1
|
Shi C, Zhao H, Fang Y, Shen L, Zhao L. Lactose in tablets: Functionality, critical material attributes, applications, modifications and co-processed excipients. Drug Discov Today 2023; 28:103696. [PMID: 37419210 DOI: 10.1016/j.drudis.2023.103696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/06/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Lactose is one of the most widespread excipients used in the pharmaceutical industry. Because of its water solubility and acceptable flowability, lactose is generally added into tablet formulation to improve wettability and undesirable flowability. Based on Quality by Design, a better understanding of the critical material attributes (CMAs) of raw materials is beneficial in guiding the improvement of tablet quality and the development of lactose. Additionally, the modifications and co-processing of lactose can introduce more-desirable characteristics to the resulting particles. This review focuses on the functionality, CMAs, applications, modifications and co-processing of lactose in tablets.
Collapse
Affiliation(s)
- Chuting Shi
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-lun Road, Pudong District, Shanghai 201203, PR China
| | - Haiyue Zhao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-lun Road, Pudong District, Shanghai 201203, PR China
| | - Ying Fang
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-lun Road, Pudong District, Shanghai 201203, PR China
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-lun Road, Pudong District, Shanghai 201203, PR China.
| | - Lijie Zhao
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-lun Road, Pudong District, Shanghai 201203, PR China.
| |
Collapse
|
2
|
Persson AS, Pazesh S, Alderborn G. Tabletability and compactibility of α-lactose monohydrate powders of different particle size. I. Experimental comparison. Pharm Dev Technol 2022; 27:319-330. [DOI: 10.1080/10837450.2022.2051550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ann-Sofie Persson
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden
| | - Samaneh Pazesh
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden
- Current affiliation; Oasmia Pharmaceutical AB, Vallongatan 1, SE-752 28 Uppsala, Sweden
| | - Göran Alderborn
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden
| |
Collapse
|
3
|
Tofiq M, Nordström J, Persson AS, Alderborn G. Effect of excipient properties and blend ratio on the compression properties of dry granulated particles prepared from microcrystalline cellulose and lactose. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Beretta M, Pinto JT, Laggner P, Paudel A. Insights into the Impact of Nanostructural Properties on Powder Tribocharging: The Case of Milled Salbutamol Sulfate. Mol Pharm 2022; 19:547-557. [PMID: 35044180 DOI: 10.1021/acs.molpharmaceut.1c00668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The impact of the crystallinity of organic solid materials on their tribocharging propensity is well reported. However, no unequivocal explanation about the potential underlying mechanism(s) could be found so far in the literature. This study reports the effect that different degrees of crystalline disorder has on the tribocharging propensity of a small molecular organic material, salbutamol sulfate (SS). Ball-milling was used to induce structural transformations in the crystalline structure of SS. Particles with different nanostructures were produced and analyzed for their solid-state, particle properties, and tribocharging. It was found that differences in the amorphous content among the processed particles and related moisture levels had an impact on powder tribocharging. A correlation between the latter and the nanostructural properties of the particles was also established. The presence of interfaces between nanodomains of different densities and shorter average lengths within the phases seems to lead to a mitigation of charge. This suggests that undetected, subtle nanostructural differences of materials can affect powder handling and processability by altering their tribocharging. The present findings demonstrate the nanostructural implications of powder triboelectrification, which can help toward the rational design of a wide variety of organic solids.
Collapse
Affiliation(s)
- Michela Beretta
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/II, Graz 8010, Austria.,Institute of Process and Particle Engineering, Graz University of Technology, Graz 8010, Austria
| | - Joana T Pinto
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/II, Graz 8010, Austria
| | - Peter Laggner
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/II, Graz 8010, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/II, Graz 8010, Austria.,Institute of Process and Particle Engineering, Graz University of Technology, Graz 8010, Austria
| |
Collapse
|
5
|
Behjani MA, Motlagh YG, Bayly AE, Hassanpour A. Assessment of blending performance of pharmaceutical powder mixtures in a continuous mixer using Discrete Element Method (DEM). POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2019.10.102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Pazesh S, Persson AS, Alderborn G. Atypical compaction behaviour of disordered lactose explained by a shift in type of compact fracture pattern. INTERNATIONAL JOURNAL OF PHARMACEUTICS-X 2019; 1:100037. [PMID: 31788670 PMCID: PMC6880114 DOI: 10.1016/j.ijpx.2019.100037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 11/30/2022]
Abstract
The objective was to investigate tabletability and compactibility for compacts of a series of α-lactose monohydrate powders with different degree of disorder. Regarding the tabletability, the powders of high degree of disorder displayed similar behaviour that deviated markedly from the behaviour of the crystalline powders and the milled powder of modest degree of disorder. The Ryshkewitch-Duckworth equation, describing compactibility, was nearly linear for the crystalline powders, while for the disordered powders the model failed to describe the relationships, i.e. the disordered powders were characterised by a plateau in the Ryshkewitch-Duckworth plots over a relatively wide range of compact porosities. It was concluded that the difference in compaction behaviour of the milled particles compared to the crystalline powders was primarily explained by the increased particle plasticity of the disordered particles. The plateau in the Ryshkewitch-Duckworth plots obtained for the disordered powders was explained by a change in the fracture behaviour of the compacts, from an around grain to an across grain fracture pattern. This implied that the disordered particles can be described as a type of core-shell particles with an amorphous shell and a defective crystalline core.
Collapse
Affiliation(s)
- Samaneh Pazesh
- Department of Pharmacy, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
| | - Ann-Sofie Persson
- Department of Pharmacy, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
| | - Göran Alderborn
- Department of Pharmacy, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
| |
Collapse
|
7
|
Pazesh S, Persson AS, Alderborn G. WITHDRAWN: Atypical compaction behaviour of disordered lactose explained by a shift in type of compact fracture pattern. Int J Pharm 2019:118763. [PMID: 31626924 DOI: 10.1016/j.ijpharm.2019.118763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Samaneh Pazesh
- Department of Pharmacy, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden.
| | - Ann-Sofie Persson
- Department of Pharmacy, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
| | - Göran Alderborn
- Department of Pharmacy, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
| |
Collapse
|