1
|
Chang SH, Song D, Oh S, Han SA, Jung JM, Song NJ, Kang H, Lee S, Ahn JY, Ahn S, Na YR, Yeom CH, Park KW, Ku JM. Butein derivatives prevent obesity and improve insulin resistance through the induction of energy expenditure in high-fat diet-fed obese mice. Eur J Pharm Sci 2024; 199:106820. [PMID: 38821248 DOI: 10.1016/j.ejps.2024.106820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Obesity is a global public health problem and is related with fatal diseases such as cancer and cardiovascular and metabolic diseases. Medical and lifestyle-related strategies to combat obesity have their limitations. White adipose tissue (WAT) browning is a promising strategy for increasing energy expenditure in individuals with obesity. Uncoupling protein 1 (UCP1) drives WAT browning. We previously screened natural products that enable induction of Ucp1 and demonstrated that these natural products induced WAT browning and increased energy expenditure in mice with diet-induced obesity. In this study, we aimed to extensively optimise the structure of compound 1, previously shown to promote WAT browning. Compound 3 s exhibited a significantly higher ability to induce Ucp1 in white and brown adipocytes than did compound 1. A daily injection of compound 3 s at 5 mg/kg prevented weight gain by 13.6 % in high-fat diet-fed mice without any toxicological observation. In addition, compound 3 s significantly improved glucose homeostasis, decreased serum triacylglycerol levels, and reduced total cholesterol and LDL cholesterol levels, without altering dietary intake or physical activity. Pharmaceutical properties such as solubility, lipophilicity, and membrane permeability as well as metabolic stability, half-life (T1/2), and blood exposure ratio of i.p to i.v were significantly improved in compound 3 s when compared with those in compound 1. Regarding the mode of action of WAT browning, the induction of Ucp1 and Prdm4 by compounds 1 and 3 s was dependent on Akt1 in mouse embryonic fibroblasts. Therefore, this study suggests the potential of compound 3 s as a therapeutic agent for individuals with obesity and related metabolic diseases, which acts through the induction of WAT browning as well as brown adipose tissue activation.
Collapse
Affiliation(s)
- Seo-Hyuk Chang
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Dawoon Song
- Natural Biomaterials team, Gyeonggido Business and Science Accelerator, Suwon 443-270, Republic of Korea
| | - Seungjun Oh
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Saro-Areum Han
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Ji-Man Jung
- Natural Biomaterials team, Gyeonggido Business and Science Accelerator, Suwon 443-270, Republic of Korea
| | - No-Joon Song
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Hee Kang
- Humanitas College Kyung Hee University1732 Deogyeongdae-ro, Yongin 17104, Republic of Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jee-Yin Ahn
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | | | - Yu-Ran Na
- Rappeler Company, Anyang, 14118, Republic of Korea
| | | | - Kye Won Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| | - Jin-Mo Ku
- Natural Biomaterials team, Gyeonggido Business and Science Accelerator, Suwon 443-270, Republic of Korea.
| |
Collapse
|
2
|
Zhang C, Liu Y, Zhou Q, Fan H, Liu X, Hu J. Recent research advances in ATX inhibitors: An overview of primary literature. Bioorg Med Chem 2023; 90:117374. [PMID: 37354726 DOI: 10.1016/j.bmc.2023.117374] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/26/2023]
Abstract
The autoglobulin gene is the main enzyme for circulating LPA production and has lysophosphatidylcholine D activity, which catalyzes the production of lysophosphatidic acid and choline with lysophosphatidylcholine as substrate. A growing body of experimental evidence suggests that autoglobulin is involved in the pathogenesis of a variety of diseases. This review summarizes the different structural ATX inhibitors classified according to their binding mode to the ATX triple orientation site, and summarizes the conformational relationships and molecular docking of each type with ATX structure, hoping to contribute to the development of novel ATX inhibitors.
Collapse
Affiliation(s)
- Cheng Zhang
- Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China
| | - Yue Liu
- Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China
| | - Qinjiang Zhou
- Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China
| | - Hongze Fan
- Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China
| | - Xiaoxiao Liu
- Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China.
| | - Jinxing Hu
- Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China.
| |
Collapse
|
3
|
Banerjee S, Lee S, Norman DD, Tigyi GJ. Designing Dual Inhibitors of Autotaxin-LPAR GPCR Axis. Molecules 2022; 27:5487. [PMID: 36080255 PMCID: PMC9458164 DOI: 10.3390/molecules27175487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
The ATX-LPA-LPAR1 signaling pathway plays a universal role in stimulating diverse cellular responses, including cell proliferation, migration, survival, and invasion in almost every cell type. The ATX-LPAR1 axis is linked to several metabolic and inflammatory diseases including cancer, fibrosis, and rheumatoid arthritis. Numerous selective ATX or LPAR1 inhibitors have been developed and so far, their clinical efficacy has only been evaluated in idiopathic pulmonary fibrosis. None of the ATX and LPAR1 inhibitors have advanced to clinical trials for cancer and rheumatoid arthritis. Nonetheless, several research groups, including ours, have shown considerable benefit of simultaneous ATX and LPAR1 inhibition through combination therapy. Recent research suggests that dual-targeting therapies are superior to combination therapies that use two selective inhibitors. However, limited reports are available on ATX-LPAR1 dual inhibitors, potentially due to co-expression of multiple different LPARs with close structural similarities at the same target. In this review, we discuss rational design and future directions of dual ATX-LPAR1 inhibitors.
Collapse
Affiliation(s)
- Souvik Banerjee
- Department of Chemistry, Middle Tennessee State University, 1301 E. Main Street, Murfreesboro, TN 37132, USA
- Molecular Biosciences Program, Middle Tennessee State University, 1301 E. Main Street, Murfreesboro, TN 37132, USA
| | - Suechin Lee
- Department of Physiology, University of Tennessee Health Science Center Memphis, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Derek D. Norman
- Department of Physiology, University of Tennessee Health Science Center Memphis, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Gabor J. Tigyi
- Department of Physiology, University of Tennessee Health Science Center Memphis, 3 N. Dunlap Street, Memphis, TN 38163, USA
| |
Collapse
|
4
|
Biswas SK, Das D. One-pot Synthesis of Pyrano[2,3-c]pyrazole Derivatives via Multicomponent Reactions (MCRs) and their Applications in Medicinal Chemistry. MINI-REV ORG CHEM 2021. [DOI: 10.2174/1570193x19666211220141622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Many pyrano[2,3-c]pyrazole derivatives display diverse biological activities and some of them are known as anticancer, analgesic, anticonvulsant, antimicrobial, anti-inflammatory, and anti-malarial agents. In recent years, easy convergent, multicomponent reactions (MCRs) have been adopted to make highly functionalizedpyrano[2,3-c]pyrazole derivatives of biological interest. The synthesis of 1,4-dihydropyrano[2,3-c]pyrazole (1,4-DHPP, 2), 2,4-dihydropyrano[2,3-c]pyrazole (2,4-DHPP, 3), 4-hydroxypyrano[2,3-c]pyrazole (4-HPP, 4) derivatives, 1,4,4-substitied pyranopyrazole (SPP, 5) were reported via two-, three-, four- and five-component reactions (MCRs).
Methods:
This review article compiles the preparation of pyrano[2,3-c]pyrazole derivatives, and it highlights the applications of various pyrano[2,3-c]pyrazole derivatives in medicinal chemistry.
Results:
Varieties of pyrano[2,3-c]pyrazole derivatives were achieved via “One-pot” multicomponent reactions (MCRs). Different reaction conditions in the presence of a catalyst or without catalysts were adapted to prepare the pyrano[2,3-c]pyrazole derivatives.
Conclusion:
Biologically active pyrano[2,3-c]pyrazole derivatives were prepared and used in drug discovery research.
Collapse
Affiliation(s)
- Swapan Kumar Biswas
- Department of Chemistry, Sree Chaitanya College, Habra, 24-Pgs(N), West Bengal 743268, India
| | - Debasis Das
- Department Discovery Chemistry Research, Arromax Pharmatech Co. Ltd.Sangtian Island Innovation Park, No. 1 Huayun Road, SIP, Suzhou 215123, China
| |
Collapse
|
5
|
Jia Y, Li Y, Xu XD, Tian Y, Shang H. Design and Development of Autotaxin Inhibitors. Pharmaceuticals (Basel) 2021; 14:ph14111203. [PMID: 34832985 PMCID: PMC8622848 DOI: 10.3390/ph14111203] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/18/2022] Open
Abstract
Autotaxin (ATX) is the only enzyme of the ecto-nucleotide pyrophosphatase/phosphodiesterase (ENPP2) family with lysophospholipase D (lysoPLD) activity, which is mainly responsible for the hydrolysis of extracellular lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA). LPA can induce various responses, such as cell proliferation, migration, and cytokine production, through six G protein-coupled receptors (LPA1-6). This signaling pathway is associated with metabolic and inflammatory disorder, and inhibiting this pathway has a positive effect on the treatment of related diseases, while ATX, as an important role in the production of LPA, has been shown to be associated with the occurrence and metastasis of tumors, fibrosis and cardiovascular diseases. From mimics of ATX natural lipid substrates to the rational design of small molecule inhibitors, ATX inhibitors have made rapid progress in structural diversity and design over the past 20 years, and three drugs, GLPG1690, BBT-877, and BLD-0409, have entered clinical trials. In this paper, we will review the structure of ATX inhibitors from the perspective of the transformation of design ideas, discuss the advantages and disadvantages of each inhibitor type, and put forward prospects for the development of ATX inhibitors in the future.
Collapse
Affiliation(s)
| | | | | | - Yu Tian
- Correspondence: (Y.T.); (H.S.)
| | | |
Collapse
|
6
|
Andreev S, Pantsar T, El-Gokha A, Ansideri F, Kudolo M, Anton DB, Sita G, Romasco J, Geibel C, Lämmerhofer M, Goettert MI, Tarozzi A, Laufer SA, Koch P. Discovery and Evaluation of Enantiopure 9 H-pyrimido[4,5- b]indoles as Nanomolar GSK-3β Inhibitors with Improved Metabolic Stability. Int J Mol Sci 2020; 21:ijms21217823. [PMID: 33105671 PMCID: PMC7659979 DOI: 10.3390/ijms21217823] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/25/2022] Open
Abstract
Glycogen synthase kinase-3β (GSK-3β) is a potential target in the field of Alzheimer's disease drug discovery. We recently reported a new class of 9H-pyrimido[4,5-b]indole-based GSK-3β inhibitors, of which 3-(3-((7-chloro-9H-pyrimido[4,5-b]indol-4-yl)(methyl)amino)piperidin-1-yl)propanenitrile (1) demonstrated promising inhibitory potency. However, this compound underwent rapid degradation by human liver microsomes. Starting from 1, we prepared a series of amide-based derivatives and studied their structure-activity relationships against GSK-3β supported by 1 µs molecular dynamics simulations. The biological potency of this series was substantially enhanced by identifying the eutomer configuration at the stereocenter. Moreover, the introduction of an amide bond proved to be an effective strategy to eliminate the metabolic hotspot. The most potent compounds, (R)-3-(3-((7-chloro-9H-pyrimido[4,5-b]indol-4-yl)(methyl)amino)piperidin-1-yl)-3-oxopropanenitrile ((R)-2) and (R)-1-(3-((7-bromo-9Hpyrimido[4,5-b]indol-4-yl)(methyl)amino)piperidin-1-yl)propan-1-one ((R)-28), exhibited IC50 values of 480 nM and 360 nM, respectively, and displayed improved metabolic stability. Their favorable biological profile is complemented by minimal cytotoxicity and neuroprotective properties.
Collapse
Affiliation(s)
- Stanislav Andreev
- Institute of Pharmaceutical Sciences, Department of Medicinal and Pharmaceutical Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany; (S.A.); (T.P.); (A.E.-G.); (F.A.); (M.K.); (S.A.L.)
| | - Tatu Pantsar
- Institute of Pharmaceutical Sciences, Department of Medicinal and Pharmaceutical Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany; (S.A.); (T.P.); (A.E.-G.); (F.A.); (M.K.); (S.A.L.)
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Ahmed El-Gokha
- Institute of Pharmaceutical Sciences, Department of Medicinal and Pharmaceutical Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany; (S.A.); (T.P.); (A.E.-G.); (F.A.); (M.K.); (S.A.L.)
- Chemistry Department, Faculty of Science, Menoufia University, Gamal Abdel-Nasser Street, Shebin El-Kom 32511, Egypt
| | - Francesco Ansideri
- Institute of Pharmaceutical Sciences, Department of Medicinal and Pharmaceutical Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany; (S.A.); (T.P.); (A.E.-G.); (F.A.); (M.K.); (S.A.L.)
| | - Mark Kudolo
- Institute of Pharmaceutical Sciences, Department of Medicinal and Pharmaceutical Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany; (S.A.); (T.P.); (A.E.-G.); (F.A.); (M.K.); (S.A.L.)
| | - Débora Bublitz Anton
- Cell Culture Laboratory, Postgraduate Program in Biotechnology, University of Vale do Taquari (Univates), Lajeado 95914-014, Brazil; (D.B.A.); (M.I.G.)
| | - Giulia Sita
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio, 48, 40126 Bologna, Italy;
| | - Jenny Romasco
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Corso D’Augusto, 237, 47921 Rimini, Italy; (J.R.); (A.T.)
| | - Christian Geibel
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical (Bio-)Analysis, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany; (C.G.); (M.L.)
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical (Bio-)Analysis, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany; (C.G.); (M.L.)
| | - Márcia Ines Goettert
- Cell Culture Laboratory, Postgraduate Program in Biotechnology, University of Vale do Taquari (Univates), Lajeado 95914-014, Brazil; (D.B.A.); (M.I.G.)
| | - Andrea Tarozzi
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Corso D’Augusto, 237, 47921 Rimini, Italy; (J.R.); (A.T.)
| | - Stefan A. Laufer
- Institute of Pharmaceutical Sciences, Department of Medicinal and Pharmaceutical Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany; (S.A.); (T.P.); (A.E.-G.); (F.A.); (M.K.); (S.A.L.)
| | - Pierre Koch
- Institute of Pharmaceutical Sciences, Department of Medicinal and Pharmaceutical Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany; (S.A.); (T.P.); (A.E.-G.); (F.A.); (M.K.); (S.A.L.)
- Department of Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
- Correspondence: ; Tel.: +49-(941)-943-2847
| |
Collapse
|
7
|
Draye M, Chatel G, Duwald R. Ultrasound for Drug Synthesis: A Green Approach. Pharmaceuticals (Basel) 2020; 13:E23. [PMID: 32024033 PMCID: PMC7168956 DOI: 10.3390/ph13020023] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
This last century, the development of new medicinal molecules represents a real breakthrough in terms of humans and animal life expectancy and quality of life. However, this success is tainted by negative environmental consequences. Indeed, the synthesis of drug candidates requires the use of many chemicals, solvents, and processes that are very hazardous, toxic, energy consuming, expensive, and generates a large amount of waste. Many large pharmaceutical companies have thus moved to using green chemistry practices for drug discovery, development, and manufacturing. One of them is the use of energy-efficient activation techniques, such as ultrasound. This review summarizes the latest most representative works published on the use of ultrasound for sustainable bioactive molecules synthesis.
Collapse
Affiliation(s)
- Micheline Draye
- Université Savoie Mont Blanc—LCME, F-73000 Chambéry, France; (G.C.); (R.D.)
| | | | | |
Collapse
|
8
|
Slater O, Kontoyianni M. The compromise of virtual screening and its impact on drug discovery. Expert Opin Drug Discov 2019; 14:619-637. [PMID: 31025886 DOI: 10.1080/17460441.2019.1604677] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Docking and structure-based virtual screening (VS) have been standard approaches in structure-based design for over two decades. However, our understanding of the limitations, potential, and strength of these techniques has enhanced, raising expectations. Areas covered: Based on a survey of reports in the past five years, we assess whether VS: (1) predicts binding poses in agreement with crystallographic data (when available); (2) is a superior screening tool, as often claimed; (3) is successful in identifying chemical scaffolds that can be starting points for subsequent lead optimization cycles. Data shows that knowledge of the target and its chemotypes in postprocessing lead to viable hits in early drug discovery endeavors. Expert opinion: VS is capable of accurate placements in the pocket for the most part, but does not consistently score screening collections accurately. What matters is capitalization on available resources to get closer to a viable lead or optimizable series. Integration of approaches, subjective hit selection guided by knowledge of the receptor or endogenous ligand, libraries driven by experimental guides, validation studies to identify the best docking/scoring that reproduces experimental findings, constraints regarding receptor-ligand interactions, thoroughly designed methodologies, and predefined cutoff scoring criteria strengthen VS's position in pharmaceutical research.
Collapse
Affiliation(s)
- Olivia Slater
- a Department of Pharmaceutical Sciences , Southern Illinois University Edwardsville , Edwardsville , IL , USA
| | - Maria Kontoyianni
- a Department of Pharmaceutical Sciences , Southern Illinois University Edwardsville , Edwardsville , IL , USA
| |
Collapse
|
9
|
Pantsar T, Poso A. Binding Affinity via Docking: Fact and Fiction. Molecules 2018; 23:molecules23081899. [PMID: 30061498 PMCID: PMC6222344 DOI: 10.3390/molecules23081899] [Citation(s) in RCA: 279] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/22/2018] [Accepted: 07/26/2018] [Indexed: 01/03/2023] Open
Abstract
In 1982, Kuntz et al. published an article with the title “A Geometric Approach to Macromolecule-Ligand Interactions”, where they described a method “to explore geometrically feasible alignment of ligands and receptors of known structure”. Since then, small molecule docking has been employed as a fast way to estimate the binding pose of a given compound within a specific target protein and also to predict binding affinity. Remarkably, the first docking method suggested by Kuntz and colleagues aimed to predict binding poses but very little was specified about binding affinity. This raises the question as to whether docking is the right tool to estimate binding affinity. The short answer is no, and this has been concluded in several comprehensive analyses. However, in this opinion paper we discuss several critical aspects that need to be reconsidered before a reliable binding affinity prediction through docking is realistic. These are not the only issues that need to be considered, but they are perhaps the most critical ones. We also consider that in spite of the huge efforts to enhance scoring functions, the accuracy of binding affinity predictions is perhaps only as good as it was 10–20 years ago. There are several underlying reasons for this poor performance and these are analyzed. In particular, we focus on the role of the solvent (water), the poor description of H-bonding and the lack of the systems’ true dynamics. We hope to provide readers with potential insights and tools to overcome the challenging issues related to binding affinity prediction via docking.
Collapse
Affiliation(s)
- Tatu Pantsar
- School of Pharmacy, University of Eastern Finland, P.O. BOX 1627, 70211 Kuopio, Finland.
| | - Antti Poso
- School of Pharmacy, University of Eastern Finland, P.O. BOX 1627, 70211 Kuopio, Finland.
- Department of Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Strasse 14, 72076 Tübingen, Germany.
| |
Collapse
|
10
|
Nimbalkar UD, Seijas JA, Vazquez-Tato MP, Damale MG, Sangshetti JN, Nikalje APG. Ionic Liquid-Catalyzed Green Protocol for Multi-Component Synthesis of Dihydropyrano[2,3-c]pyrazoles as Potential Anticancer Scaffolds. Molecules 2017; 22:E1628. [PMID: 28956863 PMCID: PMC6151819 DOI: 10.3390/molecules22101628] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/22/2017] [Accepted: 09/24/2017] [Indexed: 11/18/2022] Open
Abstract
A series of 6-amino-4-substituted-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles 5a-j were synthesized via one-pot, four-component condensation reactions of aryl aldehydes 1a-j, propanedinitrile (2), hydrazine hydrate (3) and ethyl acetoacetate (4) under solvent-free conditions. We report herein the use of the Brønsted acid ionic liquid (BAIL) triethylammonium hydrogen sulphate [Et₃NH][HSO₄] as catalyst for this multi-component synthesis. Compared with the available reaction methodology, this new method has consistent advantages, including excellent yields, a short reaction time, mild reaction conditions and catalyst reusability. Selected synthesized derivatives were evaluated for in vitro anticancer activity against four human cancer cell lines viz. melanoma cancer cell line (SK-MEL-2), breast cancer cell line(MDA-MB-231), leukemia cancer cell line (K-562) and cervical cancer cell line (HeLa). Compounds 5b, 5d, 5g, 5h and 5j exhibited promising anticancer activity against all selected human cancer cell lines, except HeLa. Molecular docking studies also confirmed 5b and 5d as good lead molecules. An in silico ADMET study of the synthesized anticancer agents indicated good oral drug-like behavior and non-toxic nature.
Collapse
Affiliation(s)
- Urja D Nimbalkar
- Maulana Azad Post Graduate and Research Centre, Dr. Rafiq Zakaria Campus, Rauza Baug, Aurangabad 431001, India.
| | - Julio A Seijas
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad of Santiago de Compostela, Alfonso X el Sabio, 27002 Lugo, Spain.
| | - Maria Pilar Vazquez-Tato
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad of Santiago de Compostela, Alfonso X el Sabio, 27002 Lugo, Spain.
| | - Manoj G Damale
- Shreeyash Institute of Pharmaceutical Education and Research, Aurangabad 431010, India.
| | - Jaiprakash N Sangshetti
- Y.B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Rauza Baug, Aurangabad 431001, India.
| | - Anna Pratima G Nikalje
- Y.B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Rauza Baug, Aurangabad 431001, India.
| |
Collapse
|