1
|
Nordin NA, Sadikan MZ, Lambuk L, Hashim S, Airuddin S, Mohd Nasir NA, Mohamud R, Ibrahim J, Kadir R. Liposomal topical drug administration surpasses alternative methods in glaucoma therapeutics: a novel paradigm for enhanced treatment. J Pharm Pharmacol 2024:rgae129. [PMID: 39579384 DOI: 10.1093/jpp/rgae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/01/2024] [Indexed: 11/25/2024]
Abstract
OBJECTIVES Glaucoma is a leading cause of permanent blindness. Despite therapeutic advancements, glaucoma management remains challenging due to limitations of conventional drug delivery, primarily topical eye drops, resulting in suboptimal outcomes and a global surge in cases. To address these issues, liposomal drug delivery has emerged as a promising approach. KEY FINDINGS This review explores the potential of liposomal-based medications, with a particular focus on topical administration as a superior alternative to enhance therapeutic efficacy and improve patient compliance compared to existing treatments. This writing delves into the therapeutic prospects of liposomal formulations across different administration routes, as evidenced by ongoing clinical trials. Additionally, critical aspects of liposomal production and market strategies are discussed herein. SUMMARY By overcoming ocular barriers and optimizing drug delivery, liposomal topical administration holds the key to significantly improving glaucoma treatment outcomes.
Collapse
Affiliation(s)
- Nor Asyikin Nordin
- Department of Immunology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Muhammad Zulfiqah Sadikan
- Department of Pharmacology, Faculty of Medicine, Manipal University College Malaysia (MUCM), 75150 Bukit Baru, Melaka, Malaysia
| | - Lidawani Lambuk
- Department of Immunology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Sabarisah Hashim
- Department of Neurosciences, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Malaysia
| | - Syahira Airuddin
- Reconstructive Science Unit, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Nur-Azida Mohd Nasir
- Reconstructive Science Unit, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Jamal Ibrahim
- Maths, Science and IT Curriculum Area, Oxford Sixth Form College, 12-13 King Edward St, Oxford, OX1 4HT, United Kingdom
| | - Ramlah Kadir
- Department of Immunology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
2
|
Li Y, Wang Y, Li Y, Yan S, Gao X, Li P, Zheng X, Gu Q. Dress me an outfit: advanced probiotics hybrid systems for intelligent IBD therapy. Crit Rev Food Sci Nutr 2024:1-24. [PMID: 39007752 DOI: 10.1080/10408398.2024.2359135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Inflammation bowel disease (IBD) has emerged as a public health challenge worldwide; with high incidence and rapid prevalence, it has troubled billions of people and further induced multitudinous systemic complications. Recent decade has witnessed the vigorous application of food-borne probiotics for IBD therapy; however, the complicated and changeable environments of digestive tract have forced probiotics to face multiple in vivo pressures, consequently causing unsatisfied prophylactic or therapeutic efficacy attributed to off-targeted arrival, damaged viability, insufficient colonization efficiency, etc. Fortunately, arisen hybrid technology has provided versatile breakthroughs for the targeted transplantation of probiotics. By ingeniously modifying probiotics to form probiotics hybrid systems (PHS), the biological behaviors of probiotics in vivo could be mediated, the interactions between probiotics with intestinal components can be facilitated, and diverse advanced probiotic-based therapies for IBD challenge can be developed, which attribute to the intelligent response to microenvironment of PHS, and intelligent design of PHS for multiple functions combination. In this review, various PHS were categorized and their intestinal behaviors were elucidated systematically, their therapeutic effects and intrinsic mechanism were further analyzed. Besides, shortages of present PHS and the corresponding solutions have been discussed, based on which the future perspectives of this field have also been proposed. The undeniable fact is that PHS show an incomparable future to bring the next generation of advanced food science.
Collapse
Affiliation(s)
- Yonglu Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Yadi Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Yapeng Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Shihai Yan
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Xin Gao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Ping Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition; Zhejiang Key Laboratory for Agro-food Processing; Fuli Institute of Food Science; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, People's Republic of China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
3
|
Qin H, Teng Y, Dai R, Wang A, Liu J. Glycan-based scaffolds and nanoparticles as drug delivery system in cancer therapy. Front Immunol 2024; 15:1395187. [PMID: 38799466 PMCID: PMC11116596 DOI: 10.3389/fimmu.2024.1395187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Glycan-based scaffolds are unique in their high specificity, versatility, low immunogenicity, and ability to mimic natural carbohydrates, making them attractive candidates for use in cancer treatment. These scaffolds are made up of glycans, which are biopolymers with well biocompatibility in the human body that can be used for drug delivery. The versatility of glycan-based scaffolds allows for the modulation of drug activity and targeted delivery to specific cells or tissues, which increases the potency of drugs and reduces side effects. Despite their promise, there are still technical challenges in the design and production of glycan-based scaffolds, as well as limitations in their therapeutic efficacy and specificity.
Collapse
Affiliation(s)
- Henan Qin
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yibin Teng
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Rui Dai
- Department of Pharmacy, Peking Union Medical University Hospital, Beijing, China
| | - Aman Wang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiwei Liu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
4
|
Huang Z, Chen G, Deng F, Li Y. Nanostructured Graphdiyne: Synthesis and Biomedical Applications. Int J Nanomedicine 2022; 17:6467-6490. [PMID: 36573204 PMCID: PMC9789722 DOI: 10.2147/ijn.s383707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Graphdiyne (GDY) is a 2D carbon allotrope that features a one-atom-thick network of sp- and sp2-hybridized carbon atoms with high degrees of π conjugation. Due to its distinct electronic, chemical, mechanical, and magnetic properties, GDY has attracted great attention and shown great potential in various fields, such as catalysis, energy storage, and the environment. Preparation of GDY with various nanostructures, including 0D quantum dots, 1D nanotubes/nanowires/nanoribbons, 2D nanosheets/nanowalls/ordered stripe arrays, and 3D nanospheres, greatly improves its function and has propelled its applications forward. High biocompatibility and stability make GDY a promising candidate for biomedical applications. This review introduces the latest developments in fabrication of GDY-based nanomaterials with various morphologies and summarizes their propective use in the biomedical domain, specifically focusing on their potential advantages and applications for biosensing, cancer diagnosis and therapy, radiation protection, and tissue engineering.
Collapse
Affiliation(s)
- Ziqing Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| | - Guanhui Chen
- Department of Stomatology, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People’s Republic of China
| | - Feilong Deng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| | - Yiming Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| |
Collapse
|
5
|
Ju J, Wu Y, He W, Zhan L, Yin X, Zhang J, Zhang Y, Qiu L, Muhammad P, Reis RL, Li C. Nanocarriers for Active Ingredients of Chinese Medicine (AIFCM) Used in Gastrointestinal Cancer Therapy. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Active ingredients of Chinese medicine (AIFCM) are pharmacological substances taken from traditional Chinese medicine that show promise in treating gastrointestinal cancer. Compared with traditional chemotherapeutic drugs, AIFCM have advantages such as multi-target and multi-level treatment
of gastrointestinal cancer. Nanocarriers have the following advantages, better bioavailability, passive or active targeting of tumor sites and responsive release of drugs. The use of nanocarriers for delivery of AIFCM in treatment of gastrointestinal cancer, can overcome the disadvantages
of some AIFCM, such as insolubility and low bioavailability. In this review, we first outline the background on gastrointestinal cancer, main curative factors and conventional therapeutic approaches. Then, the mechanisms for AIFCM in gastrointestinal cancer therapy are presented in the following
four aspects: gene regulation, immune modulation, cellular pathway transduction, and alteration of intestinal flora. Thirdly, preparation of various nanocarriers and results when combining AIFCM in gastrointestinal cancer are presented. Fourth, application of novel targeted nanocarriers and
responsive nanocarriers in gastrointestinal tumors is further introduced. Finally, the application of AIFCM in the treatment of gastrointestinal cancer is summarized and prospected, hoping to shed some light on the nanocarrier-bound AIFCM in the treatment of gastrointestinal cancer.
Collapse
Affiliation(s)
- Jiale Ju
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yinghua Wu
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Wen He
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Lin Zhan
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xuelian Yin
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Junfeng Zhang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yuxi Zhang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Li Qiu
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Pir Muhammad
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue, Engineering and Regenerative Medicine, Guimarães,
4805-017, Portugal
| | - Chenchen Li
- School of Medicine, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
6
|
Skandalis A, Selianitis D, Sory DR, Rankin SM, Jones JR, Pispas S. Poly(2‐(dimethylamino) ethyl methacrylate)‐
b
‐poly(lauryl methacrylate)‐
b
‐poly(oligo ethylene glycol methacrylate) triblock terpolymer micelles as drug delivery carriers for curcumin. J Appl Polym Sci 2022. [DOI: 10.1002/app.52899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Athanasios Skandalis
- Department of Materials Imperial College London London UK
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation Athens Greece
| | - Dimitrios Selianitis
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation Athens Greece
| | - David R. Sory
- Faculty of Medicine, National Heart and Lung Institute Imperial College London London UK
| | - Sara M. Rankin
- Faculty of Medicine, National Heart and Lung Institute Imperial College London London UK
| | | | - Stergios Pispas
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation Athens Greece
| |
Collapse
|
7
|
pH-sensitive and targeted core-shell and yolk-shell microcarriers for in vitro drug delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
|
9
|
De Leo V, Milano F, Agostiano A, Catucci L. Recent Advancements in Polymer/Liposome Assembly for Drug Delivery: From Surface Modifications to Hybrid Vesicles. Polymers (Basel) 2021; 13:1027. [PMID: 33810273 PMCID: PMC8037206 DOI: 10.3390/polym13071027] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Liposomes are consolidated and attractive biomimetic nanocarriers widely used in the field of drug delivery. The structural versatility of liposomes has been exploited for the development of various carriers for the topical or systemic delivery of drugs and bioactive molecules, with the possibility of increasing their bioavailability and stability, and modulating and directing their release, while limiting the side effects at the same time. Nevertheless, first-generation vesicles suffer from some limitations including physical instability, short in vivo circulation lifetime, reduced payload, uncontrolled release properties, and low targeting abilities. Therefore, liposome preparation technology soon took advantage of the possibility of improving vesicle performance using both natural and synthetic polymers. Polymers can easily be synthesized in a controlled manner over a wide range of molecular weights and in a low dispersity range. Their properties are widely tunable and therefore allow the low chemical versatility typical of lipids to be overcome. Moreover, depending on their structure, polymers can be used to create a simple covering on the liposome surface or to intercalate in the phospholipid bilayer to give rise to real hybrid structures. This review illustrates the main strategies implemented in the field of polymer/liposome assembly for drug delivery, with a look at the most recent publications without neglecting basic concepts for a simple and complete understanding by the reader.
Collapse
Affiliation(s)
- Vincenzo De Leo
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy;
| | - Francesco Milano
- Istituto di Scienze delle Produzioni Alimentari (ISPA), Consiglio Nazionale delle Ricerche (CNR), S.P. Lecce-Monteroni, Ecotekne, 73100 Lecce, Italy;
| | - Angela Agostiano
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy;
| | - Lucia Catucci
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy;
| |
Collapse
|
10
|
Atanasova D, Staneva D, Grabchev I. Textile Materials Modified with Stimuli-Responsive Drug Carrier for Skin Topical and Transdermal Delivery. MATERIALS 2021; 14:ma14040930. [PMID: 33669245 PMCID: PMC7919809 DOI: 10.3390/ma14040930] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022]
Abstract
Textile materials, as a suitable matrix for different active substances facilitating their gradual release, can have an important role in skin topical or transdermal therapy. Characterized by compositional and structural variety, those materials readily meet the requirements for applications in specific therapies. Aromatherapy, antimicrobial substances and painkillers, hormone therapy, psoriasis treatment, atopic dermatitis, melanoma, etc., are some of the areas where textiles can be used as carriers. There are versatile optional methods for loading the biologically active substances onto textile materials. The oldest ones are by exhaustion, spraying, and a pad-dry-cure method. Another widespread method is the microencapsulation. The modification of textile materials with stimuli-responsive polymers is a perspective route to obtaining new textiles of improved multifunctional properties and intelligent response. In recent years, research has focused on new structures such as dendrimers, polymer micelles, liposomes, polymer nanoparticles, and hydrogels. Numerous functional groups and the ability to encapsulate different substances define dendrimer molecules as promising carriers for drug delivery. Hydrogels are also high molecular hydrophilic structures that can be used to modify textile material. They absorb a large amount of water or biological fluids and can support the delivery of medicines. These characteristics correspond to one of the current trends in the development of materials used in transdermal therapy, namely production of intelligent materials, i.e., such that allow controlled concentration and time delivery of the active substance and simultaneous visualization of the process, which can only be achieved with appropriate and purposeful modification of the textile material.
Collapse
Affiliation(s)
- Daniela Atanasova
- Department of Textile and Leathers, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria;
| | - Desislava Staneva
- Department of Textile and Leathers, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria;
- Correspondence: ; Tel.: +359-2-8163266
| | - Ivo Grabchev
- Faculty of Medicine, Sofia University “St. Kliment Ohridski”, 1407 Sofia, Bulgaria;
| |
Collapse
|
11
|
Jiang X, Lin M, Huang J, Mo M, Liu H, Jiang Y, Cai X, Leung W, Xu C. Smart Responsive Nanoformulation for Targeted Delivery of Active Compounds From Traditional Chinese Medicine. Front Chem 2020; 8:559159. [PMID: 33363102 PMCID: PMC7758496 DOI: 10.3389/fchem.2020.559159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022] Open
Abstract
Traditional Chinese medicine (TCM) has been used to treat disorders in China for ~1,000 years. Growing evidence has shown that the active ingredients from TCM have antibacterial, antiproliferative, antioxidant, and apoptosis-inducing features. However, poor solubility and low bioavailability limit clinical application of active compounds from TCM. “Nanoformulations” (NFs) are novel and advanced drug-delivery systems. They show promise for improving the solubility and bioavailability of drugs. In particular, “smart responsive NFs” can respond to the special external and internal stimuli in targeted sites to release loaded drugs, which enables them to control the release of drug within target tissues. Recent studies have demonstrated that smart responsive NFs can achieve targeted release of active compounds from TCM at disease sites to increase their concentrations in diseased tissues and reduce the number of adverse effects. Here, we review “internal stimulus–responsive NFs” (based on pH and redox status) and “external stimulus–responsive NFs” (based on light and magnetic fields) and focus on their application for active compounds from TCM against tumors and infectious diseases, to further boost the development of TCM in modern medicine.
Collapse
Affiliation(s)
- Xuejun Jiang
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mei Lin
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jianwen Huang
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mulan Mo
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Houhe Liu
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuan Jiang
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaowen Cai
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wingnang Leung
- Asia-Pacific Institute of Aging Studies, Lingnan University, Hong Kong, China
| | - Chuanshan Xu
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
12
|
Li L, Zhang X, Pi C, Yang H, Zheng X, Zhao L, Wei Y. Review of Curcumin Physicochemical Targeting Delivery System. Int J Nanomedicine 2020; 15:9799-9821. [PMID: 33324053 PMCID: PMC7732757 DOI: 10.2147/ijn.s276201] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Curcumin (CUR), as a traditional Chinese medicine monomer extracted from the rhizomes of some plants in Ginkgo and Araceae, has shown a wide range of therapeutic and pharmacological activities such as anti-tumor, anti-inflammatory, anti-oxidation, anti-virus, anti-liver fibrosis, anti-atherosclerosis, and anti-Alzheimer’s disease. However, some issues significantly affect its biological activity, such as low aqueous solubility, physico-chemical instability, poor bioavailability, and low targeting efficacy. In order to further improve its curative effect, numerous efficient drug delivery systems have been carried out. Among them, physicochemical targeting preparations could improve the properties, targeting ability, and biological activity of CUR. Therefore, in this review, CUR carrier systems are discussed that are driven by physicochemical characteristics of the microenvironment (eg, pH variation of tumorous tissues), affected by external influences like magnetic fields and vehicles formulated with thermo-sensitive materials.
Collapse
Affiliation(s)
- Lanmei Li
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China.,Nanchong Key Laboratory of Individualized Drug Therapy, Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan 637000, People's Republic of China
| | - Xiaomei Zhang
- Institute of Medicinal Chemistry of Chinese Medicine, Chongqing Academy of Chinese MateriaMedica, Chongqing 400065, People's Republic of China
| | - Chao Pi
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Hongru Yang
- Department of Oncology of Luzhou People's Hospital, Luzhou, Sichuan 646000, People's Republic of China
| | - Xiaoli Zheng
- Basic Medical College of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Ling Zhao
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Yumeng Wei
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| |
Collapse
|
13
|
Trochopoulos AGX, Zaharieva MM, Marinova MH, Yoncheva K, Tibi IPE, Berger MR, Konstantinov SM. Antineoplastic effect of a novel nanosized curcumin on cutaneous T cell lymphoma. Oncol Lett 2020; 20:304. [PMID: 33093913 PMCID: PMC7573878 DOI: 10.3892/ol.2020.12167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022] Open
Abstract
Cutaneous T cell lymphomas (CTCLs) are a group of heterogeneous, life-threatening, extra-nodal and lymphoproliferative T cell neoplasms. Since chronic inflammation serves a key role in CTCL progression, curcumin, a natural pigment with proven anti-inflammatory and antineoplastic properties, as well as minimal toxicity, may be used as a therapeutic agent. In the present study, two formulations of curcumin (standard ethanolic and a Pluronic®P-123/F-127 micellar solution) were compared regarding their cytotoxic efficacy and speed of internalization in three CTCL cell lines, namely HuT-78, HH and MJ. In addition, the modulating effect of curcumin on selected proteins involved in the proliferation and progression of the disease was determined. The results indicated the superiority of the Pluronic®P-123/F-127 micellar curcumin over the standard ethanol solution in terms of cellular internalization efficiency as determined by spectrophotometric analysis. Notably, the presence of commonly used media components, such as phenol red, may interfere when interpreting the cytotoxicity of curcumin, due to their overlapping absorbance peaks. Therefore, it was concluded that phenol red-free media are superior over media with phenol red in order to correctly measure the cytotoxic efficacy and cell penetration of curcumin. Depending on the cell line, the IC50 values of micellar curcumin varied from 29.76 to 1.24 µΜ, with HH cells demonstrating the highest sensitivity. This cell line had the lowest expression levels of the Wilms' tumor-1 transcription factor. Performing western blot analyses of treated and untreated CTCL cells, selective signal transduction changes were recorded for the first time, thus making curcumin nano-formulation an attractive and prospective option with therapeutic relevance for CTCL as a rare orphan disease.
Collapse
Affiliation(s)
- Antonios G X Trochopoulos
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Maya M Zaharieva
- Department of Infectious Microbiology, Institute of Microbiology 'Stephan Angeloff', Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Mirela H Marinova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Krasimira Yoncheva
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Ivanka Pencheva-El Tibi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Martin R Berger
- Unit of Toxicology and Chemotherapy, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Spiro M Konstantinov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| |
Collapse
|
14
|
Pan Y, Hu X, Guo D. Biomedizinische Anwendungen von Calixarenen: Stand der Wissenschaft und Perspektiven. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yu‐Chen Pan
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Xin‐Yue Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Dong‐Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
15
|
Pan Y, Hu X, Guo D. Biomedical Applications of Calixarenes: State of the Art and Perspectives. Angew Chem Int Ed Engl 2020; 60:2768-2794. [DOI: 10.1002/anie.201916380] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Yu‐Chen Pan
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Xin‐Yue Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Dong‐Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
16
|
Liu Y, Xie X, Chen H, Hou X, He Y, Shen J, Shi J, Feng N. Advances in next-generation lipid-polymer hybrid nanocarriers with emphasis on polymer-modified functional liposomes and cell-based-biomimetic nanocarriers for active ingredients and fractions from Chinese medicine delivery. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102237. [DOI: 10.1016/j.nano.2020.102237] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/21/2020] [Accepted: 05/31/2020] [Indexed: 02/07/2023]
|
17
|
Ferreira SBDS, Slowik KM, Castro Hoshino LVD, Baesso ML, Murdoch C, Colley HE, Bruschi ML. Mucoadhesive emulgel systems containing curcumin for oral squamous cell carcinoma treatment: From pre-formulation to cytotoxicity in tissue-engineering oral mucosa. Eur J Pharm Sci 2020; 151:105372. [PMID: 32450222 DOI: 10.1016/j.ejps.2020.105372] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/20/2020] [Accepted: 05/04/2020] [Indexed: 11/29/2022]
Abstract
Current oral squamous cell carcinoma chemotherapies demonstrate off-target toxicity, which could be reduced by local delivery. Curcumin acts via many cellular targets to give anti-cancer properties; however the bioavailability is hindered by its physicochemical characteristics. The incorporation of curcumin into emulgel systems could be a promising approach for its solubilization and delivery. The aim of this work was to develop emulgel systems containing curcumin for the treatment of oral cancer. The emulgels containing curcumin were prepared with poloxamer 407, acrylic acid derivatives, oil phase (sesame oil or isopropyl myristate). The more stable system was evaluated for mechanical and rheological properties, as well as, the in vitro drug release profile, permeation and cytotoxic potential to oral mucosa models. The flow-throw system evidenced that the formulations could keep 5 min over porcine oral mucosa. Emulgel showed pseudoplastic behavior and a gelation temperature of 33 °C, which ensure their higher consistency. In addition, 70% of the incorporated curcumin was released within 24 h in an in vitro drug release study and could permeate porcine oral mucosa. Monolayers cultures and tissue-engineered models showed the selectivity of the drug and systems for tumor cells. The physicochemical properties, subsequent release and permeation of curcumin to selectivity kill cancer cells could be improved by the incorporation into emulgel systems.
Collapse
Affiliation(s)
- Sabrina Barbosa de Souza Ferreira
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Colombo Avenue, 5790, 97020-900, Maringa, Brazil
| | - Klaudia M Slowik
- Department of Physics, State University of Maringa, Colombo Avenue, 5790, 97020-900, Maringa, Brazil
| | | | - Mauro Luciano Baesso
- The School of Clinical Dentistry, The University of Sheffield, 19 Claremont Crescent, S10 2TA, Sheffield, UK
| | - Craig Murdoch
- Department of Physics, State University of Maringa, Colombo Avenue, 5790, 97020-900, Maringa, Brazil
| | - Helen Elizabeth Colley
- Department of Physics, State University of Maringa, Colombo Avenue, 5790, 97020-900, Maringa, Brazil
| | - Marcos Luciano Bruschi
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Colombo Avenue, 5790, 97020-900, Maringa, Brazil.
| |
Collapse
|
18
|
Kirila TU, Kurlykin MP, Tenkovtsev AV, Filippov AP. Synthesis of thermo- and pH-sensitive star-shaped poly(2-alkyl-2-oxazoline) and its properties in aqueous its properties in aqueous solutions with varying medium acidity. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2020. [DOI: 10.1080/1023666x.2020.1788287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tatyana U. Kirila
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Mikhail P. Kurlykin
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Andrey V. Tenkovtsev
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Alexander P. Filippov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
19
|
Hong Y, Che S, Hui B, Wang X, Zhang X, Ma H. Combination Therapy of Lung Cancer Using Layer-by-Layer Cisplatin Prodrug and Curcumin Co-Encapsulated Nanomedicine. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2263-2274. [PMID: 32606596 PMCID: PMC7293387 DOI: 10.2147/dddt.s241291] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/28/2020] [Indexed: 12/17/2022]
Abstract
Purpose Lung cancer remains the leading cancer-associated deaths worldwide. Cisplatin (CDDP) was used in combination with curcumin (CUR) for the treatment of non-small cell lung cancer. The aim of this study was to prepare and characterize CDDP prodrug and CUR co-encapsulated layer-by-layer nanoparticles (CDDP-PLGA/CUR LBL NPs) to induce cooperative response, maximize the therapeutic effect, overcome drug resistance, and reduce adverse side effects. Methods CDDP prodrug (CDDP-PLGA) was synthesized. CDDP-PLGA/CUR LBL NPs were constructed and their physicochemical properties were investigated by particle-size analysis, zeta potential measurement, drug loading, drug entrapment efficiency, and in vitro drug release behavior. In vitro cytotoxicity against human lung adenocarcinoma cell line (A549 cells) was investigated, and in vivo anti-tumor efficiency of CDDP-PLGA/CUR LBL NPs was evaluated on mice bearing A549 cell xenografts. Results CDDP-PLGA/CUR LBL NPs have a size of 179.6 ± 6.7 nm, a zeta potential value of −29.9 ± 3.2 mV, high drug entrapment efficiency of 85.6 ± 3.9% (CDDP) and 82.1 ± 2.8% (CUR). The drug release of LBL NPs exhibited a sustained behavior, which made it an ideal vehicle for drug delivery. Furthermore, CDDP-PLGA/CUR LBL NPs could significantly enhance in vitro cytotoxicity and in vivo antitumor effect against A549 cells and lung cancer animal model compared to the single drug-loaded LBL NPs and free drug groups. Conclusion CDDP-PLGA/CUR LBL NPs were reported for the first time in the combination therapy of lung cancer. The results demonstrated that the CDDP-PLGA/CUR LBL NPs might be a novel promising system for the synergetic treatment of lung carcinoma.
Collapse
Affiliation(s)
- Yuan Hong
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Shaomin Che
- Department of Oncology Radiotherapy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Beina Hui
- Department of Oncology Radiotherapy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Xiaoli Wang
- Department of Oncology Radiotherapy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Xiaozhi Zhang
- Department of Oncology Radiotherapy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Hailin Ma
- Department of Oncology Radiotherapy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
20
|
de Souza Ferreira SB, Braga G, Oliveira ÉLD, Rosseto HC, Hioka N, Caetano W, Bruschi ML. Colloidal systems composed of poloxamer 407, different acrylic acid derivatives and curcuminoids: Optimization of preparation method, type of bioadhesive polymer and storage conditions. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Liu Y, Huang P, Hou X, Yan F, Jiang Z, Shi J, Xie X, Shen J, Fan Q, Wang Z, Feng N. Hybrid curcumin-phospholipid complex-near-infrared dye oral drug delivery system to inhibit lung metastasis of breast cancer. Int J Nanomedicine 2019; 14:3311-3330. [PMID: 31190795 PMCID: PMC6511632 DOI: 10.2147/ijn.s200847] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/12/2019] [Indexed: 01/10/2023] Open
Abstract
Background: Oral route of administration is preferred for treating breast cancer, especially when continued disease management with good tolerability is required; however, orally administered chemotherapeutics combined with near-infrared (NIR) dyes are hindered by the low bioavailability, insufficient for the desired therapeutic efficacy. In this study, we developed a hybrid self-microemulsifying drug delivery system for co-loading curcumin–phospholipid complex and NIR dye IR780 (CUR/IR780@SMEDDS), to achieve combined phototherapeutic and chemotherapeutic effects against lung metastasis of breast cancer. Methods: CUR/IR780@SMEDDS were characterized. The efficacy against breast cancer metastasis was evaluated by photothermal and photodynamic assessment, cytotoxicity, invasion, and migration in metastatic 4T1 breast cancer cells in vitro, and in vivo oral bioavailability study in rats and pharmacodynamics studies in tumor-bearing nude mice. Results: CUR/IR780@SMEDDS improved oral bioavailability of curcumin and IR780 in rats compared with curcumin and IR780 suspensions. CUR/IR780@SMEDDS exhibited remarkable photothermal and photodynamic effects in vitro. In metastatic 4T1 breast cancer cells, CUR/IR780@SMEDDS combined with localized NIR laser irradiation induced significant cytotoxicity and inhibited invasion and migration of 4T1 cells, an outcome attributable to cumulative effects of IR780-induced hyperthermia and pharmacological effects of curcumin. In orthotopic 4T1 tumor-bearing nude mice, combination of oral administration of CUR/IR780@SMEDDS with local NIR laser irradiation inhibited tumor progression and suppressed lung metastasis.
Collapse
Affiliation(s)
- Ying Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Peiwen Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Xuefeng Hou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Fei Yan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Zifei Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Jiangpei Shi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Xingmei Xie
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Junyi Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Qiangyuan Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Zhi Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Nianping Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| |
Collapse
|
22
|
Maghrebi S, Prestidge CA, Joyce P. An update on polymer-lipid hybrid systems for improving oral drug delivery. Expert Opin Drug Deliv 2019; 16:507-524. [PMID: 30957577 DOI: 10.1080/17425247.2019.1605353] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION A promising approach that has recently emerged to overcome the complex biobarriers and interrelated challenges associated with oral drug absorption is to combine the benefits of polymeric and lipid-based nanocarriers within one hybrid system. This multifaceted formulation strategy has given rise to a plethora of polymer-lipid hybrid (PLH) systems with varying nanostructures and biological activities, all of which have demonstrated the ability to improve the biopharmaceutical performance of a wide range of challenging therapeutics. AREAS COVERED The multitude of polymers that can be combined with lipids to exert a synergistic effect for oral drug delivery have been identified, reviewed and critically evaluated. Specific focus is attributed to preclinical studies performed within the past 5 years that have elucidated the role and mechanism of the polymer phase in altering the oral absorption of encapsulated therapeutics. EXPERT OPINION The potential of PLH systems has been clearly identified; however, improved understanding of the structure-activity relationship between PLH systems and oral absorption is fundamental for translating this promising delivery approach into a clinically relevant formulation. Advancing research within this field to identify optimal polymer, lipid combinations and engineering conditions for specific therapeutics are therefore encouraged.
Collapse
Affiliation(s)
- Sajedehsadat Maghrebi
- a School of Pharmacy and Medical Sciences , University of South Australia , Adelaide , South Australia , Australia.,b ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , University of South Australia , Adelaide , South Australia , Australia
| | - Clive A Prestidge
- a School of Pharmacy and Medical Sciences , University of South Australia , Adelaide , South Australia , Australia.,b ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , University of South Australia , Adelaide , South Australia , Australia
| | - Paul Joyce
- c Department of Physics , Chalmers University of Technology , Gothenburg , Sweden
| |
Collapse
|
23
|
Cao C, Wang Q, Liu Y. Lung cancer combination therapy: doxorubicin and β-elemene co-loaded, pH-sensitive nanostructured lipid carriers. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:1087-1098. [PMID: 31118562 PMCID: PMC6498957 DOI: 10.2147/dddt.s198003] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/06/2019] [Indexed: 12/19/2022]
Abstract
Purpose: Co-delivery of drugs to achieve the synergistic anticancer effect is a promising strategy for lung cancer therapy. The purpose of this research is to develop a doxorubicin (DOX) and β-elemene (ELE) co-loaded, pH-sensitive nanostructured lipid carriers (DOX/ELE Hyd NLCs). Methods: In this study, DOX/ELE Hyd NLCs were produced by a hot homogenization and ultrasonication method and used for lung cancer treatment. In vitro and in vivo efficiency as well as toxicity of the system was evaluated on lung cancer cell lines and lung tumor-bearing mice. Results: DOX/ELE Hyd NLCs had a particle size of 190 nm, with a PDI lower than 0.2. DOX/ELE Hyd NLCs exhibited a significantly enhanced cytotoxicity (drug concentration causing 50% inhibition was 7.86 μg/mL), synergy antitumor effect (combination index lower than 1), and profound tumor inhibition ability (tumor inhibition ratio of 82.9%) compared with the non pH-responsive NLCs and single-drug-loaded NLCs. Conclusion: Since the synergistic effect of the drugs was found in this system, it would have great potential to inhibit lung tumor cells and tumor growth.
Collapse
Affiliation(s)
- Chengsong Cao
- Department of Oncology, Xuzhou Center Hospital, Xuzhou, Jiangsu, People's Republic of China
| | - Qun Wang
- Department of Oncology, Xuzhou Center Hospital, Xuzhou, Jiangsu, People's Republic of China
| | - Yong Liu
- Department of Oncology, Xuzhou Center Hospital, Xuzhou, Jiangsu, People's Republic of China
| |
Collapse
|
24
|
Lokova AY, Zaborova OV. Modification of fliposomes with a polycation can enhance the control of pH-induced release. Int J Nanomedicine 2019; 14:1039-1049. [PMID: 30804669 PMCID: PMC6371938 DOI: 10.2147/ijn.s190306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
PURPOSE Nowadays, the development of stimuli-sensitive nanocontainers for targeted drug delivery is of great value. Encapsulation of a drug in a pH-sensitive liposomal container not only provides protective and transport functions, but also helps to create a system with a controlled release mechanism. METHODS In this study, we investigated the influence of a cationic polypeptide on the pH-induced release of anticancer drug doxorubicin (DXR) from the anionic fliposomes - liposomes consisting of a neutral lipid, an anionic lipid (prone to interact with a polycation), and a lipid trigger (imparting the pH-sensitivity). RESULTS First, we showed the possibility to control the pH-induced release by the simple modification of the anionic fliposomes with linear polylysine. Second, we optimized the fliposomal composition such that the obtained fliposomes responded to the pH changes only when complexed with the polycation ("turning on" the release). Finally, pH-induced release from the polylysine-modified anionic fliposomes was tested on an anticancer drug DXR. CONCLUSION We have succeeded in developing "smart" stimuli-sensitive nanocontainers capable of tunable controlled release of a drug. Moreover, based on the data on release of a low molecular salt, one can predict the release profile of DXR.
Collapse
Affiliation(s)
- Anastasia Yu Lokova
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation,
| | - Olga V Zaborova
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation,
| |
Collapse
|
25
|
Silva HD, Beldíková E, Poejo J, Abrunhosa L, Serra AT, Duarte CM, Brányik T, Cerqueira MA, Pinheiro AC, Vicente AA. Evaluating the effect of chitosan layer on bioaccessibility and cellular uptake of curcumin nanoemulsions. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2018.09.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Camargo LEAD, Brustolin Ludwig D, Tominaga TT, Carletto B, Favero GM, Mainardes RM, Khalil NM. Bovine serum albumin nanoparticles improve the antitumour activity of curcumin in a murine melanoma model. J Microencapsul 2018; 35:467-474. [DOI: 10.1080/02652048.2018.1526340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Luciana Erzinger Alves de Camargo
- Faculdade Guairacá, Guarapuava, Brazil
- Laboratory of Pharmaceutical Nanotechnology, Universidade Estadual do Centro-Oeste/UNICENTRO, Guarapuava, Brazil
| | - Daniel Brustolin Ludwig
- Faculdade Guairacá, Guarapuava, Brazil
- Laboratory of Pharmaceutical Nanotechnology, Universidade Estadual do Centro-Oeste/UNICENTRO, Guarapuava, Brazil
| | - Tania Toyomi Tominaga
- Laboratory of Pharmaceutical Nanotechnology, Universidade Estadual do Centro-Oeste/UNICENTRO, Guarapuava, Brazil
| | - Bruna Carletto
- Multidisciplinary Laboratory of Basic Research and Applied Biology and Health, Universidade Estadual de Ponta Grossa/UEPG, Ponta Grossa, Brazil
| | - Giovani Marino Favero
- Multidisciplinary Laboratory of Basic Research and Applied Biology and Health, Universidade Estadual de Ponta Grossa/UEPG, Ponta Grossa, Brazil
| | - Rubiana Mara Mainardes
- Laboratory of Pharmaceutical Nanotechnology, Universidade Estadual do Centro-Oeste/UNICENTRO, Guarapuava, Brazil
| | - Najeh Maissar Khalil
- Laboratory of Pharmaceutical Nanotechnology, Universidade Estadual do Centro-Oeste/UNICENTRO, Guarapuava, Brazil
| |
Collapse
|
27
|
Li L, Wang J, Kong H, Zeng Y, Liu G. Functional biomimetic nanoparticles for drug delivery and theranostic applications in cancer treatment. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2018; 19:771-790. [PMID: 30815042 PMCID: PMC6383616 DOI: 10.1080/14686996.2018.1528850] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/24/2018] [Accepted: 09/24/2018] [Indexed: 05/17/2023]
Abstract
Nanotechnology has been extensively utilized in the design and development of powerful strategies for drug delivery and cancer theranostic. Nanoplatforms as a drug delivery system have many advantages such as in vivo imaging, combined drug delivery, extended circulation time, and systemic controlled release. The functional biomimetic drug delivery could be realized by incorporating stimuli-responsive (pH, temperature, redox potential, etc.) properties into the nanocarrier system, allowing them to bypass biological barriers and arrive at the targeted area. In this review, we discuss the role of internal stimuli-responsive nanocarrier system for imaging and drug delivery in cancer therapy. The development of internal stimuli-responsive nanoparticles is highlighted for precision drug delivery applications, with a particular focus on in vivo imaging, drug release performance, and therapeutic benefits.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Junqing Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Hangru Kong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Yun Zeng
- Department of Pharmacology, Xiamen Medical College, Xiamen, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
28
|
Khan S, Imran M, Butt TT, Ali Shah SW, Sohail M, Malik A, Das S, Thu HE, Adam A, Hussain Z. Curcumin based nanomedicines as efficient nanoplatform for treatment of cancer: New developments in reversing cancer drug resistance, rapid internalization, and improved anticancer efficacy. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.07.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Evaluating the behaviour of curcumin nanoemulsions and multilayer nanoemulsions during dynamic in vitro digestion. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.08.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
30
|
Dutta B, Barick KC, Verma G, Aswal VK, Freilich I, Danino D, Singh BG, Priyadarsini KI, Hassan PA. PEG coated vesicles from mixtures of Pluronic P123 and l-α-phosphatidylcholine: structure, rheology and curcumin encapsulation. Phys Chem Chem Phys 2018; 19:26821-26832. [PMID: 28949348 DOI: 10.1039/c7cp05303g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PEG coated vesicles are important vehicles for the passive targeting of anticancer drugs. With a view to prepare PEG decorated vesicles using co-assembly of block copolymers and lipids, here we investigated the microstructure of aggregates formed in mixtures comprising lipids (l-α-phosphatidylcholine) and block copolymers (Pluronic P123), in the polymer rich regime. DLS and SANS studies show that the structure of the aggregates can be tuned from micelles to rod-like micelles or vesicles by changing the lipid to polymer composition. Rheological studies on gels formed by mixtures of polymer and lipid suggest incorporation of the lipid into the polymer matrix. The encapsulation efficiencies of polymer incorporated liposomes for curcumin and doxorubicin hydrochloride (DOX) are evaluated at different drug to carrier ratios. The pH dependent sustained release of both the drugs from the PEGylated liposomes suggests their application in the development of cost effective formulations for anticancer drug delivery.
Collapse
Affiliation(s)
- Bijaideep Dutta
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400 085, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Nandwana V, Singh A, You MM, Zhang G, Higham J, Zheng TS, Li Y, Prasad PV, Dravid VP. Magnetic lipid nanocapsules (MLNCs): self-assembled lipid-based nanoconstruct for non-invasive theranostic applications. J Mater Chem B 2018; 6:1026-1034. [DOI: 10.1039/c7tb03160b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A novel magnetic nanostructures (MNS) stabilized lipid nanoconstruct is reported that shows superior structural stability and theranostic functionality than conventional lipid based nanocarriers.
Collapse
Affiliation(s)
- Vikas Nandwana
- Department of Materials Science & Engineering
- Northwestern University
- Evanston
- USA
- International Institute of Nanotechnology
| | - Abhalaxmi Singh
- Department of Materials Science & Engineering
- Northwestern University
- Evanston
- USA
- International Institute of Nanotechnology
| | - Marisa M. You
- Department of Materials Science & Engineering
- Northwestern University
- Evanston
- USA
| | - Gefei Zhang
- Department of Materials Science & Engineering
- Northwestern University
- Evanston
- USA
| | - John Higham
- Department of Materials Science & Engineering
- Northwestern University
- Evanston
- USA
- Department of Biomedical Engineering
| | - Tiffany S. Zheng
- Department of Materials Science & Engineering
- Northwestern University
- Evanston
- USA
| | - Yue Li
- Department of Materials Science & Engineering
- Northwestern University
- Evanston
- USA
| | | | - Vinayak P. Dravid
- Department of Materials Science & Engineering
- Northwestern University
- Evanston
- USA
- International Institute of Nanotechnology
| |
Collapse
|
32
|
Angelova S, Antonov L. Molecular Insight into Inclusion Complex Formation of Curcumin and Calix[4]arene. ChemistrySelect 2017. [DOI: 10.1002/slct.201701865] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Silvia Angelova
- Institute of Organic Chemistry with Centre of Phytochemistry; Bulgarian Academy of Sciences; 1113 Sofia Bulgaria
| | - Liudmil Antonov
- Institute of Organic Chemistry with Centre of Phytochemistry; Bulgarian Academy of Sciences; 1113 Sofia Bulgaria
| |
Collapse
|
33
|
Xu HL, Fan ZL, ZhuGe DL, Shen BX, Jin BH, Xiao J, Lu CT, Zhao YZ. Therapeutic supermolecular micelles of vitamin E succinate-grafted ε-polylysine as potential carriers for curcumin: Enhancing tumour penetration and improving therapeutic effect on glioma. Colloids Surf B Biointerfaces 2017; 158:295-307. [DOI: 10.1016/j.colsurfb.2017.07.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/06/2017] [Accepted: 07/05/2017] [Indexed: 01/17/2023]
|
34
|
Lee Y, Thompson DH. Stimuli-responsive liposomes for drug delivery. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9:10.1002/wnan.1450. [PMID: 28198148 PMCID: PMC5557698 DOI: 10.1002/wnan.1450] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/23/2016] [Accepted: 11/27/2016] [Indexed: 12/25/2022]
Abstract
The ultimate goal of drug delivery is to increase the bioavailability and reduce the toxic side effects of the active pharmaceutical ingredient (API) by releasing them at a specific site of action. In the case of antitumor therapy, association of the therapeutic agent with a carrier system can minimize damage to healthy, nontarget tissues, while limit systemic release and promoting long circulation to enhance uptake at the cancerous site due to the enhanced permeation and retention effect (EPR). Stimuli-responsive systems have become a promising way to deliver and release payloads in a site-selective manner. Potential carrier systems have been derived from a wide variety of materials, including inorganic nanoparticles, lipids, and polymers that have been imbued with stimuli-sensitive properties to accomplish triggered release based on an environmental cue. The unique features in the tumor microenvironment can serve as an endogenous stimulus (pH, redox potential, or unique enzymatic activity) or the locus of an applied external stimulus (heat or light) to trigger the controlled release of API. In liposomal carrier systems triggered release is generally based on the principle of membrane destabilization from local defects within bilayer membranes to effect release of liposome-entrapped drugs. This review focuses on the literature appearing between November 2008-February 2016 that reports new developments in stimuli-sensitive liposomal drug delivery strategies using pH change, enzyme transformation, redox reactions, and photochemical mechanisms of activation. WIREs Nanomed Nanobiotechnol 2017, 9:e1450. doi: 10.1002/wnan.1450 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Y Lee
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - D H Thompson
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
35
|
Su ZQ, Liu YH, Guo HZ, Sun CY, Xie JH, Li YC, Chen JN, Lai XP, Su ZR, Chen HM. Effect-enhancing and toxicity-reducing activity of usnic acid in ascitic tumor-bearing mice treated with bleomycin. Int Immunopharmacol 2017; 46:146-155. [DOI: 10.1016/j.intimp.2017.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 01/22/2023]
|
36
|
Cui T, Zhang S, Sun H. Co-delivery of doxorubicin and pH-sensitive curcumin prodrug by transferrin-targeted nanoparticles for breast cancer treatment. Oncol Rep 2017; 37:1253-1260. [PMID: 28075466 DOI: 10.3892/or.2017.5345] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/05/2016] [Indexed: 11/06/2022] Open
Abstract
The natural product curcumin and the chemotherapeutic agent doxorubicin have been used in the treatment of many cancers, including breast cancer. However, fast clearance and unspecific distribution in the body after intravenous injection are still challenges to be overcome by an ideal nano-sized drug delivery system in cancer treatment. In this study we design transferrin (Tf) decorated nanoparticles (NPs) to co-deliver CUR and DOX for breast cancer treatment. A pH-sensitive prodrug, transferrin-poly(ethylene glycol)-curcumin (Tf-PEG-CUR), was synthesized and used for the self‑assembling of NPs (Tf-PEG-CUR NPs). DOX is incorporated into the Tf-PEG-CUR NPs to obtain Tf-PEG-CUR/DOX NPs. In vitro cytotoxicity studies and in vivo antitumor activity were carried out using MCF-7 cells and mice bearing MCF-7 cells, respectively. Tf-PEG-CUR/DOX NPs has a particle size of 89 nm and a zeta potential of -15.6 mV. This system displayed remarkably higher efficiency than other systems both in vitro and in vivo. DOX and CUR were successfully loaded into nanocarriers. The in vitro cell viability assays revealed the combination of Tf-PEG-CUR and DOX NPs exhibited higher cytotoxicity in vitro in MCF-7 cells compared with Tf-PEG-CUR NPs alone. Using the breast cancer xenograft mouse model, we demonstrate that this co-encapsulation approach resulted in an efficient tumor-targeted drug delivery, decreased cytotoxic effects and exhibited stronger antitumor effect.
Collapse
Affiliation(s)
- Tongxing Cui
- Department of Galactophore Surgery, Qingdao Municipal Hospital, Qingdao, Shandong 266011, P.R. China
| | - Sihao Zhang
- Department of Galactophore Surgery, Qingdao Municipal Hospital, Qingdao, Shandong 266011, P.R. China
| | - Hong Sun
- Second Department of Oncology, Qingdao Municipal Hospital, Qingdao, Shandong 266011, P.R. China
| |
Collapse
|
37
|
He RX, Ye X, Li R, Chen W, Ge T, Huang TQ, Nie XJ, Chen HJT, Peng DY, Chen WD. PEGylated niosomes-mediated drug delivery systems for Paeonol: preparation, pharmacokinetics studies and synergistic anti-tumor effects with 5-FU. J Liposome Res 2016; 27:161-170. [DOI: 10.1080/08982104.2016.1191021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Rui-Xi He
- Anhui University of Chinese Medicine, Hefei, Anhui, PR China
| | - Xi Ye
- Anhui University of Chinese Medicine, Hefei, Anhui, PR China
| | - Rui Li
- Anhui University of Chinese Medicine, Hefei, Anhui, PR China
| | - Wei Chen
- Anhui University of Chinese Medicine, Hefei, Anhui, PR China
| | - Tao Ge
- Anhui University of Chinese Medicine, Hefei, Anhui, PR China
| | - Tian-Qing Huang
- Anhui University of Chinese Medicine, Hefei, Anhui, PR China
| | - Xiang-Jiang Nie
- Anhui University of Chinese Medicine, Hefei, Anhui, PR China
| | - He-Jun-Tao Chen
- Anhui University of Chinese Medicine, Hefei, Anhui, PR China
| | - Dai-Yin Peng
- Anhui University of Chinese Medicine, Hefei, Anhui, PR China
| | - Wei-Dong Chen
- Anhui University of Chinese Medicine, Hefei, Anhui, PR China
| |
Collapse
|
38
|
Yan T, Li D, Li J, Cheng F, Cheng J, Huang Y, He J. Effective co-delivery of doxorubicin and curcumin using a glycyrrhetinic acid-modified chitosan-cystamine-poly(ε-caprolactone) copolymer micelle for combination cancer chemotherapy. Colloids Surf B Biointerfaces 2016; 145:526-538. [PMID: 27281238 DOI: 10.1016/j.colsurfb.2016.05.070] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/04/2016] [Accepted: 05/25/2016] [Indexed: 12/22/2022]
Abstract
A glycyrrhetinic acid-modified chitosan-cystamine-poly(ε-caprolactone) copolymer (PCL-SS-CTS-GA) micelle was developed for the co-delivery of doxorubicin (DOX) and curcumin (CCM) to hepatoma cells. Glycyrrhetinic acid (GA) was used as a targeting unit to ensure specific delivery. Co-encapsulation of DOX and CCM was facilitated by the incorporation of poly(ε-caprolactone) (PCL) groups. The highest drug loading content was 19.8% and 8.9% (w/w) for DOX and CCM, respectively. The PCL-SS-CTS-GA micelle presented a spherical or ellipsoidal geometry with a mean diameter of approximately 110nm. The surface charge of the micelle changed from negative to positive, when the pH value of the solution decreased from 7.4 to 6.8. Meanwhile, it also exhibited a character of redox-responsive drug release and GA/pH-mediated endocytosis in vitro. In simulated body fluid with 10mM glutathione, the release rate in 12h was 80.6% and 67.2% for DOX and CCM, respectively. The cell uptake of micelles was significantly higher at pH 6.8 than pH 7.4. The combined administration of DOX and CCM was facilitated by PCL-SS-CTS-GA micelle. Results showed that there was strong synergic effect between the two drugs. The PCL-SS-CTS-GA micelle might turn into a promising and effective carrier for improved combination chemotherapy.
Collapse
Affiliation(s)
- Tingsheng Yan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150010, China
| | - Dalong Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150010, China
| | - Jiwei Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150010, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
| | - Feng Cheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150010, China
| | - Jinju Cheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150010, China
| | - Yudong Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150010, China
| | - Jinmei He
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150010, China.
| |
Collapse
|
39
|
Mahmood K, Zia KM, Zuber M, Salman M, Anjum MN. Recent developments in curcumin and curcumin based polymeric materials for biomedical applications: A review. Int J Biol Macromol 2015; 81:877-90. [PMID: 26391597 DOI: 10.1016/j.ijbiomac.2015.09.026] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 09/05/2015] [Accepted: 09/16/2015] [Indexed: 01/15/2023]
Abstract
Turmeric (Curcuma longa) is a popular Indian spice that has been used for centuries in herbal medicines for the treatment of a variety of ailments such as rheumatism, diabetic ulcers, anorexia, cough and sinusitis. Curcumin (diferuloylmethane) is the main curcuminoid present in turmeric and responsible for its yellow color. Curcumin has been shown to possess significant anti-inflammatory, anti-oxidant, anti-carcinogenic, anti-mutagenic, anticoagulant and anti-infective effects. This review summarizes and discusses recently published papers on the key biomedical applications of curcumin based materials. The highlighted studies in the review provide evidence of the ability of curcumin to show the significant vitro antioxidant, diabetic complication, antimicrobial, neuroprotective, anti-cancer activities and detection of hypochlorous acid, wound healing, treatment of major depression, healing of paracentesis, and treatment of carcinoma and optical detection of pyrrole properties. Hydrophobic nature of this polyphenolic compound along with its rapid metabolism, physicochemical and biological instability contribute to its poor bioavailability. To redress these problems several approaches have been proposed like encapsulation of curcumin in liposomes and polymeric micelles, inclusion complex formation with cyclodextrin, formation of polymer-curcumin conjugates, etc.
Collapse
Affiliation(s)
- Kashif Mahmood
- Institute of Chemistry, Government College University, Faisalabad, Pakistan
| | - Khalid Mahmood Zia
- Institute of Chemistry, Government College University, Faisalabad, Pakistan.
| | - Mohammad Zuber
- Institute of Chemistry, Government College University, Faisalabad, Pakistan
| | - Mahwish Salman
- Institute of Chemistry, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|