1
|
Reyna-Lázaro L, Morales-Becerril A, Aranda-Lara L, Isaac-Olivé K, Ocampo-García B, Gibbens-Bandala B, Olea-Mejía O, Morales-Avila E. Pharmaceutical Nanoplatforms Based on Self-nanoemulsifying Drug Delivery Systems for Optimal Transport and Co-delivery of siRNAs and Anticancer Drugs. J Pharm Sci 2024; 113:1907-1918. [PMID: 38369021 DOI: 10.1016/j.xphs.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
Small interfering RNAs (siRNAs) have the ability to induce selective gene silencing, although siRNAs are vulnerable to degradation in vivo. Various active pharmaceutical ingredients (APIs) are currently used as effective therapeutics in the treatment of cancer. However, routes of administration are limited due to their physicochemical and biopharmaceutical properties. This research aimed to develop oral pharmaceutical formulations based on self-nanoemulsifying drug delivery systems (SNEDDS) for optimal transport and co-delivery of siRNAs related to cancer and APIs. Formulations were developed using optimal mixing design (Design-Expert 11 software) for SNEDDS loading with siRNA (water/oil emulsion), API (oil/water emulsion), and siRNA-API (multiphase water/oil/water emulsion). The final formulations were characterized physicochemically and biologically. The nanosystems less than 50 nm in size had a drug loading above 48 %. The highest drug release occurred at intestinal pH, allowing drug protection in physiological fluids. SNEDDS-siRNA-APIs showed a twofold toxicity effect than APIs in solution and higher transfection and internalization of siRNA in cancer cells with respect to free siRNAs. In the duodenum, higher permeability was observed with SNEDDS-API than with the API solution, as determined by ex-vivo fluorescence microscopy. The multifunctional formulation based on SNEDDS was successfully prepared, siRNA, hydrophobic chemotherapeutics (doxorubicin, valrubicin and methotrexate) and photosensitizers (rhodamine b and protoporphyrin IX) agents were loaded, using a chitosan-RNA core, and Labrafil® M 1944 CS, Cremophor® RH40, phosphatidylcholine shell, forming stable hybrid SNEDDS as multiphasic emulsion, suitable as co-delivery system with a potent anticancer activity.
Collapse
Affiliation(s)
- Luz Reyna-Lázaro
- Universidad Autónoma del Estado de México, Facultad de Química, Toluca 50120, Estado de México, Mexico
| | - Aideé Morales-Becerril
- Universidad Autónoma del Estado de México, Facultad de Química, Toluca 50120, Estado de México, Mexico
| | - Liliana Aranda-Lara
- Universidad Autónoma del Estado de México, Facultad de Medicina, Toluca 50180, Estado de México, Mexico
| | - Keila Isaac-Olivé
- Universidad Autónoma del Estado de México, Facultad de Medicina, Toluca 50180, Estado de México, Mexico
| | - Blanca Ocampo-García
- Instituto Nacional de Investigaciones Nucleares, Departamento de Materiales Radiactivos, Ocoyoacac 52750, Estado de México, Mexico
| | - Brenda Gibbens-Bandala
- Instituto Nacional de Investigaciones Nucleares, Departamento de Materiales Radiactivos, Ocoyoacac 52750, Estado de México, Mexico
| | - Oscar Olea-Mejía
- Centro Conjunto de Investigación en Química Sustentable (CCIQS), Universidad Autónoma del Estado de México-Universidad Nacional Autónoma de México, Km 14.5 Carretera Toluca-Ixtlahuaca, San Cayetano de Morelos, 50200 Toluca, Mexico
| | - Enrique Morales-Avila
- Universidad Autónoma del Estado de México, Facultad de Química, Toluca 50120, Estado de México, Mexico.
| |
Collapse
|
2
|
Vanneste F, Faure A, Varache M, Menendez-Miranda M, Dyon-Tafani V, Dussurgey S, Errazuriz-Cerda E, La Padula V, Alcouffe P, Carrière M, Gref R, Laurent F, Josse J, Ladavière C. LipoParticles: a lipid membrane coating onto polymer particles to enhance the internalization in osteoblast cells. NANOSCALE 2023; 15:18015-18032. [PMID: 37916389 DOI: 10.1039/d3nr03267a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
LipoParticles, core-shell assemblies consisting of a polymer core coated by a lipid membrane, are promising carriers for drug delivery applications with intracellular targets. This is of great interest since it is actually challenging to treat infections involving intracellular bacteria such as bone and joint infections where the bacteria are hidden in osteoblast cells. The present work reports for the first time to the best of our knowledge the proof of enhanced internalization of particles in osteoblast cells thanks to a lipid coating of particles (= LipoParticles). The ca. 300 nm-sized assemblies were elaborated by reorganization of liposomes (composed of DPPC/DPTAP 10/90 mol/mol) onto the surface of poly(lactic-co-glycolic acid) (PLGA) particles, and were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), and zetametry. Optimization of these assemblies was also performed by adding poly(ethylene glycol) (PEG) chains on their surface (corresponding to a final formulation of DPPC/DPTAP/DPPE-PEG5000 8/90/2 mol/mol/mol). Interestingly, this provided them colloidal stability after their 20-fold dilution in PBS or cell culture medium, and made possible their freeze-drying without forming aggregates after their re-hydration. Their non-cytotoxicity towards a human osteoblast cell line (MG63) was also demonstrated. The enhanced internalization of LipoParticles in this MG63 cell line, in comparison with PLGA particles, was proven by observations with a confocal laser scanning microscope, as well as by flow cytometry assays. Finally, this efficient internalization of LipoParticles in MG63 cells was confirmed by TEM on ultrathin sections, which also revealed localization close to intracellular Staphylococcus aureus.
Collapse
Affiliation(s)
- Florian Vanneste
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, UMR 5223, Ingénierie des Matériaux Polymères F-69622 Cedex, France.
| | - Allison Faure
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France.
| | - Mathieu Varache
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, UMR 5223, Ingénierie des Matériaux Polymères F-69622 Cedex, France.
| | - Mario Menendez-Miranda
- Institut de Sciences Moléculaires d'Orsay (ISMO), Univ. of Paris-Sud, Orsay 91405, France
| | - Virginie Dyon-Tafani
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France.
| | - Sébastien Dussurgey
- Structure Fédérative de Recherche Biosciences, UMS344/US8, Inserm, CNRS, Université Claude Bernard Lyon-1, ENS de Lyon, Lyon, France
| | | | - Veronica La Padula
- Centre Technologique des Microstructures, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Pierre Alcouffe
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, UMR 5223, Ingénierie des Matériaux Polymères F-69622 Cedex, France.
| | - Marie Carrière
- Université Grenoble-Alpes, CEA, CNRS, IRIG, SyMMES, CIBEST, 38000 Grenoble, France
| | - Ruxandra Gref
- Institut de Sciences Moléculaires d'Orsay (ISMO), Univ. of Paris-Sud, Orsay 91405, France
| | - Frédéric Laurent
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France.
| | - Jérôme Josse
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France.
| | - Catherine Ladavière
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, UMR 5223, Ingénierie des Matériaux Polymères F-69622 Cedex, France.
| |
Collapse
|
3
|
Borges HS, Gusmão LA, Tedesco AC. Multi-charged nanoemulsion for photodynamic treatment of glioblastoma cell line in 2D and 3D in vitro models. Photodiagnosis Photodyn Ther 2023; 43:103723. [PMID: 37487809 DOI: 10.1016/j.pdpdt.2023.103723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/05/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Multi-charged nanoemulsions (NE) were designed to deliver Cannabidiol (CBD), Indocyanine green (ICG), and Protoporphyrin (PpIX) to treat glioblastoma (GBM) through Photodynamic Therapy (PDT). The phase-inversion temperature (PIT) method resulted in a highly stable NE that can be scaled easily, with a six-month shelf-life. We observed the quasi-spherical morphology of the nanoemulsions without any unencapsulated material and that 89% (± 5.5%) of the material was encapsulated. All physicochemical properties were within the expected range for a nanostructured drug delivery system, making these multi-charged nanoemulsions promising for further research and development. NE-PIC (NE-Protoporphyrin + Indocyanine + CBD) was easily internalized on GBM cells after three hours of incubation. Nanoemulsion (NE and NE-PIC) did not result in significant cytotoxicity, even for GBM or non-tumorigenic cell lines (NHF). Phototoxicity was significantly higher for the U87MG cell than the T98G cell when exposed to: visible (430 nm) and infrared (810 nm) laser light, with a difference of about 20%. From 50 mJ.cm-2, the viability of GBM cell lines decreases significantly, ranging from 65% to 85%. The NE-PIC was also effective for inhibiting cell proliferation into a 3D spheroidal GBM cell model, which is promising for mimicking the tumor cell environment. Irradiation at 810 nm was more effective in treating spheroid due to its deeper penetration in complex structures. NE-PIC has the potential as a drug delivery system for photoinactivation and photo diagnostic of GBM cell lines, taking advantage of the versatility of its active components.
Collapse
Affiliation(s)
- Hiago Salge Borges
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering ‒ Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, 14040-901, Ribeirão Preto-SP, Brazil
| | - Luiza Araújo Gusmão
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering ‒ Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, 14040-901, Ribeirão Preto-SP, Brazil
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering ‒ Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, 14040-901, Ribeirão Preto-SP, Brazil.
| |
Collapse
|
4
|
Markowski A, Zaremba-Czogalla M, Jaromin A, Olczak E, Zygmunt A, Etezadi H, Boyd BJ, Gubernator J. Novel Liposomal Formulation of Baicalein for the Treatment of Pancreatic Ductal Adenocarcinoma: Design, Characterization, and Evaluation. Pharmaceutics 2023; 15:pharmaceutics15010179. [PMID: 36678808 PMCID: PMC9865389 DOI: 10.3390/pharmaceutics15010179] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/20/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer (PC) is one of the deadliest cancers so there is an urgent need to develop new drugs and therapies to treat it. Liposome-based formulations of naturally-derived bioactive compounds are promising anticancer candidates due to their potential for passive accumulation in tumor tissues, protection against payload degradation, and prevention of non-specific toxicity. We chose the naturally-derived flavonoid baicalein (BAI) due to its promising effect against pancreatic ductal adenocarcinoma (PDAC) and encapsulated it into a liposomal bilayer using the passive loading method, with an almost 90% efficiency. We performed a morphological and stability analysis of the obtained BAI liposomal formulation and evaluated its activity on two-dimensional and three-dimensional pancreatic cell models. As the result, we obtained a stable BAI-encapsulated liposomal suspension with a size of 100.9 nm ± 2.7 and homogeneity PDI = 0.124 ± 0.02, suitable for intravenous administration. Furthermore, this formulation showed high cytotoxic activity towards AsPC-1 and BxPC-3 PDAC cell lines (IC50 values ranging from 21 ± 3.6 µM to 27.6 ± 4.1 µM), with limited toxicity towards normal NHDF cells and a lack of hemolytic activity. Based on these results, this new BAI liposomal formulation is an excellent candidate for potential anti-PDAC therapy.
Collapse
Affiliation(s)
- Adam Markowski
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
- Correspondence: (A.M.); (A.J.)
| | - Magdalena Zaremba-Czogalla
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
- Correspondence: (A.M.); (A.J.)
| | - Ewa Olczak
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Adrianna Zygmunt
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Haniyeh Etezadi
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Ben J. Boyd
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Jerzy Gubernator
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| |
Collapse
|
5
|
Cheng X, Yan H, Pang S, Ya M, Qiu F, Qin P, Zeng C, Lu Y. Liposomes as Multifunctional Nano-Carriers for Medicinal Natural Products. Front Chem 2022; 10:963004. [PMID: 36003616 PMCID: PMC9393238 DOI: 10.3389/fchem.2022.963004] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/24/2022] [Indexed: 12/12/2022] Open
Abstract
Although medicinal natural products and their derivatives have shown promising effects in disease therapies, they usually suffer the drawbacks in low solubility and stability in the physiological environment, low delivery efficiency, side effects due to multi-targeting, and low site-specific distribution in the lesion. In this review, targeted delivery was well-guided by liposomal formulation in the aspects of preparation of functional liposomes, liposomal medicinal natural products, combined therapies, and image-guided therapy. This review is believed to provide useful guidance to enhance the targeted therapy of medicinal natural products and their derivatives.
Collapse
Affiliation(s)
- Xiamin Cheng
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University (Nanjing Tech), Nanjing, China
- *Correspondence: Xiamin Cheng, ; Chao Zeng, ; Yongna Lu,
| | - Hui Yan
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University (Nanjing Tech), Nanjing, China
| | - Songhao Pang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University (Nanjing Tech), Nanjing, China
| | - Mingjun Ya
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University (Nanjing Tech), Nanjing, China
| | - Feng Qiu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University (Nanjing Tech), Nanjing, China
| | - Pinzhu Qin
- School of Environment and Ecology, Jiangsu Open University, Nanjing, China
| | - Chao Zeng
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Xiamin Cheng, ; Chao Zeng, ; Yongna Lu,
| | - Yongna Lu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University (Nanjing Tech), Nanjing, China
- *Correspondence: Xiamin Cheng, ; Chao Zeng, ; Yongna Lu,
| |
Collapse
|
6
|
Ambrósio JAR, Pinto BCS, Marmo VLM, Santos KWD, Junior MB, Pinto JG, Ferreira-Strixino J, Raniero LJ, Simioni AR. Synthesis and characterization of photosensitive gelatin-based hydrogels for photodynamic therapy in HeLa-CCL2 cell line. Photodiagnosis Photodyn Ther 2022; 38:102818. [PMID: 35331952 DOI: 10.1016/j.pdpdt.2022.102818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/03/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Hydrogel systems are increasingly gaining visibility involving biomedicine, tissue engineering, environmental treatments, and drug delivery systems. These systems have a three-dimensional network composition and high-water absorption capacity, are biocompatible, allowing them to become an option as photosensitizer carriers (PS) for applications in Photodynamic Therapy (PDT) protocols. METHODS A nanohydrogel system (NAHI), encapsulated with chloroaluminium phthalocyanine (ClAlPc) was synthesized for drug delivery.. NAHI was synthesized using gelatin as based polymer by the chemical cross-linking technique. The drug was encapsulated by immersing the hydrogel in a 1.0 mg.mL-1 ClAlPc solution. The external morphology of NAHI was examined by scanning electron microscopy (SEM). The degree of swelling of the synthesized system was evaluated to determine the water absorption potential. The produced nanohydrogel system was characterized by photochemical, photophysical and photobiologial studies. RESULTS The images from the SEM analysis showed the presence of three-dimensional networks in the formulation. The swelling test demonstrated that the nanohydrogel freeze-drying process increases its water holding capacity. All spectroscopic results showed excellent photophysical parameters of the drug studied when served in the NAHI system. The incorporation efficiency was 70%. The results of trypan blue exclusion test have shown significant reduction (p < 0.05) in the cell viability for all groups treated with PDT, in all concentrations tested. In HeLa cells, PDT mediated by 0,5 mg.mL-1 ClAlPc encapsulated in NAHI showed a decrease in survival close to 95%. In the internalization cell study was possible to observe the internalization of phthalocyanine after one hour of incubation, at 37 °C, with the the accumulation of PS in the cytoplasm and inside the nucleus at both concentrations tested. CONCLUSIONS Given the peculiar performance of the selected system, the resulting nanohydrogel is a versatile platform and display potential applications as controlled delivery systems of photosensitizer for photodynamic therapy application.
Collapse
Affiliation(s)
- Jéssica A R Ambrósio
- Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, 2911., São José dos Campos, SP CEP 12244-000, Brazil
| | - Bruna C S Pinto
- Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, 2911., São José dos Campos, SP CEP 12244-000, Brazil
| | - Vitor Luca Moura Marmo
- Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, 2911., São José dos Campos, SP CEP 12244-000, Brazil
| | - Kennedy Wallace Dos Santos
- Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, 2911., São José dos Campos, SP CEP 12244-000, Brazil
| | - Milton Beltrame Junior
- Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, 2911., São José dos Campos, SP CEP 12244-000, Brazil
| | - Juliana G Pinto
- Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, 2911., São José dos Campos, SP CEP 12244-000, Brazil
| | - Juliana Ferreira-Strixino
- Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, 2911., São José dos Campos, SP CEP 12244-000, Brazil
| | - Leandro José Raniero
- Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, 2911., São José dos Campos, SP CEP 12244-000, Brazil
| | - Andreza R Simioni
- Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, 2911., São José dos Campos, SP CEP 12244-000, Brazil.
| |
Collapse
|
7
|
Moghassemi S, Dadashzadeh A, Azevedo RB, Feron O, Amorim CA. Photodynamic cancer therapy using liposomes as an advanced vesicular photosensitizer delivery system. J Control Release 2021; 339:75-90. [PMID: 34562540 DOI: 10.1016/j.jconrel.2021.09.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/26/2022]
Abstract
The multidisciplinary field of photodynamic therapy (PDT) is a combination of photochemistry and photophysics sciences, which has shown tremendous potential for cancer therapy application. PDT employs a photosensitizing agent (PS) and light to form cytotoxic reactive oxygen species and subsequently oxidize light-exposed tissue. Despite numerous advantages of PDT and enormous progress in this field, common PSs are still far from ideal treatment because of their poor permeability, non-specific phototoxicity, side effects, hydrophobicity, weak bioavailability, and tendency to self-aggregation. To circumvent these limitations, PS can be encapsulated in liposomes, an advanced drug delivery system that has demonstrated the ability to enhance drug permeability into biological membranes and loading both hydrophobic and lipophilic agents. Moreover, liposomes can also be coated by targeting agents to improve delivery efficiency. The present review aims to summarize the principles of PDT, various PS generations, PS-loaded nanoparticles, liposomes, and their impact on PDT, then discuss recent photodynamic cancer therapy strategies using liposomes as PS-loaded vectors, and highlight future possibilities and perspectives.
Collapse
Affiliation(s)
- Saeid Moghassemi
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Ricardo Bentes Azevedo
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
| | - Olivier Feron
- Pôle de Pharmacologie et thérapeutique, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Christiani A Amorim
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
8
|
Cheng X, Gao J, Ding Y, Lu Y, Wei Q, Cui D, Fan J, Li X, Zhu E, Lu Y, Wu Q, Li L, Huang W. Multi-Functional Liposome: A Powerful Theranostic Nano-Platform Enhancing Photodynamic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100876. [PMID: 34085415 PMCID: PMC8373168 DOI: 10.1002/advs.202100876] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/11/2021] [Indexed: 05/05/2023]
Abstract
Although photodynamic therapy (PDT) has promising advantages in almost non-invasion, low drug resistance, and low dark toxicity, it still suffers from limitations in the lipophilic nature of most photosensitizers (PSs), short half-life of PS in plasma, poor tissue penetration, and low tumor specificity. To overcome these limitations and enhance PDT, liposomes, as excellent multi-functional nano-carriers for drug delivery, have been extensively studied in multi-functional theranostics, including liposomal PS, targeted drug delivery, controllable drug release, image-guided therapy, and combined therapy. This review provides researchers with a useful reference in liposome-based drug delivery.
Collapse
Affiliation(s)
- Xiamin Cheng
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Jing Gao
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Yang Ding
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Yao Lu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Qiancheng Wei
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Dezhi Cui
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Jiali Fan
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Xiaoman Li
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Ershu Zhu
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Yongna Lu
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| |
Collapse
|
9
|
Ledezma-Gallegos F, Jurado R, Mir R, Medina LA, Mondragon-Fuentes L, Garcia-Lopez P. Liposomes Co-Encapsulating Cisplatin/Mifepristone Improve the Effect on Cervical Cancer: In Vitro and In Vivo Assessment. Pharmaceutics 2020; 12:E897. [PMID: 32971785 PMCID: PMC7558205 DOI: 10.3390/pharmaceutics12090897] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 01/24/2023] Open
Abstract
Cervical cancer is usually diagnosed in the later stages despite many campaigns for early detection and continues to be a major public health problem. The standard treatment is cisplatin-based chemotherapy plus radiotherapy, but patient response is far from ideal. In the research for new drugs that enhance the activity of cisplatin, different therapeutic agents have been tested, among them the antiprogestin mifepristone. Nevertheless, the efficacy of cisplatin is limited by its low specificity for tumor tissue, which causes severe side effects. Additionally, cervical tumors often become drug resistant. These problems could possibly be addressed by the use of liposome nanoparticles to encapsulate drugs and deliver them to the target. The aim of this study was to prepare liposome nanoparticles that co-encapsulate cisplatin and mifepristone, evaluate their cytotoxicity against HeLa cells and in vivo with subcutaneous inoculations of xenografts in nu/nu mice, and examine some plausible mechanisms of action. The liposomes were elaborated by the reverse-phase method and characterized by physicochemical tests. The nanoparticles had a mean particle size of 109 ± 5.4 nm and a Zeta potential of -38.7 ± 1.2 mV, the latter parameter indicating a stable formulation. These drug-loaded liposomes significantly decreased cell viability in vitro and tumor size in vivo, without generating systemic toxicity in the animals. There was evidence of cell cycle arrest and increased apoptosis. The promising results with the co-encapsulation of cisplatin/mifepristone warrant further research.
Collapse
Affiliation(s)
- Fabricio Ledezma-Gallegos
- Laboratorio de Farmacologia, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Cd. México 14080, Mexico; (F.L.-G.); (R.J.); (R.M.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Coyacán, Cd. México 04510, Mexico
| | - Rafael Jurado
- Laboratorio de Farmacologia, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Cd. México 14080, Mexico; (F.L.-G.); (R.J.); (R.M.)
| | - Roser Mir
- Laboratorio de Farmacologia, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Cd. México 14080, Mexico; (F.L.-G.); (R.J.); (R.M.)
| | - Luis Alberto Medina
- Unidad de Investigación Biomédica en Cáncer INCan-UNAM, Instituto Nacional de Cancerología, Cd. México 14080, Mexico; (L.A.M); (L.M.-F.)
- Instituto de Física, Universidad Nacional Autónoma de México, Coyoacán, Cd. México 04510, Mexico
| | - Laura Mondragon-Fuentes
- Unidad de Investigación Biomédica en Cáncer INCan-UNAM, Instituto Nacional de Cancerología, Cd. México 14080, Mexico; (L.A.M); (L.M.-F.)
| | - Patricia Garcia-Lopez
- Laboratorio de Farmacologia, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Cd. México 14080, Mexico; (F.L.-G.); (R.J.); (R.M.)
| |
Collapse
|
10
|
Fortes Brollo ME, Domínguez-Bajo A, Tabero A, Domínguez-Arca V, Gisbert V, Prieto G, Johansson C, Garcia R, Villanueva A, Serrano MC, Morales MDP. Combined Magnetoliposome Formation and Drug Loading in One Step for Efficient Alternating Current-Magnetic Field Remote-Controlled Drug Release. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4295-4307. [PMID: 31904927 DOI: 10.1021/acsami.9b20603] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We have developed a reproducible and facile one step strategy for the synthesis of doxorubicin loaded magnetoliposomes by using a thin-layer evaporation method. Liposomes of around 200 nm were made of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and iron oxide nanoparticles (NPs) with negative, positive, and hydrophobic surfaces that were incorporated outside, inside, or between the lipid bilayers, respectively. To characterize how NPs are incorporated in liposomes, advanced cryoTEM and atomic force microscope (AFM) techniques have been used. It was observed that only when the NPs are attached outside the liposomes, the membrane integrity is preserved (lipid melt transition shifts to 38.7 °C with high enthalpy 34.8 J/g) avoiding the leakage of the encapsulated drug while having good colloidal properties and the best heating efficiency under an alternating magnetic field (AMF). These magnetoliposomes were tested with two cancer cell lines, MDA-MB-231 and HeLa cells. First, 100% of cellular uptake was achieved with a high cell survival (above 80%), which is preserved (83%) for doxorubicin-loaded magnetoliposomes. Then, we demonstrate that doxorubicin release can be triggered by remote control, using a noninvasive external AMF for 1 h, leading to a cell survival reduction of 20%. Magnetic field conditions of 202 kHz and 30 mT seem to be enough to produce an effective heating to avoid drug degradation. In conclusion, these drug-loaded magnetoliposomes prepared in one step could be used for drug release on demand at a specific time and place, efficiently using an external AMF to reduce or even eliminate side effects.
Collapse
Affiliation(s)
- Maria Eugenia Fortes Brollo
- Departamento de Energia, Medio Ambiente y Salud , Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientı́ficas , Madrid 28049 , Spain
| | - Ana Domínguez-Bajo
- Departamento de Energia, Medio Ambiente y Salud , Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientı́ficas , Madrid 28049 , Spain
| | - Andrea Tabero
- Departamento de Biología , Universidad Autónoma de Madrid , Madrid 28049 Spain
| | - Vicente Domínguez-Arca
- Departamento de Física Aplicada , Universidad de Santiago de Compostela , Santiago de Compostela 15782 Spain
| | - Victor Gisbert
- Departamento de Energia, Medio Ambiente y Salud , Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientı́ficas , Madrid 28049 , Spain
| | - Gerardo Prieto
- Departamento de Física Aplicada , Universidad de Santiago de Compostela , Santiago de Compostela 15782 Spain
| | | | - Ricardo Garcia
- Departamento de Energia, Medio Ambiente y Salud , Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientı́ficas , Madrid 28049 , Spain
| | - Angeles Villanueva
- Departamento de Biología , Universidad Autónoma de Madrid , Madrid 28049 Spain
- IMDEA-Nanociencia , Madrid 28049 Spain
| | - María Concepción Serrano
- Departamento de Energia, Medio Ambiente y Salud , Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientı́ficas , Madrid 28049 , Spain
| | - María Del Puerto Morales
- Departamento de Energia, Medio Ambiente y Salud , Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientı́ficas , Madrid 28049 , Spain
| |
Collapse
|
11
|
Wawrzyńska M, Duda M, Hołowacz I, Kaczorowska A, Ulatowska-Jarża A, Buzalewicz I, Kałas W, Wysokińska E, Biały D, Podbielska H, Kopaczyńska M. Photoactive Pore Matrix for In Situ Delivery of a Photosensitizer in Vascular Smooth Muscle Cells Selective PDT. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E4110. [PMID: 31818025 PMCID: PMC6947284 DOI: 10.3390/ma12244110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022]
Abstract
In this study we present the porous silica-based material that can be used for in situ drug delivery, offering effective supply of active compounds regardless its water solubility. To demonstrate usability of this new material, three silica-based materials with different pore size distribution as a matrix for doping with Photolon (Ph) and Protoporphyrin IX (PPIX) photosensitizers, were prepared. These matrices can be used for coating cardiovascular stents used for treatment of the coronary artery disease and enable intravascular photodynamic therapy (PDT), which can modulate the vascular response to injury caused by stent implantation-procedure that should be thought as an alternative for drug eluting stent. The FTIR spectroscopic analysis confirmed that all studied matrices have been successfully functionalized with the target photosensitizers. Atomic force microscopy revealed that resulting photoactive matrices were very smooth, which can limit the implantation damage and reduce the risk of restenosis. No viability loss of human peripheral blood lymphocytes and no erythrocyte hemolysis upon prolonged incubations on matrices indicated good biocompatibility of designed materials. The suitability of photoactive surfaces for PDT was tested in two cell lines relevant to stent implantation: vascular endothelial cells (HUVECs) and vascular smooth muscle cells (VSMC). It was demonstrated that 2 h incubation on the silica matrices was sufficient for uptake of the encapsulated photosensitizers. Moreover, the amount of the absorbed photosensitizer was sufficient for induction of a phototoxic reaction as shown by a rise of the reactive oxygen species in photosensitized VSMC. On the other hand, limited reactive oxygen species (ROS) induction in HUVECs in our experimental set up suggests that the proposed method of PDT may be less harmful for the endothelial cells and may decrease a risk of the restenosis. Presented data clearly demonstrate that porous silica-based matrices are capable of in situ delivery of photosensitizer for PDT of VSMC.
Collapse
Affiliation(s)
- Magdalena Wawrzyńska
- Department of Emergency Medical Service, Wroclaw Medical University, Parkowa 34, 51-616 Wroclaw, Poland;
| | - Maciej Duda
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland; (M.D.); (I.H.); (A.K.); (A.U.-J.); (I.B.); (H.P.)
| | - Iwona Hołowacz
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland; (M.D.); (I.H.); (A.K.); (A.U.-J.); (I.B.); (H.P.)
| | - Aleksandra Kaczorowska
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland; (M.D.); (I.H.); (A.K.); (A.U.-J.); (I.B.); (H.P.)
| | - Agnieszka Ulatowska-Jarża
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland; (M.D.); (I.H.); (A.K.); (A.U.-J.); (I.B.); (H.P.)
| | - Igor Buzalewicz
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland; (M.D.); (I.H.); (A.K.); (A.U.-J.); (I.B.); (H.P.)
| | - Wojciech Kałas
- Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114 Wroclaw, Poland; (W.K.)
| | - Edyta Wysokińska
- Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114 Wroclaw, Poland; (W.K.)
| | - Dariusz Biały
- Department and Clinic of Cardiology, Wroclaw Medical University, Borowska 213, 50-556 Wrocław, Poland;
| | - Halina Podbielska
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland; (M.D.); (I.H.); (A.K.); (A.U.-J.); (I.B.); (H.P.)
| | - Marta Kopaczyńska
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland; (M.D.); (I.H.); (A.K.); (A.U.-J.); (I.B.); (H.P.)
| |
Collapse
|
12
|
Chudal L, Pandey NK, Phan J, Johnson O, Li X, Chen W. Investigation of PPIX-Lipo-MnO 2 to enhance photodynamic therapy by improving tumor hypoxia. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109979. [PMID: 31500001 DOI: 10.1016/j.msec.2019.109979] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/05/2019] [Accepted: 07/15/2019] [Indexed: 12/29/2022]
Abstract
The efficacy of photodynamic therapy (PDT) is reduced in the context of hypoxic environments. This is problematic, considering that hypoxia is exhibited in the vast majority of malignant tumors. Thus, increasing the concentration of oxygen in malignant tumors improves PDT treatment outcomes. Studies show that MnO2 nanoparticles can produce oxygen when it reacts with endogenous H2O2. Herein, we encapsulated Protoporphyrin IX (PPIX) in the liposome bilayer (PPIX-Lipo), which was then coated with MnO2 nanoparticles to construct PPIX-Lipo-MnO2 (PPIX-Lipo-M) in order to enhance PDT efficacy under tumor hypoxia. The PDT results show that PPIX-Lipo-M was more cytotoxic to breast cancer cells than PPIX-Lipo while under hypoxic conditions, indicating that the production of oxygen gas in hypoxic conditions improved treatment outcomes. Upon encapsulating PPIX into the liposome, the aqueous solubility of PPIX significantly improved. Consequently, the cellular uptake of both PPIX-Lipo and PPIX-Lipo-M also increased significantly compared to that of bare PPIX. Overall, PPIX-Lipo-M has the capacity to act as a therapeutic agent that relieves hypoxia and hence improve PDT efficacy.
Collapse
Affiliation(s)
- Lalit Chudal
- Nano-Biophysics Lab, Department of Physics, University of Texas at Arlington, TX 76019, USA
| | - Nil Kanatha Pandey
- Nano-Biophysics Lab, Department of Physics, University of Texas at Arlington, TX 76019, USA
| | - Jonathan Phan
- Nano-Biophysics Lab, Department of Physics, University of Texas at Arlington, TX 76019, USA
| | - Omar Johnson
- Nano-Biophysics Lab, Department of Physics, University of Texas at Arlington, TX 76019, USA
| | - Xiuying Li
- Department of Mechanical Engineering, University of Texas at Dallas, TX 75080, USA
| | - Wei Chen
- Nano-Biophysics Lab, Department of Physics, University of Texas at Arlington, TX 76019, USA.
| |
Collapse
|
13
|
Kuhn J, Smirnov A, Criss AK, Columbus L. Quantifying Carcinoembryonic Antigen-like Cell Adhesion Molecule-Targeted Liposome Delivery Using Imaging Flow Cytometry. Mol Pharm 2019; 16:2354-2363. [PMID: 30995063 DOI: 10.1021/acs.molpharmaceut.8b01274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Carcinoembryonic antigen-like cell adhesion molecules (CEACAMs) are human cell-surface proteins that can exhibit increased expression on tumor cells and are thus a potential target for novel tumor-seeking therapeutic delivery methods. We hypothesize that engineered nanoparticles containing a known interaction partner of CEACAM, Neisseria gonorrhoeae outer membrane protein Opa, can be used to deliver cargo to specific cellular targets. In this study, the cell association and uptake of protein-free liposomes and Opa proteoliposomes into CEACAM-expressing cells were measured using imaging flow cytometry. A size-dependent internalization of liposomes into HeLa cells was observed through endocytic pathways. Opa-dependent, CEACAM1-mediated uptake of liposomes into HeLa cells was observed, with limited colocalization with endosomal and lysosomal trafficking compartments. Given the overexpression of CEACAM1 on several distinct cancers and interest in using CEACAM1 as a component in treatment strategies, these results support further pursuit of investigating Opa-dependent specificity and the internalization mechanism for therapeutic delivery.
Collapse
|
14
|
Vara J, Sanchez JM, Perillo MA, Ortiz CS. Phospholipid multilamellar vesicles entrapping phenothiazine photosensitizers. Preparation, characterization and evaluation of their photodynamic properties. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
Wang X, Wang J, Li J, Huang H, Sun X, Lv Y. Development and evaluation of hyaluronic acid-based polymeric micelles for targeted delivery of photosensitizer for photodynamic therapy in vitro. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
Feng Q, Wang J, Song H, Zhuo LG, Wang G, Liao W, Feng Y, Wei H, Chen Y, Yang Y, Yang X. Uptake and light-induced cytotoxicity of hyaluronic acid-grafted liposomes containing porphyrin in tumor cells. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.06.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
17
|
Mironov AF, Zhdanova KA, Bragina NA. Nanosized vehicles for delivery of photosensitizers in photodynamic diagnosis and therapy of cancer. RUSSIAN CHEMICAL REVIEWS 2018. [DOI: 10.1070/rcr4811] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Fortes Brollo ME, Hernández Flores P, Gutiérrez L, Johansson C, Barber DF, Morales MDP. Magnetic properties of nanoparticles as a function of their spatial distribution on liposomes and cells. Phys Chem Chem Phys 2018; 20:17829-17838. [PMID: 29923574 DOI: 10.1039/c8cp03016b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The aggregation processes of magnetic nanoparticles in biosystems are analysed by comparing the magnetic properties of three systems with different spatial distributions of the nanoparticles. The first one is iron oxide nanoparticles (NPs) of 14 nm synthesized by coprecipitation with two coatings, (3-aminopropyl)trimethoxysilane (APS) and dimercaptosuccinic acid (DMSA). The second one is liposomes with encapsulated nanoparticles, which have different configurations depending on the NP coating (NPs attached to the liposome surface or encapsulated in its aqueous volume). The last system consists of two cell lines (Pan02 and Jurkat) incubated with the NPs. Dynamic magnetic behaviour (AC) was analysed in liquid samples, maintaining their colloidal properties, while quasi-static (DC) magnetic measurements were performed on lyophilised samples. AC measurements provide a direct method for determining the effect of the environment on the magnetization relaxation of nanoparticles. Thus, the imaginary (χ'') component shifts to lower frequencies as the aggregation state increases from free nanoparticles to those attached or embedded into liposomes in cell culture media and more pronounced when internalized by the cells. DC magnetization curves show no degradation of the NPs after interaction with biosystems in the analysed timescale. However, the blocking temperature is shifted to higher temperatures for the nanoparticles in contact with the cells, regardless of the location, the incubation time, the cell line and the nanoparticle coating, supporting AC susceptibility data. These results indicate that the simple fact of being in contact with the cells makes the nanoparticles aggregate in a non-controlled way, which is not the same kind of aggregation caused by the contact with the cell medium nor inside liposomes.
Collapse
Affiliation(s)
- Maria Eugenia Fortes Brollo
- Department of Energy, Environment and Health, Institute of Material Science of Madrid (ICMM-CSIC), Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
19
|
Casadó A, Mora M, Sagristá ML, Rello-Varona S, Acedo P, Stockert JC, Cañete M, Villanueva A. Improved selectivity and cytotoxic effects of irinotecan via liposomal delivery: A comparative study on Hs68 and HeLa cells. Eur J Pharm Sci 2017; 109:65-77. [DOI: 10.1016/j.ejps.2017.07.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 10/19/2022]
|
20
|
Wang M, Lee RJ, Bi Y, Li L, Yan G, Lu J, Meng Q, Teng L, Xie J. Transferrin-conjugated liposomes loaded with novel dihydroquinoline derivatives as potential anticancer agents. PLoS One 2017; 12:e0186821. [PMID: 29088257 PMCID: PMC5663382 DOI: 10.1371/journal.pone.0186821] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/09/2017] [Indexed: 02/04/2023] Open
Abstract
A series of 1,2-dihydroquinoline derivatives were synthesized and evaluated for cytotoxicity in HeLa, Hep G2 and 6HEK-293T cell lines. EEDQ2 was identified as a promising anti-cancer agent with low IC50 in HeLa (18.55μg/ml) and Hep G2 (14.53μg/ml) cells. For improving the antitumor activity and tumor selectivity of EEDQ2, we prepared transferrin (Tf)-modified liposomes (LPs) to deliver EEDQ2. When HeLa and Hep G2 cells were treated with LP-delivered EEDQ2, the ROS level was significantly enhanced, and mitochondrial membrane potential was reversed. Tf-LPs improved cell uptake of EEDQ2 by about 3.7 times compared with non-targeted LPs. These data suggest that Tf-LPs delivering EEDQ2 is a promising strategy to treat cancer.
Collapse
Affiliation(s)
- Mengqiao Wang
- Jilin University, College of Life Science, Changchun, Jilin, China
| | - Robert J. Lee
- Jilin University, College of Life Science, Changchun, Jilin, China
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
| | - Ye Bi
- Jilin University, College of Life Science, Changchun, Jilin, China
| | - Lianlian Li
- Jilin University, College of Life Science, Changchun, Jilin, China
| | - Guodong Yan
- Jilin University, College of Life Science, Changchun, Jilin, China
| | - Jiahui Lu
- Jilin University, College of Life Science, Changchun, Jilin, China
| | - Qingfan Meng
- Jilin University, College of Life Science, Changchun, Jilin, China
| | - Lesheng Teng
- Jilin University, College of Life Science, Changchun, Jilin, China
- * E-mail: (LT); (JX)
| | - Jing Xie
- Jilin University, College of Life Science, Changchun, Jilin, China
- * E-mail: (LT); (JX)
| |
Collapse
|
21
|
Vitonyte J, Manca ML, Caddeo C, Valenti D, Peris JE, Usach I, Nacher A, Matos M, Gutiérrez G, Orrù G, Fernàndez-Busquets X, Fadda AM, Manconi M. Bifunctional viscous nanovesicles co-loaded with resveratrol and gallic acid for skin protection against microbial and oxidative injuries. Eur J Pharm Biopharm 2017; 114:278-287. [PMID: 28192250 DOI: 10.1016/j.ejpb.2017.02.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/01/2017] [Accepted: 02/08/2017] [Indexed: 11/25/2022]
Abstract
Resveratrol and gallic acid were co-loaded in phospholipid vesicles aiming at protecting the skin from external injuries, such as oxidative stress and microbial infections. Liposomes were prepared using biocompatible phospholipids dispersed in water. To improve vesicle stability and applicability, the phospholipids and the phenols were dispersed in water/propylene glycol or water/glycerol, thus obtaining PEVs and glycerosomes, respectively. The vesicles were characterized by size, morphology, physical stability, and their therapeutic efficacy was investigated in vitro. The vesicles were spherical, unilamellar and small in size: liposomes and glycerosomes were around 70nm in diameter, while PEVs were larger (∼170nm). The presence of propylene glycol or glycerol increased the viscosity of the vesicle systems, positively affecting their stability. The ability of the vesicles to promote the accumulation of the phenols (especially gallic acid) in the skin was demonstrated, as well as their low toxicity and great ability to protect keratinocytes and fibroblasts from oxidative damage. Additionally, an improvement of the antimicrobial activity of the phenols was shown against different skin pathogens. The co-loading of resveratrol and gallic acid in modified phospholipid vesicles represents an innovative, bifunctional tool for preventing and treating skin affections.
Collapse
Affiliation(s)
- Justina Vitonyte
- Dept. of Clinical Pharmacy, Lithuanian University of Health Sciences, Sukileliu pr. 13, Kaunas, Lithuania
| | - Maria Letizia Manca
- Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Carla Caddeo
- Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy.
| | - Donatella Valenti
- Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Josè Esteban Peris
- Dept. of Pharmacy and Pharmaceutical Technology, University of Valencia, Avda Vicente Andrés Estellés s/n, 46100-Burjassot, Valencia, Spain
| | - Iris Usach
- Dept. of Pharmacy and Pharmaceutical Technology, University of Valencia, Avda Vicente Andrés Estellés s/n, 46100-Burjassot, Valencia, Spain
| | - Amparo Nacher
- Dept. of Pharmacy and Pharmaceutical Technology, University of Valencia, Avda Vicente Andrés Estellés s/n, 46100-Burjassot, Valencia, Spain; Instituto de Reconocimiento Molecular y Desarrollo Tecnológico, Centro Mixto Universidad Politécnica de Valencia-Universidad de Valencia, Spain
| | - Maria Matos
- Dept. Ingeniería Química y Tecnología del Medio Ambiente, University of Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain
| | - Gemma Gutiérrez
- Dept. Ingeniería Química y Tecnología del Medio Ambiente, University of Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain
| | - Germano Orrù
- Dept. of Surgical Science, University of Cagliari, Molecular Biology Service Lab (MBS), via Ospedale 40, 09124 Cagliari, Italy
| | - Xavier Fernàndez-Busquets
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 10-12, Barcelona E08028, Spain; Barcelona Institute for Global Health (ISGlobal), Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, Barcelona E08036, Spain
| | - Anna Maria Fadda
- Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Maria Manconi
- Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| |
Collapse
|