1
|
Ekramzadeh M, Kalantar-Zadeh K, Kopple JD. The Relevance of Phytate for the Treatment of Chronic Kidney Disease. Clin J Am Soc Nephrol 2024; 19:1341-1355. [PMID: 39110986 PMCID: PMC11469791 DOI: 10.2215/cjn.0000000000000558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/30/2024] [Indexed: 10/13/2024]
Abstract
Diets high in plant-based foods are commonly recommended for people with CKD. One putative advantage of these diets is reduced intestinal phosphate absorption. This effect has been ascribed to phytic acid (myoinositol hexaphosphoric acid) and its anion, phytate, that are present in many plant foods, particularly in the seeds, nuts, grains, and fruits of plants. This article reviews the structure and many actions of phytate with particular reference to its potential effects on people with CKD. Phytate binds avidly to and can reduce gastrointestinal absorption of the phosphate anion and many macrominerals and trace elements including iron, zinc, calcium, and magnesium. This has led some opinion leaders to label phytate as an anti-nutrient. The human intestine lacks phytase; hence, phytate is essentially not degraded in the small intestine. A small amount of phytate is absorbed from the small intestine, although phytate bound to phosphate is poorly absorbed. Clinical trials in maintenance hemodialysis patients indicate that intravenously administered phytate may decrease hydroxyapatite formation, vascular calcification, and calciphylaxis. Orally administered phytate or in vitro studies indicate that phytate may also reduce osteoporosis, urinary calcium calculi formation, and dental plaque formation. Phytate seems to have anti-inflammatory and antioxidant effects, at least partly because of its ability to chelate iron. Other potential therapeutic roles for phytate, not definitively established, include suppression of cancer formation, reduction in cognitive decline that occurs with aging, and amelioration of certain neurodegenerative diseases and several gastrointestinal and metabolic disorders. These latter potential benefits of phytate are supported by cell or animal research or observational studies in humans. Many of the above disorders are particularly common in patients with CKD. Definitive clinical trials to identify potential therapeutic benefits of phytate in patients with CKD are clearly warranted.
Collapse
Affiliation(s)
- Maryam Ekramzadeh
- David Geffen School of Medicine at UCLA and the UCLA Fielding School of Public Health, Los Angeles, CA
| | - Kamyar Kalantar-Zadeh
- David Geffen School of Medicine at UCLA and the UCLA Fielding School of Public Health, Los Angeles, CA
| | - Joel D. Kopple
- David Geffen School of Medicine at UCLA and the UCLA Fielding School of Public Health, Los Angeles, CA
| |
Collapse
|
2
|
Wang YM, Shen JT. Chitosan-based promising scaffolds for the construction of tailored nanosystems against osteoporosis: Current status and future prospects. J Appl Biomater Funct Mater 2024; 22:22808000241266487. [PMID: 39129376 DOI: 10.1177/22808000241266487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024] Open
Abstract
Despite advancements in therapeutic techniques, restoring bone tissue after damage remains a challenging task. Tissue engineering or targeted drug delivery solutions aim to meet the pressing clinical demand for treatment alternatives by creating substitute materials that imitate the structural and biological characteristics of healthy tissue. Polymers derived from natural sources typically exhibit enhanced biological compatibility and bioactivity when compared to manufactured polymers. Chitosan is a unique polysaccharide derived from chitin through deacetylation, offering biodegradability, biocompatibility, and antibacterial activity. Its cationic charge sets it apart from other polymers, making it a valuable resource for various applications. Modifications such as thiolation, alkylation, acetylation, or hydrophilic group incorporation can enhance chitosan's swelling behavior, cross-linking, adhesion, permeation, controllable drug release, enzyme inhibition, and antioxidative properties. Chitosan scaffolds possess considerable potential for utilization in several biological applications. An intriguing application is its use in the areas of drug distribution and bone tissue engineering. Due to their excellent biocompatibility and lack of toxicity, they are an optimal material for this particular usage. This article provides a comprehensive analysis of osteoporosis, including its pathophysiology, current treatment options, the utilization of natural polymers in disease management, and the potential use of chitosan scaffolds for drug delivery systems aimed at treating the condition.
Collapse
Affiliation(s)
- Ya-Ming Wang
- Department of Endocrine, Shengzhou People's Hospital (Shengzhou Branch of the First Affiliated Hospital of Zhejiang University School of Medicine, the Shengzhou Hospital of Shaoxing University), Shengzhou, Zhejiang, China
| | - Jiang-Tao Shen
- Department of Orthopedics, Shengzhou People's Hospital (Shengzhou Branch of the First Affiliated Hospital of Zhejiang University School of Medicine, the Shengzhou Hospital of Shaoxing University), Shengzhou, Zhejiang, China
| |
Collapse
|
3
|
Sultana N, Ali A, Waheed A, Jabi B, Yaqub Khan M, Mujeeb M, Sultana Y, Aqil M. Dissolving microneedle transdermal patch loaded with Risedronate sodium and Ursolic acid bipartite nanotransfersomes to combat osteoporosis: Optimization, characterization, in vitro and ex vivo assessment. Int J Pharm 2023; 644:123335. [PMID: 37597597 DOI: 10.1016/j.ijpharm.2023.123335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/30/2023] [Accepted: 08/17/2023] [Indexed: 08/21/2023]
Abstract
Osteoporosis is a fatal bone-wearing malady and a substantial reason behind the impermanence of human life and economic burden. Risedronate Sodium along with Ursolic acid has been studied to ameliorate osteoporosis. To bypass problems associated with bioavailability, we have developed a microneedle transdermal patch loaded with optimized formulation nanotransfersomes. It was optimized using three factor, three-level Central composite design with independent variables namely, the concentration of phospholipid, surfactant, and sonication time on dependent variables (vesicle size, entrapment efficiency and Polydispersity index). Vesicles of size 271.9 ± 8.45 nm with PDI 0.184 ± 0.01, having entrapment efficiency of 86.12 ± 5.20% and 85.65 ± 4.88% for RIS and UA respectively were observed. In vitro release study showed the sustained release pattern with 78.16 ± 1.12% and 75.72 ± 1.01% release of RIS and UA respectively. Dissolving MN patch prepared from gelatin was found to have good strength and folding endurance with uniform drug content (98.68 ± 0.004%). Ex vivo permeation study revealed that up to 80% of the drug can be permeated within 24 h. CLSM analysis was also performed to show penetration of RU-NTRs. From the results obtained, we can conclude that dissolving MN patch loaded with RU-NTRs has great potential than its conventional counterpart.
Collapse
Affiliation(s)
- Niha Sultana
- School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Asad Ali
- School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Ayesha Waheed
- School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Bushra Jabi
- School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Yaqub Khan
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan City 320314, Taiwan
| | - Mohd Mujeeb
- School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Yasmin Sultana
- School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Aqil
- School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
4
|
Saifi Z, Shafi S, Ralli T, Jain S, Vohora D, Mir SR, Alhalmi A, Noman OM, Alahdab A, Amin S. Enhancing Osteoporosis Treatment through Targeted Nanoparticle Delivery of Risedronate: In Vivo Evaluation and Bioavailability Enhancement. Pharmaceutics 2023; 15:2339. [PMID: 37765307 PMCID: PMC10534762 DOI: 10.3390/pharmaceutics15092339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Risedronate-loaded mPEG-coated hydroxyapatite, thiolated chitosan-based (coated) and non-coated nanoparticles were tested for their potential effects in the treatment of osteoporosis. The prepared nanoparticles were evaluated for their bone-targeting potential by inducing osteoporosis in female Wistar rats via oral administration of Dexona (dexamethasone sodium phosphate). In vivo pharmacokinetic and pharmacodynamic studies were performed on osteoporotic rat models treated with different formulations. The osteoporotic model treated with the prepared nanoparticles indicated a significant effect on bone. The relative bioavailability was enhanced for RIS-HA-TCS-mPEG nanoparticles given orally compared to RIS-HA-TCS, marketed, and API suspension. Biochemical investigations also showed a significant change in biomarker levels, ultimately leading to bone formation/resorption. Micro-CT analysis of bone samples also demonstrated that the RIS-HA-TCS-mPEG-treated group showed the best results compared to other treatment groups. Moreover, the histology of bone treated with RIS-HA-TCS-mPEG showed a marked restoration of the architecture of trabecular bone along with a well-connected bone matrix and narrow inter-trabecular spaces compared to the toxic group. A stability analysis was also carried out according to ICH guidelines (Q1AR2), and it was found that RIS-HA-TCS-mPEG was more stable than RIS-HA-TCS at 25 °C. Thus, the results of present study indicated that mPEG-RIS-HA-TCS has excellent potential for sustained delivery of RIS for the treatment and prevention of osteoporosis, and for minimizing the adverse effects of RIS typically induced via oral administration.
Collapse
Affiliation(s)
- Zoya Saifi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (Z.S.); (T.R.); (A.A.)
| | - Sadat Shafi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (S.S.); (S.J.); (D.V.)
| | - Tanya Ralli
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (Z.S.); (T.R.); (A.A.)
| | - Shreshta Jain
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (S.S.); (S.J.); (D.V.)
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (S.S.); (S.J.); (D.V.)
| | - Showkat Rasool Mir
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Abdulsalam Alhalmi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (Z.S.); (T.R.); (A.A.)
| | - Omar M. Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Ahmad Alahdab
- Institute of Pharmacy, Clinical Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany;
| | - Saima Amin
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (Z.S.); (T.R.); (A.A.)
| |
Collapse
|
5
|
Chen J, Chen J, Zhu Z, Sun T, Liu M, Lu L, Zhou C, Luo B. Drug-Loaded and Anisotropic Wood-Derived Hydrogel Periosteum with Super Antibacterial, Anti-Inflammatory, and Osteogenic Activities. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50485-50498. [PMID: 36331130 DOI: 10.1021/acsami.2c12147] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Current artificial periostea mainly focus on osteogenic activity but overlook structural and mechanical anisotropy, as well as the importance of antibacterial and anti-inflammatory properties. Here, inspired by the anisotropic structure of wood, the delignified wood (named white wood, WW) with a porous and highly oriented cellulose fiber skeleton was obtained, which was further filled with polyvinyl alcohol (PVA) hydrogel loaded with curcumin (Cur) and phytic acid (PA). The prepared wood-derived hydrogel composite membranes can not only exhibit an obvious anisotropic structure and good mechanical properties but also sustainably release loaded drugs to obtain long-term biological activities. Creatively, PA can effectively improve the bioavailability of Cur; more importantly, Cur and PA play an obvious synergistic effect in antibacterial, anti-inflammatory, and osteogenic activities. Compared with the wood-derived hydrogel composite membranes without drug loading, as well as loaded with Cur or PA only, these loaded with Cur and PA are significantly more conducive to inhibiting the growth of bacteria and inflammatory response and facilitating the adhesion, proliferation, and osteogenic differentiation of bone marrow mesenchymal stem cells. This kind of anisotropic wood-derived hydrogel composite membrane with fantastic antibacterial, anti-inflammatory, and osteogenic activities is expected to be ideal artificial periostea.
Collapse
Affiliation(s)
- Jiaqing Chen
- Biomaterial research laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
| | - Jingsheng Chen
- Biomaterial research laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
| | - Zelin Zhu
- Biomaterial research laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
| | - Tianyi Sun
- Biomaterial research laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
| | - Mingxian Liu
- Biomaterial research laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
- Engineering Research center of Artificial Organs and Materials, Ministry of Education, Guangzhou510632, PR China
| | - Lu Lu
- Biomaterial research laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
- Engineering Research center of Artificial Organs and Materials, Ministry of Education, Guangzhou510632, PR China
| | - Changren Zhou
- Biomaterial research laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
- Engineering Research center of Artificial Organs and Materials, Ministry of Education, Guangzhou510632, PR China
| | - Binghong Luo
- Biomaterial research laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
- Engineering Research center of Artificial Organs and Materials, Ministry of Education, Guangzhou510632, PR China
| |
Collapse
|
6
|
Chitosan-based biomaterials for the treatment of bone disorders. Int J Biol Macromol 2022; 215:346-367. [PMID: 35718150 DOI: 10.1016/j.ijbiomac.2022.06.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/06/2022] [Accepted: 06/11/2022] [Indexed: 12/22/2022]
Abstract
Bone is an alive and dynamic organ that is well-differentiated and originated from mesenchymal tissues. Bone undergoes continuous remodeling during the lifetime of an individual. Although knowledge regarding bones and their disorders has been constantly growing, much attention has been devoted to effective treatments that can be used, both from materials and medical performance points of view. Polymers derived from natural sources, for example polysaccharides, are generally biocompatible and are therefore considered excellent candidates for various biomedical applications. This review outlines the development of chitosan-based biomaterials for the treatment of bone disorders including bone fracture, osteoporosis, osteoarthritis, arthritis rheumatoid, and osteosarcoma. Different examples of chitosan-based formulations in the form of gels, micro/nanoparticles, and films are discussed herein. The work also reviews recent patents and important developments related to the use of chitosan in the treatment of bone disorders. Although most of the cited research was accomplished before reaching the clinical application level, this manuscript summarizes the latest achievements within chitosan-based biomaterials used for the treatment of bone disorders and provides perspectives for future scientific activities.
Collapse
|
7
|
Tian Z, Zhao J, Zhao S, Li H, Guo Z, Liang Z, Li J, Qu Y, Chen D, Liu L. Phytic acid-modified CeO 2 as Ca 2+ inhibitor for a security reversal of tumor drug resistance. NANO RESEARCH 2022; 15:4334-4343. [PMID: 35126877 PMCID: PMC8800414 DOI: 10.1007/s12274-022-4069-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/03/2021] [Accepted: 12/13/2021] [Indexed: 05/05/2023]
Abstract
Ca2+ plays critical roles in the development of diseases, whereas existing various Ca regulation methods have been greatly restricted in their clinical applications due to their high toxicity and inefficiency. To solve this issue, with the help of Ca overexpressed tumor drug resistance model, the phytic acid (PA)-modified CeO2 nano-inhibitors have been rationally designed as an unprecedentedly safe and efficient Ca2+ inhibitor to successfully reverse tumor drug resistance through Ca2+ negative regulation strategy. Using doxorubicin (Dox) as a model chemotherapeutic drug, the Ca2+ nano-inhibitors efficiently deprived intracellular excessive free Ca2+, suppressed P-glycoprotein (P-gp) expression and significantly enhanced intracellular drug accumulation in Dox-resistant tumor cells. This Ca2+ negative regulation strategy improved the intratumoral Dox concentration by a factor of 12.4 and nearly eradicated tumors without obvious adverse effects. Besides, nanocerias as pH-regulated nanozyme greatly alleviated the adverse effects of chemotherapeutic drug on normal cells/organs and substantially improved survivals of mice. We anticipate that this safe and effective Ca2+ negative regulation strategy has potentials to conquer the pitfalls of traditional Ca inhibitors, improve therapeutic efficacy of common chemotherapeutic drugs and serves as a facile and effective treatment platform of other Ca2+ associated diseases. Electronic Supplementary Material Supplementary material (further details of the XRD pattern of CeO2, TEM images, XPS spectra, cellular uptake study, cytotoxicity data, apoptosis study, biodistribution, and biosecurity of nanocerias in vivo, etc.) is available in the online version of this article at 10.1007/s12274-022-4069-0.
Collapse
Affiliation(s)
- Zhimin Tian
- Department Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, 710072 China
| | - Junlong Zhao
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an, 710032 China
| | - Shoujie Zhao
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, 710038 China
| | - Huicheng Li
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Fourth Military Medical University, Xi’an, 710032 China
| | - Zhixiong Guo
- Department Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, 710072 China
| | - Zechen Liang
- Department Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, 710072 China
| | - Jiayuan Li
- Department Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, 710072 China
| | - Yongquan Qu
- Department Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, 710072 China
| | - Dongfeng Chen
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Lei Liu
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, 400042 China
| |
Collapse
|
8
|
Gyanewali S, Kesharwani P, Sheikh A, Ahmad FJ, Trivedi R, Talegaonkar S. Formulation development and in vitro-in vivo assessment of protransfersomal gel of anti-resorptive drug in osteoporosis treatment. Int J Pharm 2021; 608:121060. [PMID: 34500057 DOI: 10.1016/j.ijpharm.2021.121060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/23/2022]
Abstract
Osteoporosis is a major cause of morbidity, mortality, and economic burden worldwide. Despite being an effective in combating the bone-deteriorating disorders, bisphosphonates have several shortcomings including poor and variable bioavailability, low permeability, high toxicity, etc. In this study, we developed and optimized protransfersome formulation for the drug risedronate sodium (RIS-Na) with the goal of enhancing its bioavailability and hence patient compliance. Phase separation coacervation technique was utilized for development of optimized formulation. Optimization was achieved by using three-factor, three-level Box-Behnken design combined with Response Surface Methodology (RSM). This enabled us to decipher the effect of 3 independent variables (Phospholipid, Tween-80 and Sodium Deoxycholate) on three dependent parameters (entrapment efficiency, vesicle size and transdermal flux). Optimized formulation was further evaluated for pharmacokinetic and pharmacodynamic parameters. Smooth, spherical protransfersomes with a size of 260 ± 18 nm, having entrapment efficiency and flux of 80.4 ± 4.90% and 8.41 ± 0.148 μg/cm2/h, respectively were prepared. Ex vivo studies revealed a shorter lag time of 1.21 ± 0.18 h and higher flux associated with transdermal formulation. CLSM analysis further revealed better drug penetration (220 μm) through the skin in case of protransfersomes as compared to drug solution (72 μm). Additionally, biomechanical, biochemical, and histo-pathological studies further validated the results. Thus, it was concluded that protransfersome formulation has a great potential in providing better therapeutic efficacy of risedronate than its conventional counterpart.
Collapse
Affiliation(s)
- Suman Gyanewali
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India.
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Ritu Trivedi
- Department of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sushama Talegaonkar
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India.
| |
Collapse
|
9
|
Cremers S, Ebetino FH, Phipps R. On the pharmacological evaluation of bisphosphonates in humans. Bone 2020; 139:115501. [PMID: 32599224 PMCID: PMC7483926 DOI: 10.1016/j.bone.2020.115501] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/10/2020] [Accepted: 06/20/2020] [Indexed: 01/01/2023]
Abstract
One of the key parameters for a successful treatment with any drug is the use of an optimal dose regimen. Bisphosphonates (BPs) have been in clinical use for over five decades and during this period clinical pharmacokinetic (PK) and pharmacodynamic (PD) evaluations have been instrumental for the identification of optimal dose regimens in patients. Ideal clinical PK and PD studies help drug developers explain variability in responses and enable the identification of a dose regimen with an optimal effect. PK and PD studies of the unique and rather complex pharmacological properties of BPs also help determine to a significant extent ideal dosing for these drugs. Clinical PK and PD evaluations of BPs preferably use study designs and assays that enable the assessment of both short- (days) and long-term (years) presence and effect of these drugs in patients. BPs are mainly used for metabolic bone diseases because they inhibit osteoclast-mediated bone resorption and the best way to quantify their effects in humans is therefore by measuring biochemical markers of bone resorption in serum and urine. In these very same samples BP concentrations can also be measured. Short-term serum and urine data after both intravenous (IV) and oral administration enable the assessment of oral bioavailability as well as the amount of BP delivered to the skeleton. Longer-term data provide information on the anti-resorptive effect as well as the elimination of the BP from the skeleton. Using PK-PD models to mathematically link the anti-resorptive action of the BPs to the amount of BP at the skeleton provides a mechanism-based explanation of the pattern of bone resorption during treatment. These models have been used successfully during the clinical development of BPs. Newer versions of such models, which include systems pharmacology and disease progression models, are more comprehensive and include additional PD parameters such as BMD and fracture risk. Clinical PK and PD studies of BPs have been useful for the identification of optimal dose regimens for metabolic bone diseases. These analyses will also continue to be important for newer research directions, such as BP use in the delivery of other drugs to the bone to better treat bone metastases and bone infections, as well as the potential benefit of BPs at non-skeletal targets for the prevention and treatments of soft tissue cancers, various fibroses, and other cardiovascular and neurodegenerative diseases, and reduction in mortality and extension of lifespan.
Collapse
Affiliation(s)
- Serge Cremers
- Pathology & Cell Biology and Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States of America.
| | - Frank Hal Ebetino
- University of Rochester, Rochester, NY 14627, United States of America; BioVinc, Pasadena, CA 91107, United States of America
| | - Roger Phipps
- School of Pharmacy, Husson University, Bangor, ME 04401, United States of America
| |
Collapse
|
10
|
Hou Y, Piao H, Tahara Y, Qin S, Wang J, Kong Q, Zou M, Cheng G, Goto M. Solid-in-oil nanodispersions as a novel delivery system to improve the oral bioavailability of bisphosphate, risedronate sodium. Eur J Pharm Sci 2020; 155:105521. [PMID: 32822808 DOI: 10.1016/j.ejps.2020.105521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
The aim of the current study was to modify the oral absorption of risedronate sodium (RS) using solid-in-oil nanodispersions (SONDs) technology. The oral therapeutic effect of RS is limited in vivo because of its low membrane permeability and the formation of insoluble precipitates with bivalent cations (such as Ca2+) in the gastrointestinal (GI) tract.We used SONDs to prepare medium-chain triglyceride (MCT)-based nanodispersions of the hydrophilic drug, which used the oral absorption mechanism of MCT digestion to improve bioavailability of RS in vivo. SONDs exhibited high encapsulation efficiency of RS and excellent enzymatic degradation-dependent release behavior. The result of an everted gut sac test showed that the Papp value of the SONDs was 6.29-fold (p<0.05) higher than that of RS aqueous solutions in simulated intestinal fluid containing 5 mM Ca2+, this was because MCT can be digested to form the fatty acids C8 and C10, which have an adsorption-promoting effect on RS. Further, solid-in-oil-in-water (S/O/W) emulsion droplets formedafter emulsification by bile salts and MCT digestionwere effective in disrupting epithelial tight junctions (TJs), facilitating the paracellular permeation of RS throughout the intestine. Moreover, in vivo absorption study in rats revealed that the AUC0-12h of RS in SONDs was approximately 4.56-fold (p<0.05) higher than with RS aqueous solutions at the same dose (15 mg/kg). This approach demonstrates a potential drug delivery system to improve the bioavailability of risedronate sodium.
Collapse
Affiliation(s)
- Yanting Hou
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang110016, China
| | - Hongyu Piao
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang110016, China
| | - Yoshiro Tahara
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka819-0395, Japan
| | - Shouhong Qin
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang110016, China
| | - Jingying Wang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang110016, China
| | - Qingliang Kong
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka819-0395, Japan
| | - Meijuan Zou
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang110016, China
| | - Gang Cheng
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang110016, China
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka819-0395, Japan; Advanced Transdermal Drug Delivery System Center, Kyushu University, Fukuoka819-0395, Japan; Center for Future Chemistry, Kyushu University, Fukuoka819-0395, Japan.
| |
Collapse
|
11
|
Elkady OA, Tadros MI, El-Laithy HM. QbD Approach for Novel Crosslinker-Free Ionotropic Gelation of Risedronate Sodium-Chitosan Nebulizable Microspheres: Optimization and Characterization. AAPS PharmSciTech 2019; 21:14. [PMID: 31807950 DOI: 10.1208/s12249-019-1561-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/07/2019] [Indexed: 01/29/2023] Open
Abstract
Risedronate sodium (RS) is a potent inhibitor of bone resorption, having an extreme poor permeability and limited oral bioavailability (0.62%). RS should be orally administered under fasting conditions while keeping in an upright posture for at least 30 min to diminish common gastroesophageal injuries. To surmount such limitations, novel risedronate-chitosan (RS-CS) crosslinker-free nebulizable microspheres were developed adopting the quality by design (QbD) approach and risk assessment (RA) thinking. RS:CS ratio, surfactant (Pluronic® F127) concentration, homogenization duration, speed, and temperature were identified using Ishikawa diagrams as the highest formulation and process risk factors affecting the critical quality attributes (CQAs), average particle size (PS), and entrapment efficiency (EE%). The risk factors were screened using the Plackett-Burman design, and the levels of the most significant factors were optimized using a multilevel factorial design to explore the optimized system with the least PS, maximum EE%, and a prolonged drug release profile. The optimized system (B6) was developed at a RS:CS ratio of 1:7, a surfactant concentration of 2% (w/v), and a homogenization speed of 14,000 rpm. It revealed good correlation with QbD theoretical prediction, where positively charged (47.9 ± 3.39 mV) discrete, spherical microspheres (3.47 ± 0.16 μm) having a high EE% (94.58 ± 0.19%) and prolonged RS release over 12 h (Q12 h, 89.70 ± 0.64%) were achieved. In vivo lung deposition after intratracheal instillation of B6 confirmed the delivery of high RS percentage to rat lung tissues (87 ± 3.54%) and its persistence for 24 h. This investigation demonstrated the effectiveness of QbD philosophy in developing RS-CS crosslinker-free nebulizable microspheres.
Collapse
Affiliation(s)
- Omar A Elkady
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 11787, Egypt
| | - Mina Ibrahim Tadros
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Hanan M El-Laithy
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 11787, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| |
Collapse
|
12
|
Development and application of a urine drug concentration method for the evaluation of oral absorption of ibandronate in clinical patients. Bioanalysis 2019; 11:1337-1345. [PMID: 31392890 DOI: 10.4155/bio-2018-0223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: A urine drug concentration method was developed for the evaluation of oral ibandronte absorption based on the fact that ibandronate is excreted unchanged by the kidneys. Methodology: Ibandronate was isolated from the urine matrix by coprecipitated with 2.5 M CaCl2 and 1 M K2HPO4 in basic conditions. After a liquid-liquid extraction, the analytes were derivatized with trimethylsilydiazomethane prior to detection. Results: The calibration curves exhibited excellent linearity (r > 0.99) between 1 and 250 ng/ml in human urine. Ibandronate was recovered >86.5% with the inter- and intraday relative standard deviations less than 15%. Conclusion: The method is selective, accurate, practical and was successfully applied to study the influence of vitamin D3 on the absorption of ibandronate.
Collapse
|
13
|
Elsayed R, Abraham P, Awad ME, Kurago Z, Baladhandayutham B, Whitford GM, Pashley DH, McKenna CE, Elsalanty ME. Removal of matrix-bound zoledronate prevents post-extraction osteonecrosis of the jaw by rescuing osteoclast function. Bone 2018; 110:141-149. [PMID: 29408511 PMCID: PMC5878730 DOI: 10.1016/j.bone.2018.01.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/06/2018] [Accepted: 01/25/2018] [Indexed: 12/25/2022]
Abstract
Unlike other antiresorptive medications, bisphosphonate molecules accumulate in the bone matrix. Previous studies of side-effects of anti-resorptive treatment focused mainly on systemic effects. We hypothesize that matrix-bound bisphosphonate molecules contribute to the pathogenesis of bisphosphonate-related osteonecrosis of the jaw (BRONJ). In this study, we examined the effect of matrix-bound bisphosphonates on osteoclast differentiation in vitro using TRAP staining and resorption assay, with and without pretreatment with EDTA. We also tested the effect of zoledronate chelation on the healing of post-extraction defect in rats. Our results confirmed that bisphosphonates bind to, and can be chelated from, mineralized matrix in vitro in a dose-dependent manner. Matrix-bound bisphosphonates impaired the differentiation of osteoclasts, evidenced by TRAP activity and resorption assay. Zoledronate-treated rats that underwent bilateral dental extraction with unilateral EDTA treatment showed significant improvement in mucosal healing and micro-CT analysis on the chelated sides. The results suggest that matrix-bound bisphosphonates are accessible to osteoclasts and chelating agents and contribute to the pathogenesis of BRONJ. The use of topical chelating agents is a promising strategy for the prevention of BRONJ following dental procedures in bisphosphonate-treated patients.
Collapse
Affiliation(s)
- Ranya Elsayed
- Department of Oral Biology, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Pheba Abraham
- Department of Oral Biology, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Mohamed E Awad
- Department of Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Zoya Kurago
- Department of Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | | | - Gary M Whitford
- Department of Oral Biology, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - David H Pashley
- Department of Oral Biology, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Charles E McKenna
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Mohammed E Elsalanty
- Department of Oral Biology, Dental College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
14
|
Amphiphilic PA-induced three-dimensional graphene macrostructure with enhanced removal of heavy metal ions. J Colloid Interface Sci 2018; 512:853-861. [DOI: 10.1016/j.jcis.2017.10.092] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/14/2017] [Accepted: 10/24/2017] [Indexed: 11/24/2022]
|
15
|
Abrantes CG, Duarte D, Reis CP. An Overview of Pharmaceutical Excipients: Safe or Not Safe? J Pharm Sci 2016; 105:2019-26. [DOI: 10.1016/j.xphs.2016.03.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/01/2016] [Accepted: 03/15/2016] [Indexed: 11/28/2022]
|