solvent followed by spray drying may be used as a formulation approach for producing respirable particles of water-soluble drugs or drugs that are prone to crystal transformation in an aqueous environment (i.e. formation of hydrates).
Collapse
Affiliation(s)
- Maria Malamatari
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | | | - Kyriakos Kachrimanis
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Mark Bloxham
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Kevin M G Taylor
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Graham Buckton
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| |
Collapse
|
8
|
Abstract
The discovery of an ever-expanding plethora of coding and non-coding RNAs with nodal and causal roles in the regulation of lung physiology and disease is reinvigorating interest in the clinical utility of the oligonucleotide therapeutic class. This is strongly supported through recent advances in nucleic acids chemistry, synthetic oligonucleotide delivery and viral gene therapy that have succeeded in bringing to market at least three nucleic acid-based drugs. As a consequence, multiple new candidates such as RNA interference modulators, antisense, and splice switching compounds are now progressing through clinical evaluation. Here, manipulation of RNA for the treatment of lung disease is explored, with emphasis on robust pharmacological evidence aligned to the five pillars of drug development: exposure to the appropriate tissue, binding to the desired molecular target, evidence of the expected mode of action, activity in the relevant patient population and commercially viable value proposition.
Collapse
|
9
|
O'Connor G, Gleeson LE, Fagan-Murphy A, Cryan SA, O'Sullivan MP, Keane J. Sharpening nature's tools for efficient tuberculosis control: A review of the potential role and development of host-directed therapies and strategies for targeted respiratory delivery. Adv Drug Deliv Rev 2016; 102:33-54. [PMID: 27151307 DOI: 10.1016/j.addr.2016.04.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/04/2016] [Accepted: 04/20/2016] [Indexed: 12/18/2022]
Abstract
Centuries since it was first described, tuberculosis (TB) remains a significant global public health issue. Despite ongoing holistic measures implemented by health authorities and a number of new oral treatments reaching the market, there is still a need for an advanced, efficient TB treatment. An adjunctive, host-directed therapy designed to enhance endogenous pathways and hence compliment current regimens could be the answer. The integration of drug repurposing, including synthetic and naturally occurring compounds, with a targeted drug delivery platform is an attractive development option. In order for a new anti-tubercular treatment to be produced in a timely manner, a multidisciplinary approach should be taken from the outset including stakeholders from academia, the pharmaceutical industry, and regulatory bodies keeping the patient as the key focus. Pre-clinical considerations for the development of a targeted host-directed therapy are discussed here.
Collapse
Affiliation(s)
- Gemma O'Connor
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin and St. James's Hospital, D08 W9RT, Dublin, Ireland.
| | - Laura E Gleeson
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin and St. James's Hospital, D08 W9RT, Dublin, Ireland.
| | - Aidan Fagan-Murphy
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland; SFI Centre for Research in Medical Devices (CURAM), Dublin 2, Ireland.
| | - Sally-Ann Cryan
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin, Dublin 2, Ireland; SFI Centre for Research in Medical Devices (CURAM), Dublin 2, Ireland.
| | - Mary P O'Sullivan
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin and St. James's Hospital, D08 W9RT, Dublin, Ireland.
| | - Joseph Keane
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin and St. James's Hospital, D08 W9RT, Dublin, Ireland.
| |
Collapse
|
10
|
Cosío BG, Shafiek H, Iglesias A, Yanez A, Córdova R, Palou A, Rodriguez-Roisin R, Peces-Barba G, Pascual S, Gea J, Sibila O, Barnes PJ, Agusti A. Oral Low-dose Theophylline on Top of Inhaled Fluticasone-Salmeterol Does Not Reduce Exacerbations in Patients With Severe COPD. Chest 2016; 150:123-30. [DOI: 10.1016/j.chest.2016.04.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/29/2016] [Accepted: 04/12/2016] [Indexed: 11/24/2022] Open
|
11
|
Zhong Q, Merkel OM, Reineke JJ, da Rocha SRP. Effect of the Route of Administration and PEGylation of Poly(amidoamine) Dendrimers on Their Systemic and Lung Cellular Biodistribution. Mol Pharm 2016; 13:1866-78. [PMID: 27148629 DOI: 10.1021/acs.molpharmaceut.6b00036] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
There are many opportunities in the development of oral inhalation (oi) formulations for the delivery of small molecule therapeutics and biologics to and through the lungs. Nanocarriers have the potential to play a key role in advancing oi technologies and pushing the boundary of the pulmonary delivery market. In this work we investigate the effect of the route of administration and PEGylation on the systemic and lung cellular biodistribution of generation 3, amino-terminated poly(amidoamine) (PAMAM) dendrimers (G3NH2). Pharmacokinetic profiles show that the dendrimers reach their peak concentration in systemic circulation within a few hours after pulmonary delivery, independent of their chemistry (PEGylated or not), charge (+24 mV for G3NH2 vs -3.7 mV for G3NH2-24PEG1000), or size (5.1 nm for G3NH2 and 9.9 nm for G3NH2-24PEG1000). However, high density of surface modification with PEG enhances pulmonary absorption and the peak plasma concentration upon pulmonary delivery. The route of administration and PEGylation also significantly impact the whole body and local (lung cellular) distribution of the dendrimers. While ca. 83% of G3NH2 is found in the lungs upon pulmonary delivery at 6.5 h post administration, only 2% reached the lungs upon intravenous (iv) delivery. Moreover, no measurable concentration of either G3NH2 or G3NH2-24PEG1000 is found in the lymph nodes upon iv administration, while these are the tissues with the second highest mass distribution of dendrimers post pulmonary delivery. Dendrimer chemistry also significantly impacts the (cellular) distribution of the nanocarriers in the lung tissue. Upon pulmonary delivery, approximately 20% of the lung endothelial cells are seen to internalize G3NH2-24PEG1000, compared to only 6% for G3NH2. Conversely, G3NH2 is more readily taken up by lung epithelial cells (35%) when compared to its PEGylated counterpart (24%). The results shown here suggest that both the pulmonary route of administration and dendrimer chemistry combined can be used to passively target tissues and cell populations of great interest, and can thus be used as guiding principles in the development of dendrimer-based drug delivery strategies in the treatment of medically relevant diseases including lung ailments as well as systemic disorders.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University , Detroit, Michigan 48202, United States
| | - Olivia M Merkel
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University , Detroit, Michigan 48201, United States.,Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München , 81377 München, Germany
| | - Joshua J Reineke
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University , Brookings, South Dakota 57007, United States
| | - Sandro R P da Rocha
- Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University , Detroit, Michigan 48202, United States
| |
Collapse
|
12
|
|