1
|
Magalhães TC, Lopes AG, Ferreira GF, Denadai ÂML, da Silva JG, Dos Santos RL, Munchow EA, de Carvalho FG. In vitro assessment of NaF/Chit supramolecular complex: Colloidal stability, antibacterial activity and enamel protection against S. mutans biofilm. J Dent 2024; 149:105316. [PMID: 39159744 DOI: 10.1016/j.jdent.2024.105316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 08/21/2024] Open
Abstract
OBJECTIVES This study assessed the effect of NaF/Chit suspensions on enamel and on S. mutans biofilm, simulating application of a mouthrinse. METHODS The NaF/Chit particle suspensions were prepared at molar ratio [NaF]/Chitmon]≈0.68 at nominal concentrations of 0.2 % and 0.05 % NaF and characterized by Fourier transform infrared spectroscopy (FTIR), dynamic light scattering and zeta potential. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were measured. The S. mutans biofilm was formed for 7 days on eighty human enamel blocks that were divided into eight groups (n = 10/group): i) 0.05 % NaF solution; ii) 0.31 % Chit solution; iii) NaF/Chit(R=0.68) suspension at 0.05 % NaF; iv) 1.0 % HAc solution (Control); v) 0.2 % NaF solution; vi) 1.25 % Chit solution; vii) NaF/Chit(R=0.68) suspension at 0.2 % NaF; viii) 0.12 % chlorhexidine digluconate. The substances were applied daily for 90 s. S. mutans cell counts (CFU/mL) were performed, and the Knoop microhardness (KHN) of enamel samples were measured before and after biofilm formation. The KHN and CFU/mL data were analyzed by repeated measure ANOVA and Tukey's test (α = 0.05). RESULTS Interactions between NaF and Chit were evidenced in solid state by FTIR spectra. The NaF/Chit complexes showed spontaneous microparticle formation and colloidal stability. The MIC and MBC ranged from 0.65 to 1.31 mg/mL. The NaF/Chit(R=0.68) suspension at 0.2 %NaF Group showed lower CFU/mL values than other groups. The NaF/Chit(R=0.68) suspensions Groups had the highest KHN values after biofilm formation. CONCLUSIONS The NaF/Chit(R=0.68) complexes exhibited an antibacterial effect against S. mutans biofilm and reduced the enamel hardness loss. CLINICAL SIGNIFICANCE The NaF/Chit(R=0.68) suspensions showed potential to be used as a mouthrinse for caries prevention.
Collapse
Affiliation(s)
- Taís Chaves Magalhães
- Graduate Program of Dentistry, School of Dentistry, Federal University of Juiz de Fora, Governador Valadares, Minas Gerais, Brazil
| | - Alana Gail Lopes
- Graduate Program of Dentistry, School of Dentistry, Federal University of Juiz de Fora, Governador Valadares, Minas Gerais, Brazil
| | - Gabriella Freitas Ferreira
- Pharmacy Department, Federal University of Juiz de Fora, Governador Valadares Campus, Minas Gerais, Brazil
| | | | - Jeferson Gomes da Silva
- Pharmacy Department, Federal University of Juiz de Fora, Governador Valadares Campus, Minas Gerais, Brazil
| | - Rogério Lacerda Dos Santos
- Graduate Program of Dentistry, School of Dentistry, Federal University of Juiz de Fora, Governador Valadares, Minas Gerais, Brazil
| | - Eliseu Aldrighi Munchow
- Graduate Program of Dentistry, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Fabíola Galbiatti de Carvalho
- Graduate Program of Dentistry, School of Dentistry, Federal University of Juiz de Fora, Governador Valadares, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Rafiee A, Memarpour M, Amiri M, Azadi A, Fekri N, Mozafari N, Razmjouei F. Comparison of various chitosan-based in situ forming gels with sodium fluoride varnish for enamel biomineralization: an in-vitro pH cycling model. Sci Rep 2024; 14:21100. [PMID: 39256460 PMCID: PMC11387775 DOI: 10.1038/s41598-024-71993-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
This study aimed to evaluate chitosan (CS)-based formulations loaded with 5% sodium fluoride (NaF) and/or 10% nanohydroxyapatite (nHA) to remineralize the demineralized primary tooth enamel surface. Ninety enamel blocks were demineralized and were divided into six groups (n = 15): (1) CS-based hydrogel, (2) CS-based hydrogel loaded with NaF, (3) CS-based hydrogel loaded with nHA, (4) CS-based hydrogel loaded with NaF and nHA, (5) 5% NaF varnish, and (6) negative control with no intervention. After intervention, the specimens were pH cycled by 2 h immersion in demineralizing solution and 22 h immersion in remineralizing solution for 8 days. The remineralization effects were evaluated by Vickers microhardness measurements and field emission scanning electron microscopy coupled with energy-dispersive X-ray spectrometry (FESEM-EDS). The best mean ± SD percentage microhardness recovery in remineralized enamel (%REMH) was found in group 4 (56.90 ± 5.49). The %REMH of groups 2 (30.74 ± 3.51) and 5 (29.23 ± 5.65) were statistically the same (p = 0.943). FESEM images confirmed partial coverage of the porous demineralized enamel with a newly formed mineralized layer. Based on EDS findings, the Ca/P ratio values of the treated enamel surfaces with CS-based hydrogels ranged between 1.71 and 1.87, and the highest F content was noticed in group 2 (1.02 ± 0.03). Although, all tested CS-based hydrogels demonstrated the potential to repair demineralized enamel, nHA- and NaF-containing CS-based hydrogel showed the highest remineralization effect. We infer that this new hybrid hydrogel is a potentially useful dental material for tooth biomineralization.
Collapse
Affiliation(s)
- Azade Rafiee
- Oral and Dental Disease Research Center, Department of Pediatric Dentistry, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mahtab Memarpour
- Oral and Dental Disease Research Center, Department of Pediatric Dentistry, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Milad Amiri
- Student Research Committee, Dental School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Azadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Fekri
- Oral and Dental Disease Research Center, Department of Pediatric Dentistry, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negin Mozafari
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Faranak Razmjouei
- Oral and Dental Disease Research Center, Department of Pediatric Dentistry, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Altınışık H, Erten Can H, Mutlu Ağardan NB, Berkkan A, Güney M. Prevention of secondary caries using fluoride-loaded chitosan nanoparticle-modified glass-ionomer cement. Clin Oral Investig 2024; 28:504. [PMID: 39196417 DOI: 10.1007/s00784-024-05891-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVE To study the effect of incorporating chitosan and fluoride-loaded chitosan nanoparticles into a glass-ionomer cement (GIC) to prevent secondary caries. MATERIALS AND METHODS A standard cervical cavity (mesio-distal width 6 mm, cervico-occlusal width 2 mm, and depth 2 mm) was prepared on 30 molars for the following restoration groups: group 1, conventional GIC restoration; group 2, chitosan (10%) modified GIC restoration; group 3, fluoride loaded chitosan nanoparticles (10%) modified GIC restoration. The restored teeth were subjected to 1,500 thermal cycles before undergoing a multi-species cariogenic biofilm challenge. The restored teeth were examined by micro-computed tomography (micro-CT), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX). Data were analyzed by the one-way ANOVA, Tukey HDS, Kruskal Wallis, and Dunn's test. RESULTS Micro-CT determined outer lesion depths for groups 1-3 were: 614 ± 20 μm, 589 ± 17 μm, and 560 ± 19 μm respectively. Both modifications with chitosan and fluoride-loaded chitosan nanoparticles significantly affected outer lesion depth (p < 0.05). The modification with fluoride-loaded chitosan nanoparticles statistically significantly decreased the outer lesion depth compared to all other groups (p < 0.05). SEM/EDX showed an increase of calcium, phosphorus, and fluoride at the root dentine adjacent to the restoration in groups 2 and 3 (modified GIC). This increase was statistically significantly higher in the group modified with fluorine-loaded nano chitosan particles compared to the other groups (p < 0.05). CONCLUSION Incorporation of 10% chitosan and 10% fluoride-loaded chitosan nanoparticles into GIC restorative material can prevent secondary root caries development. 10% fluoride-loaded chitosan nanoparticles were more effective. CLINICAL SIGNIFICANCE Glass ionomer cement modified with fluoride-loaded chitosan nanoparticles may be a promising restorative material in pediatric and preventive dentistry due to their controlled release properties.
Collapse
Affiliation(s)
- Hanife Altınışık
- Department of Restorative Dentistry, Faculty of Dentistry, Gazi University, Ankara, Emek, 06510, Turkey.
| | - Hülya Erten Can
- Department of Restorative Dentistry, Faculty of Dentistry, Dokuz Eylul University, İzmir, Turkey
| | | | - Aysel Berkkan
- Department of Analytical Chemistry, Gazi University Faculty of Pharmacy, Ankara, Turkey
| | - Mustafa Güney
- Department of Medical Microbiology, Gulhane Medical Faculty, University of Health Sciences, Ankara, Turkey
| |
Collapse
|
4
|
Rafiee A, Mozafari N, Fekri N, Memarpour M, Azadi A. Preparation and characterization of a nanohydroxyapatite and sodium fluoride loaded chitosan-based in situ forming gel for enamel biomineralization. Heliyon 2024; 10:e24217. [PMID: 38293392 PMCID: PMC10825348 DOI: 10.1016/j.heliyon.2024.e24217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/16/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
The development of remineralizing smart biomaterials is a contemporary approach to caries prevention. The present study aimed at formulation preparation and characterization of a thermoresponsive oral gel based on poloxamer and chitosan loaded with sodium fluoride (NaF) and nanohydroxyapatite (nHA) to treat demineralization. The chemical structure and morphology of the formulation were characterized using FTIR and FESEM-EDS tests. Hydrogel texture, rheology, and stability were also examined. The hydrogel was in a sol state at room temperature and became gel after being placed at 37 °C with no significance different in gelation time with the formulation without nHA and NaF as observed by t-test. The FTIR spectrum of nHA/NaF/chitosan-based hydrogel indicated the formation of physical crosslinking without any chemical interactions between the hydrogel components. The FESEM-EDS results demonstrated the uniform distribution of each element within the hydrogel matrix, confirming the successful incorporation of nHA and NaF in the prepared gel. The hardness, hydrogel's adhesiveness, and cohesiveness were 0.9 mJ, 1.7 mJ, and 0.37, respectively, indicating gel stability and the acceptable retention time of hydrogels. The formulation exhibited a non-Newtonian shear-thinning pseudoplastic and thixotropic behavior with absolute physical stability. Within the limitation of in vitro studies, nHA/NaF/chitosan-based in situ forming gel demonstrated favorable properties, which could be trasnsorm into a gel state in oral cavity due to poloxamer and chitosan and can prevent dental caries due to nHA and NaF. We propose this formulation as a promising dental material in tooth surface remineralization.
Collapse
Affiliation(s)
- Azade Rafiee
- Oral and Dental Disease Research Center, Department of Pediatric Dentistry, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negin Mozafari
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Fekri
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahtab Memarpour
- Oral and Dental Disease Research Center, Department of Pediatric Dentistry, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Azadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Aragão MGB, Tedesco AC, Borges HS, Aires CP, Corona SAM. Chitosan nanoparticles loaded with epigallocatechin-3-gallate: synthesis, characterisation, and effects against Streptococcus mutans biofilmEpigallocatechin-loaded chitosan nanoparticles: effects against Streptococcus mutans biofilm. Nat Prod Res 2024:1-8. [PMID: 38206896 DOI: 10.1080/14786419.2024.2302321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
This study evaluated the effects of chitosan nanoparticles loaded with epigallocatechin-3-gallate (EGCG) against Streptococcus mutans biofilm. EGCG-loaded chitosan (Nchi + EGCG) nanoparticles and Chitosan (Nchi) nanoparticles were prepared by ion gelation process and characterised regarding particle size, polydispersion index, zeta potential, and accelerated stability. S mutans biofilms were treated twice daily with NaCl 0.9% (negative control), Nchi, Nchi + EGCG, and chlorhexidine (CHX) 0.12% (positive control). After 67 h, the biofilms were evaluated for acidogenesis, bacterial viability and dry weight. Biofilm morphology and structure were analysed by scanning electron microscopy. The nanoformulations presented medium to short-term stability, size of 500 nm, and polydispersion index around 0.400. Treatments affected cell morphology and biofilm structure. However, no effects on microbial viability, biofilm dry weight, and acidogenesis were observed. Thus, the nanoformulations disassembled the biofilm matrix without affecting microbial viability, which makes them promising candidates for the development of dental caries preventive and therapeutic agents.
Collapse
Affiliation(s)
- Maria Gerusa Brito Aragão
- Departamento de Clínica Infantil, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Antônio Cláudio Tedesco
- Departamento de Química, Centro de Nanotecnologia, Engenharia de Tecidos, Fotobiologia e Fotomedicina, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Ribeirão Preto, Brazil
| | - Hiago Salge Borges
- Departamento de Química, Centro de Nanotecnologia, Engenharia de Tecidos, Fotobiologia e Fotomedicina, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Ribeirão Preto, Brazil
| | - Carolina Patrícia Aires
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Ribeirão Preto, Brazil
| | - Silmara Aparecida Milori Corona
- Departamento de Odontologia Restauradora, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
6
|
Lopes AG, Magalhães TC, Denadai ÂML, Carlo HL, Dos Santos RL, Munchow EA, Carvalho FGD. Preparation and characterization of NaF/Chitosan supramolecular complex and their effects on prevention of enamel demineralization. J Mech Behav Biomed Mater 2023; 147:106134. [PMID: 37742597 DOI: 10.1016/j.jmbbm.2023.106134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
Fluoridated mouthrinse is indicated for individuals with high risk of caries. Chitosan (Chit) exhibits antibacterial properties, but little is known about its effects on enamel when combined with sodium fluoride (NaF) to form NaF/Chit supramolecular complexes. In our study, NaF/Chit supramolecular complexes structured as microparticles were synthetized and characterized, and their effects on human enamel were evaluated after cariogenic challenge simulating the daily mouthrinse use. Initially, NaF/Chit complex formation was investigated based on several titrations by measuring the zeta potential, electrical conductivity (κ), hydrodynamic diameter (Dh), viscosity (η) and heat flow (by isothermal titration calorimetry) against the molar ratio [NaF]/[Chitmonomer], which allowed us to identify the interactions between Chit-NaF with a stoichiometry of approximately 0.68. Spontaneous microparticle formation was observed. Samples of enamel blocks were prepared and divided into eight groups (n = 10/group): (i) 0.2% Chit; (ii) 0.2% NaF; (iii) 0.2% NaF/Chit suspension; (iv) 0.2% acetic acid; (v) 0.05% Chit; (vi) 0.05% NaF; (vii) 0.05% NaF/Chit suspension; and (viii) 0.05% acetic acid. Cariogenic challenge was performed in each sample by cycling in demineralization and remineralization solutions for 7 days. Before each demineralization cycle, the corresponding substances were passively applied daily for 90 s, even in groups with 0.02% concentration. After 7 days, samples were examined for Knoop hardness (KHN) measurements. The data were analyzed by repeated-measures ANOVA and Tukey tests (α = 0.05). The 0.2% NaF and 0.2% NaF/Chit groups showed higher KHNpost-challenge values than the other groups. The 0.2% NaF/Chit microparticle suspension reduced the enamel hardness loss after cariogenic challenge as effectively as the 0.2% NaF solution and demonstrated potential for use in a formulation with anti-caries effects.
Collapse
Affiliation(s)
- Alana Gail Lopes
- Federal University of Juiz de Fora. Federal University of Juiz de Fora, Governador Valadares Campus, Juiz de Fora, Minas Gerais, Brazil
| | - Taís Chaves Magalhães
- Federal University of Juiz de Fora. Federal University of Juiz de Fora, Governador Valadares Campus, Juiz de Fora, Minas Gerais, Brazil
| | - Ângelo Márcio Leite Denadai
- Federal University of Juiz de Fora. Federal University of Juiz de Fora, Governador Valadares Campus, Juiz de Fora, Minas Gerais, Brazil
| | - Hugo Lemes Carlo
- Federal University of Juiz de Fora. Federal University of Juiz de Fora, Governador Valadares Campus, Juiz de Fora, Minas Gerais, Brazil
| | - Rogério Lacerda Dos Santos
- Federal University of Juiz de Fora. Federal University of Juiz de Fora, Governador Valadares Campus, Juiz de Fora, Minas Gerais, Brazil
| | | | - Fabíola Galbiatti de Carvalho
- Federal University of Juiz de Fora. Federal University of Juiz de Fora, Governador Valadares Campus, Juiz de Fora, Minas Gerais, Brazil.
| |
Collapse
|
7
|
Landim MG, Carneiro MLB, Joanitti GA, Anflor CTM, Marinho DD, Rodrigues JFB, de Sousa WJB, Fernandes DDO, Souza BF, Ombredane AS, do Nascimento JCF, Felice GDJ, Kubota AMA, Barbosa JSC, Ohno JH, Amoah SKS, Pena LJ, Luz GVDS, de Andrade LR, Pinheiro WO, Ribeiro BM, Formiga FR, Fook MVL, Rosa MFF, Peixoto HM, Luiz Carregaro R, Rosa SDSRF. A novel N95 respirator with chitosan nanoparticles: mechanical, antiviral, microbiological and cytotoxicity evaluations. DISCOVER NANO 2023; 18:118. [PMID: 37733165 PMCID: PMC10514013 DOI: 10.1186/s11671-023-03892-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/29/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND It is known that some sectors of hospitals have high bacteria and virus loads that can remain as aerosols in the air and represent a significant health threat for patients and mainly professionals that work in the place daily. Therefore, the need for a respirator able to improve the filtration barrier of N95 masks and even inactivating airborne virus and bacteria becomes apparent. Such a fact motivated the creation of a new N95 respirator which employs chitosan nanoparticles on its intermediate layer (SN95 + CNP). RESULTS The average chitosan nanoparticle size obtained was 165.20 ± 35.00 nm, with a polydispersity index of 0.36 ± 0.03 and a zeta potential of 47.50 ± 1.70 mV. Mechanical tests demonstrate that the SN95 + CNP respirator is more resistant and meets the safety requisites of aerosol penetration, resistance to breath and flammability, presenting higher potential to filtrate microbial and viral particles when compared to conventional SN95 respirators. Furthermore, biological in vitro tests on bacteria, fungi and mammalian cell lines (HaCat, Vero E6 and CCL-81) corroborate the hypothesis that our SN95 + CNP respirator presents strong antimicrobial activity and is safe for human use. There was a reduction of 96.83% of the alphacoronavirus virus and 99% of H1N1 virus and MHV-3 betacoronavirus after 120 min of contact compared to the conventional respirator (SN95), demonstrating that SN95 + CNP have a relevant potential as personal protection equipment. CONCLUSIONS Due to chitosan nanotechnology, our novel N95 respirator presents improved mechanical, antimicrobial and antiviral characteristics.
Collapse
Affiliation(s)
| | | | | | | | | | - José Filipe Bacalhau Rodrigues
- Northeast Laboratory for Evaluation and Development of Biomaterials (CERTBIO), University of Campina Grande, Campina Grande, Paraiba, Brazil
| | | | | | | | | | | | | | | | | | - John Hideki Ohno
- MCI Ultrasonica LTDA, Av. Campinas, 367 - Arraial Paulista, Taboão da Serra, São Paulo, Brazil
| | - Solomon Kweku Sagoe Amoah
- Northeast Laboratory for Evaluation and Development of Biomaterials (CERTBIO), University of Campina Grande, Campina Grande, Paraiba, Brazil
| | | | | | | | | | | | | | - Marcus Vinícius Lia Fook
- Northeast Laboratory for Evaluation and Development of Biomaterials (CERTBIO), University of Campina Grande, Campina Grande, Paraiba, Brazil
| | | | | | | | | |
Collapse
|
8
|
He Y, Vasilev K, Zilm P. pH-Responsive Biomaterials for the Treatment of Dental Caries-A Focussed and Critical Review. Pharmaceutics 2023; 15:1837. [PMID: 37514024 PMCID: PMC10385394 DOI: 10.3390/pharmaceutics15071837] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Dental caries is a common and costly multifactorial biofilm disease caused by cariogenic bacteria that ferment carbohydrates to lactic acid, demineralizing the inorganic component of teeth. Therefore, low pH (pH 4.5) is a characteristic signal of the localised carious environment, compared to a healthy oral pH range (6.8 to 7.4). The development of pH-responsive delivery systems that release antibacterial agents in response to low pH has gained attention as a targeted therapy for dental caries. Release is triggered by high levels of acidogenic species and their reduction may select for the establishment of health-associated biofilm communities. Moreover, drug efficacy can be amplified by the modification of the delivery system to target adhesion to the plaque biofilm to extend the retention time of antimicrobial agents in the oral cavity. In this review, recent developments of different pH-responsive nanocarriers and their biofilm targeting mechanisms are discussed. This review critically discusses the current state of the art and innovations in the development and use of smart delivery materials for dental caries treatment. The authors' views for the future of the field are also presented.
Collapse
Affiliation(s)
- Yanping He
- Adelaide Dental School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Krasimir Vasilev
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | - Peter Zilm
- Adelaide Dental School, University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
9
|
Alavi SE, Raza A, Gholami M, Giles M, Al-Sammak R, Ibrahim A, Ebrahimi Shahmabadi H, Sharma LA. Advanced Drug Delivery Platforms for the Treatment of Oral Pathogens. Pharmaceutics 2022; 14:2293. [PMID: 36365112 PMCID: PMC9692332 DOI: 10.3390/pharmaceutics14112293] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 08/26/2023] Open
Abstract
The oral cavity is a complex ecosystem accommodating various microorganisms (e.g., bacteria and fungi). Various factors, such as diet change and poor oral hygiene, can change the composition of oral microbiota, resulting in the dysbiosis of the oral micro-environment and the emergence of pathogenic microorganisms, and consequently, oral infectious diseases. Systemic administration is frequently used for drug delivery in the treatment of diseases and is associated with the problems, such as drug resistance and dysbiosis. To overcome these challenges, oral drug delivery systems (DDS) have received considerable attention. In this literature review, the related articles are identified, and their findings, in terms of current therapeutic challenges and the applications of DDSs, especially nanoscopic DDSs, for the treatment of oral infectious diseases are highlighted. DDSs are also discussed in terms of structures and therapeutic agents (e.g., antibiotics, antifungals, antiviral, and ions) that they deliver. In addition, strategies (e.g., theranostics, hydrogel, microparticle, strips/fibers, and pH-sensitive nanoparticles), which can improve the treatment outcome of these diseases, are highlighted.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia
| | - Aun Raza
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Max Gholami
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia
| | - Michael Giles
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia
| | - Rayan Al-Sammak
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia
| | - Ali Ibrahim
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7717933777, Iran
| | - Lavanya A. Sharma
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia
| |
Collapse
|
10
|
Higino T, França R. Drug-delivery nanoparticles for bone-tissue and dental applications. Biomed Phys Eng Express 2022; 8. [PMID: 35439740 DOI: 10.1088/2057-1976/ac682c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 04/19/2022] [Indexed: 11/11/2022]
Abstract
The use of nanoparticles as biomaterials with applications in the biomedical field is growing every day. These nanomaterials can be used as contrast imaging agents, combination therapy agents, and targeted delivery systems in medicine and dentistry. Usually, nanoparticles are found as synthetic or natural organic materials, such as hydroxyapatite, polymers, and lipids. Besides that, they are could also be inorganic, for instance, metallic or metal-oxide-based particles. These inorganic nanoparticles could additionally present magnetic properties, such as superparamagnetic iron oxide nanoparticles. The use of nanoparticles as drug delivery agents has many advantages, for they help diminish toxicity effects in the body since the drug dose reduces significantly, increases drugs biocompatibility, and helps target drugs to specific organs. As targeted-delivery agents, one of the applications uses nanoparticles as drug delivery particles for bone-tissue to treat cancer, osteoporosis, bone diseases, and dental treatments such as periodontitis. Their application as drug delivery agents requires a good comprehension of the nanoparticle properties and composition, alongside their synthesis and drug attachment characteristics. Properties such as size, shape, core-shell designs, and magnetic characteristics can influence their behavior inside the human body and modify magnetic properties in the case of magnetic nanoparticles. Based on that, many different studies have modified the synthesis methods for these nanoparticles and developed composite systems for therapeutics delivery, adapting, and improving magnetic properties, shell-core designs, and particle size and nanosystems characteristics. This review presents the most recent studies that have been presented with different nanoparticle types and structures for bone and dental drug delivery.
Collapse
Affiliation(s)
- Taisa Higino
- Biomedical Engineering Program, University of Manitoba, Winnipeg, Canada
| | - Rodrigo França
- Biomedical Engineering Program, University of Manitoba, Winnipeg, Canada.,Dental Biomaterials Research Lab, Department of Restorative Dentistry, College of Dentistry, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
11
|
Zhang Y, Jiang R, Lei L, Yang Y, Hu T. Drug delivery systems for oral disease applications. J Appl Oral Sci 2022; 30:e20210349. [PMID: 35262595 PMCID: PMC8908861 DOI: 10.1590/1678-7757-2021-0349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023] Open
Abstract
There are many restrictions on topical medications for the oral cavity. Various factors affect the topical application of drugs in the oral cavity, an open and complex environment. The complex physical and chemical environment of the oral cavity, such as saliva and food, will influence the effect of free drugs. Therefore, drug delivery systems have served as supporting structures or as carriers loading active ingredients, such as antimicrobial agents and growth factors (GFs), to promote antibacterial properties, tissue regeneration, and engineering for drug diffusion. These drug delivery systems are considered in the prevention and treatment of dental caries, periodontal disease, periapical disease, the delivery of anesthetic drugs, etc. These carrier materials are designed in different ways for clinical application, including nanoparticles, hydrogels, nanofibers, films, and scaffolds. This review aimed to summarize the advantages and disadvantages of different carrier materials. We discuss synthesis methods and their application scope to provide new perspectives for the development and preparation of more favorable and effective local oral drug delivery systems.
Collapse
Affiliation(s)
- Yue Zhang
- Sichuan University, West China Hospital of Stomatology, Department of Preventive Dentistry, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Ruining Jiang
- Sichuan University, West China Hospital of Stomatology, Department of Preventive Dentistry, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Lei Lei
- Sichuan University, West China Hospital of Stomatology, Department of Preventive Dentistry, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Yingming Yang
- Sichuan University, West China Hospital of Stomatology, Department of Preventive Dentistry, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Tao Hu
- Sichuan University, West China Hospital of Stomatology, Department of Preventive Dentistry, State Key Laboratory of Oral Diseases, Chengdu, China
| |
Collapse
|
12
|
A novel sustained release fluoride strip based Poly(propylene carbonate) for preventing caries. Eur J Pharm Sci 2022; 171:106128. [DOI: 10.1016/j.ejps.2022.106128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 11/18/2022]
|
13
|
Cardoso CS, Freitas JDD, Santos NRLD, Almeida Júnior A, Basílio Júnior ID, Nascimento TGD, Grillo LAM, Porto ICCDM, Marinho JLG, Santos GEDSD, Meili L, Sampaio FC, Dornelas CB. Layered double hydroxides for controlled fluoride release. Braz Oral Res 2021; 35:e104. [PMID: 34816893 DOI: 10.1590/1807-3107bor-2021.vol35.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/21/2021] [Indexed: 11/22/2022] Open
Abstract
This study aims to develop a nano-sized fluoridated layered double hydroxide (LDH)-based release system via hydrothermal treatment for the controlled delivery of fluoride (F-) ions in the oral environment. The synthesis of conventional LDH-type (C-LDH) precursor nanomaterials was conducted using a co-precipitation method at constant pH, and the nanoparticulate-LDH (N-LDH) was synthesized by a hydrothermal procedure. Fluoride LDH (F-LDH) products were obtained through indirect synthesis using the precursor ion-exchange technique by varying the agitation time (2 and 24 h) and temperature (25 and 40 °C) to produce 12 material samples. The materials were characterized by energy dispersive x-ray, hexamethyldisilazane, digital radiography x-ray, Fourier-transform infrared, thermogravimetric analysis, and scanning electron microscopy. Additionally, the F-release kinetic profile was evaluated for 21 d in neutral and acid media with mathematical model analysis. Products with varying F-quantities were obtained, revealing specific release profiles. In general, there was a higher F-release in the acid medium, with emphasis on F-LDH-8. Fluoride-LDH and controlled fluoride delivery was successfully obtained, proving the potential of these nanomaterials as alternative anti-caries agents.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Lucas Meili
- Universidade Federal de Alagoas - UFAL, Technology Center, Maceio, AL, Brazil
| | - Fábio Correia Sampaio
- Universidade Federal da Paraíba - UFPB, Department of Dentistry and Social Clinic, João Pessoa, PB, Brazil
| | - Camila Braga Dornelas
- Universidade Federal de Alagoas - UFAL, Pharmaceutical Science Institute, Maceio, AL, Brazil
| |
Collapse
|
14
|
The Application of Chitosan Nanostructures in Stomatology. Molecules 2021; 26:molecules26206315. [PMID: 34684896 PMCID: PMC8541323 DOI: 10.3390/molecules26206315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/05/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Chitosan (CS) is a natural polymer with a positive charge, a deacetylated derivative of chitin. Chitosan nanostructures (nano-CS) have received increasing interest due to their potential applications and remarkable properties. They offer advantages in stomatology due to their excellent biocompatibility, their antibacterial properties, and their biodegradability. Nano-CSs can be applied as drug carriers for soft tissue diseases, bone tissue engineering and dental hard tissue remineralization; furthermore, they have been used in endodontics due to their antibacterial properties; and, finally, nano-CS can improve the adhesion and mechanical properties of dental-restorative materials due to their physical blend and chemical combinations. In this review, recent developments in the application of nano-CS for stomatology are summarized, with an emphasis on nano-CS’s performance characteristics in different application fields. Moreover, the challenges posed by and the future trends in its application are assessed.
Collapse
|
15
|
Polysaccharide-Based Micro- and Nanosized Drug Delivery Systems for Potential Application in the Pediatric Dentistry. Polymers (Basel) 2021; 13:polym13193342. [PMID: 34641160 PMCID: PMC8512615 DOI: 10.3390/polym13193342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/24/2022] Open
Abstract
The intensive development of micro- and nanotechnologies in recent years has offered a wide horizon of new possibilities for drug delivery in dentistry. The use of polymeric drug carriers turned out to be a very successful technique for formulating micro- and nanoparticles with controlled or targeted drug release in the oral cavity. Such innovative strategies have the potential to provide an improved therapeutic approach to prevention and treatment of various oral diseases not only for adults, but also in the pediatric dental practice. Due to their biocompatibility, biotolerance and biodegradability, naturally occurring polysaccharides like chitosan, alginate, pectin, dextran, starch, etc., are among the most preferred materials for preparation of micro- and nano-devices for drug delivery, offering simple particle-forming characteristics and easily tunable properties of the formulated structures. Their low immunogenicity and low toxicity provide an advantage over most synthetic polymers for the development of pediatric formulations. This review is focused on micro- and nanoscale polysaccharide biomaterials as dental drug carriers, with an emphasis on their potential application in pediatric dentistry.
Collapse
|
16
|
Heath RS, Ruscoe RE, Turner NJ. The beauty of biocatalysis: sustainable synthesis of ingredients in cosmetics. Nat Prod Rep 2021; 39:335-388. [PMID: 34879125 DOI: 10.1039/d1np00027f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: 2015 up to July 2021The market for cosmetics is consumer driven and the desire for green, sustainable and natural ingredients is increasing. The use of isolated enzymes and whole-cell organisms to synthesise these products is congruent with these values, especially when combined with the use of renewable, recyclable or waste feedstocks. The literature of biocatalysis for the synthesis of ingredients in cosmetics in the past five years is herein reviewed.
Collapse
Affiliation(s)
- Rachel S Heath
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Rebecca E Ruscoe
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Nicholas J Turner
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
17
|
Nanoparticles in Dentistry: A Comprehensive Review. Pharmaceuticals (Basel) 2021; 14:ph14080752. [PMID: 34451849 PMCID: PMC8398506 DOI: 10.3390/ph14080752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
In recent years, nanoparticles (NPs) have been receiving more attention in dentistry. Their advantageous physicochemical and biological properties can improve the diagnosis, prevention, and treatment of numerous oral diseases, including dental caries, periodontal diseases, pulp and periapical lesions, oral candidiasis, denture stomatitis, hyposalivation, and head, neck, and oral cancer. NPs can also enhance the mechanical and microbiological properties of dental prostheses and implants and can be used to improve drug delivery through the oral mucosa. This paper reviewed studies from 2015 to 2020 and summarized the potential applications of different types of NPs in the many fields of dentistry.
Collapse
|
18
|
de Lavôr JR, Fernandes NLS, de Sousa EBG, da Cunha JL, Meira IA, Correia Sampaio F, de Oliveira AFB. Nanoencapsulated fluoride as a remineralization option for dental erosion: an in vitro study. Acta Odontol Scand 2021; 79:321-326. [PMID: 33245686 DOI: 10.1080/00016357.2020.1849793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To compare the in vitro performance of different dentifrices indicated for dental erosion and a new dentifrice with controlled fluoride release system (NanoF) in terms of surface microhardness remineralization in enamel erosion lesions. MATERIALS AND METHODS 72 human enamel specimens were divided into 6 groups (n = 12): PC (100% NaF - positive control); NC (Placebo - negative control); 50%nF (50% NanoF + 50% free NaF), 100%nF (100% NanoF); PN (Sensodyne® ProNamel™) and AG (Colgate® Sensitive Pro-Relief™). A surface microhardness analysis was performed before (SH0) and after (SH1) the erosion lesion formation. The blocks were submitted to a 5-day de-remineralization cycling model, consisting of 90 s immersion on 0.1% citric acid (4x/day) and 1 min treatment with dentifrice slurries along with 1 mL/block of human saliva (2x/day). Lastly, the final surface microhardness analysis (SH2) was measured and the percentage of surface microhardness remineralization (%SMHR) was calculated. Data were analysed with 2-way ANOVA and Tukey's test (p < .05). RESULTS Statistically significant differences were observed for SH2 and %SMHR between NC and AG with the other groups (p < .05). The best %SMHR from the experimental groups was found in 100%nF and PN. CONCLUSION Dentifrices with NanoF exhibited a surface microhardness remineralization similar to sodium fluoride (PC). Therefore, NanoF dentifrice can be an alternative to prevent and treat patients with dental erosion.
Collapse
Affiliation(s)
| | | | | | | | - Ingrid Andrade Meira
- Graduate Program of Dentistry Clinic, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | | | | |
Collapse
|
19
|
Elzayat A, Tolba E, Pérez‐Pla FF, Oraby A, Muñoz‐Espí R. Increased Stability of Polysaccharide/Silica Hybrid Sub‐Millicarriers for Retarded Release of Hydrophilic Substances. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Asmaa Elzayat
- Institute of Materials Science (ICMUV) Universitat de València C/ Catedràtic José Beltrán 2 Paterna 46980 Spain
- Physics Department, Faculty of Science Mansoura University Mansoura 35516 Egypt
| | - Emad Tolba
- Polymers and Pigments Department National Research Centre Dokki Giza 12622 Egypt
| | - Francisco F. Pérez‐Pla
- Institute of Materials Science (ICMUV) Universitat de València C/ Catedràtic José Beltrán 2 Paterna 46980 Spain
| | - Ahmed Oraby
- Physics Department, Faculty of Science Mansoura University Mansoura 35516 Egypt
| | - Rafael Muñoz‐Espí
- Institute of Materials Science (ICMUV) Universitat de València C/ Catedràtic José Beltrán 2 Paterna 46980 Spain
| |
Collapse
|
20
|
Mercadante V, Scarpa E, De Matteis V, Rizzello L, Poma A. Engineering Polymeric Nanosystems against Oral Diseases. Molecules 2021; 26:2229. [PMID: 33924289 PMCID: PMC8070659 DOI: 10.3390/molecules26082229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/26/2022] Open
Abstract
Nanotechnology and nanoparticles (NPs) are at the forefront of modern research, particularly in the case of healthcare therapeutic applications. Polymeric NPs, specifically, hold high promise for these purposes, including towards oral diseases. Careful optimisation of the production of polymeric NPs, however, is required to generate a product which can be easily translated from a laboratory environment to the actual clinical usage. Indeed, considerations such as biocompatibility, biodistribution, and biodegradability are paramount. Moreover, a pre-clinical assessment in adequate in vitro, ex vivo or in vivo model is also required. Last but not least, considerations for the scale-up are also important, together with an appropriate clinical testing pathway. This review aims to eviscerate the above topics, sourcing at examples from the recent literature to put in context the current most burdening oral diseases and the most promising polymeric NPs which would be suitable against them.
Collapse
Affiliation(s)
- Valeria Mercadante
- Division of Oral Medicine, UCL Eastman Dental Institute, Bloomsbury Campus, Rockefeller Building, 21 University Street, London WC1E 6DE, UK;
| | - Edoardo Scarpa
- Department of Pharmaceutical Sciences (DISFARM), National Institute of Molecular Genetics (INGM), Via G. Balzaretti 9, 20133 Milan, Italy; (E.S.); (L.R.)
- National Institute of Molecular Genetics (INGM), Via F. Sforza 35, 20122 Milan, Italy
| | - Valeria De Matteis
- Department of Mathematics and Physics “Ennio De Giorgi”, Via Monteroni, c/o Campus Ecotekne, 73100 Lecce, Italy;
| | - Loris Rizzello
- Department of Pharmaceutical Sciences (DISFARM), National Institute of Molecular Genetics (INGM), Via G. Balzaretti 9, 20133 Milan, Italy; (E.S.); (L.R.)
- National Institute of Molecular Genetics (INGM), Via F. Sforza 35, 20122 Milan, Italy
| | - Alessandro Poma
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital, UCL Medical School, Rowland Hill Street, London NW3 2PF, UK
| |
Collapse
|
21
|
Makvandi P, Josic U, Delfi M, Pinelli F, Jahed V, Kaya E, Ashrafizadeh M, Zarepour A, Rossi F, Zarrabi A, Agarwal T, Zare EN, Ghomi M, Kumar Maiti T, Breschi L, Tay FR. Drug Delivery (Nano)Platforms for Oral and Dental Applications: Tissue Regeneration, Infection Control, and Cancer Management. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004014. [PMID: 33898183 PMCID: PMC8061367 DOI: 10.1002/advs.202004014] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/12/2020] [Indexed: 05/09/2023]
Abstract
The oral cavity and oropharynx are complex environments that are susceptible to physical, chemical, and microbiological insults. They are also common sites for pathological and cancerous changes. The effectiveness of conventional locally-administered medications against diseases affecting these oral milieus may be compromised by constant salivary flow. For systemically-administered medications, drug resistance and adverse side-effects are issues that need to be resolved. New strategies for drug delivery have been investigated over the last decade to overcome these obstacles. Synthesis of nanoparticle-containing agents that promote healing represents a quantum leap in ensuring safe, efficient drug delivery to the affected tissues. Micro/nanoencapsulants with unique structures and properties function as more favorable drug-release platforms than conventional treatment approaches. The present review provides an overview of newly-developed nanocarriers and discusses their potential applications and limitations in various fields of dentistry and oral medicine.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Chemistry Department, Faculty of ScienceShahid Chamran University of AhvazAhvaz6153753843Iran
| | - Uros Josic
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaVia San Vitale 59Bologna40125Italy
| | - Masoud Delfi
- Department of Chemical SciencesUniversity of Naples “Federico II”Complesso Universitario Monte S. Angelo, Via CintiaNaples80126Italy
| | - Filippo Pinelli
- Department of Chemistry, Materials and Chemical EngineeringPolitecnico di Milano Technical UniversityMilano20133Italy
| | - Vahid Jahed
- Biomedical Engineering Division, Faculty of Chemical EngineeringTarbiat Modares UniversityTehranIran
| | - Emine Kaya
- Faculty of DentistryIstanbul Okan UniversityTuzla CampusTuzlaIstanbul34959Turkey
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural SciencesSabanci UniversityOrta Mahalle, Üniversite Caddesi No. 27, OrhanlıTuzlaIstanbul34956Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM)TuzlaIstanbul34956Turkey
| | - Atefeh Zarepour
- Sabanci University Nanotechnology Research and Application Center (SUNUM)TuzlaIstanbul34956Turkey
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical EngineeringPolitecnico di Milano Technical UniversityMilano20133Italy
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM)TuzlaIstanbul34956Turkey
| | - Tarun Agarwal
- Department of BiotechnologyIndian Institute of Technology KharagpurKharagpurWest Bengal721302India
| | | | - Matineh Ghomi
- Chemistry Department, Faculty of ScienceShahid Chamran University of AhvazAhvaz6153753843Iran
| | - Tapas Kumar Maiti
- Department of BiotechnologyIndian Institute of Technology KharagpurKharagpurWest Bengal721302India
| | - Lorenzo Breschi
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaVia San Vitale 59Bologna40125Italy
| | - Franklin R Tay
- The Dental College of GeorgiaAugusta University1430 John Wesley Gilbert DriveAugustaGA30192USA
- The Graduate SchoolAugusta UniversityAugustaGA30912USA
| |
Collapse
|
22
|
Vasiliu S, Racovita S, Gugoasa IA, Lungan MA, Popa M, Desbrieres J. The Benefits of Smart Nanoparticles in Dental Applications. Int J Mol Sci 2021; 22:2585. [PMID: 33806682 PMCID: PMC7961614 DOI: 10.3390/ijms22052585] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 12/18/2022] Open
Abstract
Dentistry, as a branch of medicine, has undergone continuous evolution over time. The scientific world has focused its attention on the development of new methods and materials with improved properties that meet the needs of patients. For this purpose, the replacement of so-called "passive" dental materials that do not interact with the oral environment with "smart/intelligent" materials that have the capability to change their shape, color, or size in response to an externally stimulus, such as the temperature, pH, light, moisture, stress, electric or magnetic fields, and chemical compounds, has received much attention in recent years. A strong trend in dental applications is to apply nanotechnology and smart nanomaterials such as nanoclays, nanofibers, nanocomposites, nanobubbles, nanocapsules, solid-lipid nanoparticles, nanospheres, metallic nanoparticles, nanotubes, and nanocrystals. Among the nanomaterials, the smart nanoparticles present several advantages compared to other materials, creating the possibility to use them in various dental applications, including preventive dentistry, endodontics, restoration, and periodontal diseases. This review is focused on the recent developments and dental applications (drug delivery systems and restoration materials) of smart nanoparticles.
Collapse
Affiliation(s)
- Silvia Vasiliu
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, No. 41A, 700487 Iasi, Romania;
| | - Stefania Racovita
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, No. 41A, 700487 Iasi, Romania;
| | - Ionela Aurica Gugoasa
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, Prof. Dr. Docent Dimitrie Mangeron Street, No. 73, 700050 Iasi, Romania; (I.A.G.); (M.P.)
| | | | - Marcel Popa
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, Prof. Dr. Docent Dimitrie Mangeron Street, No. 73, 700050 Iasi, Romania; (I.A.G.); (M.P.)
- Academy of Romanian Scientists, Splaiul Independentei Street No. 54, 050085 Bucuresti, Romania
| | - Jacques Desbrieres
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Materiaux (IPREM), Pau and Pays de l’Adour University (UPPA), UMR CNRS 5254, Helioparc Pau Pyrenees, 2, av. President Angot, 64053 Pau CEDEX 09, France
| |
Collapse
|
23
|
Balhaddad AA, Garcia IM, Ibrahim MS, Rolim JPML, Gomes EAB, Martinho FC, Collares FM, Xu H, Melo MAS. Prospects on Nano-Based Platforms for Antimicrobial Photodynamic Therapy Against Oral Biofilms. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2020; 38:481-496. [PMID: 32716697 DOI: 10.1089/photob.2020.4815] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objective: This review clusters the growing field of nano-based platforms for antimicrobial photodynamic therapy (aPDT) targeting pathogenic oral biofilms and increase interactions between dental researchers and investigators in many related fields. Background data: Clinically relevant disinfection of dental tissues is difficult to achieve with aPDT alone. It has been found that limited penetrability into soft and hard dental tissues, diffusion of the photosensitizers, and the small light absorption coefficient are contributing factors. As a result, the effectiveness of aPDT is reduced in vivo applications. To overcome limitations, nanotechnology has been implied to enhance the penetration and delivery of photosensitizers to target microorganisms and increase the bactericidal effect. Materials and methods: The current literature was screened for the various platforms composed of photosensitizers functionalized with nanoparticles and their enhanced performance against oral pathogenic biofilms. Results: The evidence-based findings from the up-to-date literature were promising to control the onset and the progression of dental biofilm-triggered diseases such as dental caries, endodontic infections, and periodontal diseases. The antimicrobial effects of aPDT with nano-based platforms on oral bacterial disinfection will help to advance the design of combination strategies that increase the rate of complete and durable clinical response in oral infections. Conclusions: There is enthusiasm about the potential of nano-based platforms to treat currently out of the reach pathogenic oral biofilms. Much of the potential exists because these nano-based platforms use unique mechanisms of action that allow us to overcome the challenging of intra-oral and hard-tissue disinfection.
Collapse
Affiliation(s)
- Abdulrahman A Balhaddad
- PhD Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Isadora M Garcia
- PhD Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Dental Materials Laboratory, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Salem Ibrahim
- PhD Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Juliana P M L Rolim
- Department of Dentistry, Christus University Center (Unichristus), Fortaleza, Brazil
| | - Edison A B Gomes
- Department of Dentistry, Christus University Center (Unichristus), Fortaleza, Brazil
| | - Frederico C Martinho
- Endodontic Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Fabricio M Collares
- Dental Materials Laboratory, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Hockin Xu
- PhD Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Mary Anne S Melo
- PhD Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| |
Collapse
|
24
|
Foong LK, Foroughi MM, Mirhosseini AF, Safaei M, Jahani S, Mostafavi M, Ebrahimpoor N, Sharifi M, Varma RS, Khatami M. Applications of nano-materials in diverse dentistry regimes. RSC Adv 2020; 10:15430-15460. [PMID: 35495474 PMCID: PMC9052824 DOI: 10.1039/d0ra00762e] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/11/2020] [Indexed: 12/15/2022] Open
Abstract
Research and development in the applied sciences at the atomic or molecular level is the order of the day under the domain of nanotechnology or nano-science with enormous influence on nearly all areas of human health and activities comprising diverse medical fields such as pharmacological studies, clinical diagnoses, and supplementary immune system. The field of nano-dentistry has emerged due to the assorted dental applications of nano-technology. This review provides a brief introduction to the general nanotechnology field and a comprehensive overview of the synthesis features and dental uses of nano-materials including current innovations and future expectations with general comments on the latest advancements in the mechanisms and the most significant toxicological dimensions.
Collapse
Affiliation(s)
- Loke Kok Foong
- Institute of Research and Development, Duy Tan University Da Nang 550000 Viet Nam
| | | | - Armita Forutan Mirhosseini
- Nanobioelectrochemistry Research Center, Bam University of Medical Sciences Bam Iran +98 3433210051 +98 34331321750
| | - Mohadeseh Safaei
- Student Research Committee, School of Public Health, Bam University of Medical Sciences Bam Iran
| | - Shohreh Jahani
- Nanobioelectrochemistry Research Center, Bam University of Medical Sciences Bam Iran +98 3433210051 +98 34331321750
- Student Research Committee, School of Public Health, Bam University of Medical Sciences Bam Iran
| | - Maryam Mostafavi
- Tehran Dental Branch, Islamic Azad University Tehran Iran
- Craniomaxilofacial Resarch Center, Tehran Medical Sciences, Islamic Azad University Tehran Iran
| | - Nasser Ebrahimpoor
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences Kerman Iran
| | - Maryam Sharifi
- Department of Pediatric Dentistry, School of Dentistry, Kerman University of Medical Sciences Kerman Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Šlechtitelů 27 783 71 Olomouc Czech Republic
| | - Mehrdad Khatami
- Nanobioelectrochemistry Research Center, Bam University of Medical Sciences Bam Iran +98 3433210051 +98 34331321750
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences Kerman Iran
| |
Collapse
|
25
|
Liang J, Peng X, Zhou X, Zou J, Cheng L. Emerging Applications of Drug Delivery Systems in Oral Infectious Diseases Prevention and Treatment. Molecules 2020; 25:E516. [PMID: 31991678 PMCID: PMC7038021 DOI: 10.3390/molecules25030516] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/27/2022] Open
Abstract
The oral cavity is a unique complex ecosystem colonized with huge numbers of microorganism species. Oral cavities are closely associated with oral health and sequentially with systemic health. Many factors might cause the shift of composition of oral microbiota, thus leading to the dysbiosis of oral micro-environment and oral infectious diseases. Local therapies and dental hygiene procedures are the main kinds of treatment. Currently, oral drug delivery systems (DDS) have drawn great attention, and are considered as important adjuvant therapy for oral infectious diseases. DDS are devices that could transport and release the therapeutic drugs or bioactive agents to a certain site and a certain rate in vivo. They could significantly increase the therapeutic effect and reduce the side effect compared with traditional medicine. In the review, emerging recent applications of DDS in the treatment for oral infectious diseases have been summarized, including dental caries, periodontitis, peri-implantitis and oral candidiasis. Furthermore, oral stimuli-responsive DDS, also known as "smart" DDS, have been reported recently, which could react to oral environment and provide more accurate drug delivery or release. In this article, oral smart DDS have also been reviewed. The limits have been discussed, and the research potential demonstrates good prospects.
Collapse
Affiliation(s)
| | | | | | - Jing Zou
- State Key Laboratory of Oral Diseases& West China School of Stomatology& National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China; (J.L.); (X.P.); (X.Z.)
| | - Lei Cheng
- State Key Laboratory of Oral Diseases& West China School of Stomatology& National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China; (J.L.); (X.P.); (X.Z.)
| |
Collapse
|
26
|
Makvandi P, Gu JT, Zare EN, Ashtari B, Moeini A, Tay FR, Niu LN. Polymeric and inorganic nanoscopical antimicrobial fillers in dentistry. Acta Biomater 2020; 101:69-101. [PMID: 31542502 DOI: 10.1016/j.actbio.2019.09.025] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/26/2019] [Accepted: 09/17/2019] [Indexed: 02/08/2023]
Abstract
Failure of dental treatments is mainly due to the biofilm accumulated on the dental materials. Many investigations have been conducted on the advancements of antimicrobial dental materials. Polymeric and inorganic nanoscopical agents are capable of inhibiting microorganism proliferation. Applying them as fillers in dental materials can achieve enhanced microbicidal ability. The present review provides a broad overview on the state-of-the-art research in the field of antimicrobial fillers which have been adopted for incorporation into dental materials over the last 5 years. The antibacterial agents and applications are described, with the aim of providing information for future investigations. STATEMENT OF SIGNIFICANCE: Microbial infection is the primary cause of dental treatment failure. The present review provides an overview on the state-of-art in the field of antimicrobial nanoscopical or polymeric fillers that have been applied in dental materials. Trends in the biotechnological development of these antimicrobial fillers over the last 5 years are reviewed to provide a backdrop for further advancement in this field of research.
Collapse
|
27
|
Pichaiaukrit W, Thamrongananskul N, Siralertmukul K, Swasdison S. Fluoride varnish containing chitosan demonstrated sustained fluoride release. Dent Mater J 2019; 38:1036-1042. [PMID: 31611494 DOI: 10.4012/dmj.2018-112] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fluoride varnish is a professionally applied product that prevents dental caries. However, fluoride varnishes do not provide sustained fluoride release. The objective of this study was to prepare fluoride varnish formulations containing various amounts of chitosan that would generate sustained fluoride release. We evaluated their chemical structure, viscosity, and in vitro fluoride release. Furthermore, the 3-(4, 5-dimethylthiazolyl-2)-2,5diphenyltetrazolium bromide (MTT) assay and direct contact test were used to determine varnish cytotoxicity. We found that all fluoride varnish formulations had the same chemical structure. Their viscosity demonstrated a chitosan concentration-dependent increase. In vitro fluoride release showed a sustained fluoride release. The chitosan fluoride varnishes were cytotoxic to human gingival fibroblasts. We propose the new fluoride varnish formulation as a potential material to be used as a sustained release fluoride varnish.
Collapse
Affiliation(s)
- Woradej Pichaiaukrit
- Dental Biomaterials Science, Graduate School-Interdisciplinary Program, Chulalongkorn University
| | | | | | - Somporn Swasdison
- Department of Oral Medicine, College of Dental Medicine, Rangsit University
| |
Collapse
|
28
|
Casadidio C, Peregrina DV, Gigliobianco MR, Deng S, Censi R, Di Martino P. Chitin and Chitosans: Characteristics, Eco-Friendly Processes, and Applications in Cosmetic Science. Mar Drugs 2019; 17:E369. [PMID: 31234361 PMCID: PMC6627199 DOI: 10.3390/md17060369] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/05/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022] Open
Abstract
Huge amounts of chitin and chitosans can be found in the biosphere as important constituents of the exoskeleton of many organisms and as waste by worldwide seafood companies. Presently, politicians, environmentalists, and industrialists encourage the use of these marine polysaccharides as a renewable source developed by alternative eco-friendly processes, especially in the production of regular cosmetics. The aim of this review is to outline the physicochemical and biological properties and the different bioextraction methods of chitin and chitosan sources, focusing on enzymatic deproteinization, bacteria fermentation, and enzymatic deacetylation methods. Thanks to their biodegradability, non-toxicity, biocompatibility, and bioactivity, the applications of these marine polymers are widely used in the contemporary manufacturing of biomedical and pharmaceutical products. In the end, advanced cosmetics based on chitin and chitosans are presented, analyzing different therapeutic aspects regarding skin, hair, nail, and oral care. The innovative formulations described can be considered excellent candidates for the prevention and treatment of several diseases associated with different body anatomical sectors.
Collapse
Affiliation(s)
| | | | | | - Siyuan Deng
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy.
| | - Roberta Censi
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy.
| | - Piera Di Martino
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy.
| |
Collapse
|
29
|
Fookes FA, Mengatto LN, Rigalli A, Luna JA. Controlled fluoride release for osteoporosis treatment using orally administered chitosan hydrogels. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Rusnac ME, Gasparik C, Irimie AI, Grecu AG, Mesaroş AŞ, Dudea D. Giomers in dentistry - at the boundary between dental composites and glass-ionomers. Med Pharm Rep 2019; 92:123-128. [PMID: 31086838 PMCID: PMC6510354 DOI: 10.15386/mpr-1169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/22/2018] [Indexed: 12/02/2022] Open
Abstract
Introduction From the variety of direct restorative dental materials, composite resins are considered as having the most esthetic and functional properties. The conservative preparation, esthetic results, good mechanical qualities and surface finishing properties of dental composites, combined with the protective properties of fluoride from glass-ionomers, led to a new generation of dental materials: the giomers. Objective The purpose is to review the available literature about the giomers, regarding the chemical composition, handling properties and esthetics, adhesion and microleakage, fluoride releasing and protection offered, clinical indications. Method The search was carried out using ScienceDirect and PubMed databases with the following keywords: giomer, esthetic properties giomers and fluoride releasing giomers. A total of 232 articles were initially selected, with the following inclusion criteria: full text articles, written in English, with topics on the properties and the clinical implications of giomers. Papers presented as abstract were not included. In the next step, review articles, duplicates, and articles in other languages were removed; as a result, a total of 44 sources published between 2004 and 2017 were selected. Results The selected articles referred to the following aspects about the giomers: chemical composition (8 articles), adhesion and microleakage (10 articles), fluoride releasing and pulp protection (15 articles), clinical indications (6 articles), effects of additional treatments and dietary habits (11 articles).
Collapse
Affiliation(s)
- Mara Elena Rusnac
- Department of Propaedeutics and Dento-Facial Aesthetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Gasparik
- Department of Propaedeutics and Dento-Facial Aesthetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alexandra Iulia Irimie
- Department of Propaedeutics and Dento-Facial Aesthetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alexandru Graţian Grecu
- Department of Propaedeutics and Dento-Facial Aesthetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Anca Ştefania Mesaroş
- Department of Propaedeutics and Dento-Facial Aesthetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Dudea
- Department of Propaedeutics and Dento-Facial Aesthetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
31
|
Lima FV, Mendes C, Zanetti-Ramos BG, Nandi JK, Cardoso SG, Bernardon JK, Silva MAS. Carbamide peroxide nanoparticles for dental whitening application: Characterization, stability and in vivo/in situ evaluation. Colloids Surf B Biointerfaces 2019; 179:326-333. [PMID: 30981068 DOI: 10.1016/j.colsurfb.2019.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 10/27/2022]
Abstract
Carbamide peroxide is the popular home dental whitening agent. However, it has critical stability. Nanoparticles have been applied to develop products with advantages properties as better efficacy and stability increase. The aim of this study was the characterization of carbamide peroxide polymeric nanoparticles, their bleaching efficacy, effects on pulp damage and stability evaluation. Particle size demonstrated a spherical morphology and bimodal distribution (11 and 398 nm). Nanoparticles presented high entrapment efficiency (98.94%) and the zeta potential value was slightly positive (+10.26 mV). Regardless of the zeta potential, the steric effect may contribute to carbamide peroxide nanoparticle stabilization. The stability studies conducted at room temperature suggested that carbamide peroxide nanoparticles could maintain all the parameters evaluated (size, polydispersity index, zeta potential, entrapment efficiency, pH and content) for at least 90 days. Instability index was determined by dispersion analyzer (LUMiSizer ®), was 0.018, and the light transmission profile did not present sedimentation. Carbamide peroxide nanoparticles were able to prevent thermal degradation and photostability. Clinical efficacy of the whitening gels was obtained by color change in the spectrophotometer and the results showed that all the evaluated gels containing the nanoparticles (0, 1, 2 and 5% of real carbamide peroxide) were effective at bleaching after 2 h of home whitening treatment (during 30 days). After the treatment, the extracted teeth showed no in situ pulp damage by histological evaluation. The nanotechnology strategy of converting carbamide peroxide into polymeric nanoparticles revealed a new product with improved stability, a good approach for carbamide peroxide delivery.
Collapse
Affiliation(s)
- Fabiana Vieira Lima
- Post Graduation Program in Pharmaceutical Sciences, Federal University of Santa Catarina (UFSC), Brazil.
| | - Cassiana Mendes
- Post Graduation Program in Pharmaceutical Sciences, Federal University of Santa Catarina (UFSC), Brazil; Studies Group on Polymeric Materials (POLIMAT), Department of Chemistry, Federal University of Santa Catarina, Florianopolis, Brazil
| | | | - Janayne Kemper Nandi
- Department of Dentistry, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Simone Gonçalves Cardoso
- Post Graduation Program in Pharmaceutical Sciences, Federal University of Santa Catarina (UFSC), Brazil
| | | | | |
Collapse
|
32
|
Ebrahimi N, Soleimani AA, Rashidiani J, Malekafzali B, Abedini F, Hosseinkhani H. Chitosan/Fluoride Nanoparticles for Preventing Dental Caries. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/2542579x01666190212150457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
<P>Background: Dental caries is still a major public health problem. The use of fluoride is
one of the most effective ways to prevent tooth decay.
</P><P>
Objective: The purpose of this research was to investigate the effectiveness of fluoride entrapped in
chitosan nanoparticles in vivo.
</P><P>
Methods: Sodium fluoride was loaded in chitosan via ionic gelation of tripolyphosphate nanoparticles.
Characterization of nanoparticles was investigated by using the zeta potential, size of particles,
loading capacities, encapsulation efficiency, and Fourier Transforms Infrared Spectroscopy. Chitosan/
fluoride nanoparticles were fabricated by a method of fluoride/chitosan cross-linking with
tripolyphosphate.
</P><P>
Results: The size of nanoparticles was 219 nm. According to the zeta potential results, by adding
sodium fluoride to chitosan/tripolyphosphate nanoparticles reducing the number of positive charges
of chitosan, the result was diminished zeta potential from +30.8 mV to +14.9 mV. The optimum
drug loading and percentage of entrapment efficiency were 70% and 30% respectively. Fourier
transform infrared spectroscopy confirmed linked among tripolyphosphate, chitosan and fluoride
nanoparticles. In vitro characterization of nanoparticles demonstrated higher fluoride uptake ability
and smooth releasing profile.
</P><P>
Conclusion: It is suggested that fluoride/chitosan nanoparticles synthesized in our study may be a
promising means of delivering fluoride for the early prevention of tooth decay.</P>
Collapse
Affiliation(s)
- Niousha Ebrahimi
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Asghar Soleimani
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Rashidiani
- Nanobiotechnology Research Centre, Baqhiatollah University of Medical Science, Molla Sadra, Tehran, 1435916471, Iran
| | | | - Fatemeh Abedini
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Hesarak, Karaj, Alborz, Iran
| | - Hossein Hosseinkhani
- Innovation Center for Advanced Technology, Matrix, Inc., New York, NY 10029, United States
| |
Collapse
|
33
|
Cosmetics and Cosmeceutical Applications of Chitin, Chitosan and Their Derivatives. Polymers (Basel) 2018; 10:polym10020213. [PMID: 30966249 PMCID: PMC6414895 DOI: 10.3390/polym10020213] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 12/19/2022] Open
Abstract
Marine resources are well recognized for their biologically active substances with great potential applications in the cosmeceutical industry. Among the different compounds with a marine origin, chitin and its deacetylated derivative—chitosan—are of great interest to the cosmeceutical industry due to their unique biological and technological properties. In this review, we explore the different functional roles of chitosan as a skin care and hair care ingredient, as an oral hygiene agent and as a carrier for active compounds, among others. The importance of the physico-chemical properties of the polymer in its use in cosmetics are particularly highlighted. Moreover, we analyse the market perspectives of this polymer and the presence in the market of chitosan-based products.
Collapse
|