1
|
Jala A, Ponneganti S, Vishnubhatla DS, Bhuvanam G, Mekala PR, Varghese B, Radhakrishnanand P, Adela R, Murty US, Borkar RM. Transporter-mediated drug-drug interactions: advancement in models, analytical tools, and regulatory perspective. Drug Metab Rev 2021; 53:285-320. [PMID: 33980079 DOI: 10.1080/03602532.2021.1928687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/05/2021] [Indexed: 02/08/2023]
Abstract
Drug-drug interactions mediated by transporters are a serious clinical concern hence a tremendous amount of work has been done on the characterization of the transporter-mediated proteins in humans and animals. The underlying mechanism for the transporter-mediated drug-drug interaction is the induction or inhibition of the transporter which is involved in the cellular uptake and efflux of drugs. Transporter of the brain, liver, kidney, and intestine are major determinants that alter the absorption, distribution, metabolism, excretion profile of drugs, and considerably influence the pharmacokinetic profile of drugs. As a consequence, transporter proteins may affect the therapeutic activity and safety of drugs. However, mounting evidence suggests that many drugs change the activity and/or expression of the transporter protein. Accordingly, evaluation of drug interaction during the drug development process is an integral part of risk assessment and regulatory requirements. Therefore, this review will highlight the clinical significance of the transporter, their role in disease, possible cause underlying the drug-drug interactions using analytical tools, and update on the regulatory requirement. The recent in-silico approaches which emphasize the advancement in the discovery of drug-drug interactions are also highlighted in this review. Besides, we discuss several endogenous biomarkers that have shown to act as substrates for many transporters, which could be potent determinants to find the drug-drug interactions mediated by transporters. Transporter-mediated drug-drug interactions are taken into consideration in the drug approval process therefore we also provided the extrapolated decision trees from in-vitro to in-vivo, which may trigger the follow-up to clinical studies.
Collapse
Affiliation(s)
- Aishwarya Jala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Srikanth Ponneganti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Devi Swetha Vishnubhatla
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Gayathri Bhuvanam
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Prithvi Raju Mekala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Bincy Varghese
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Pullapanthula Radhakrishnanand
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Ramu Adela
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | | | - Roshan M Borkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| |
Collapse
|
2
|
Yu X, Chu Z, Li J, He R, Wang Y, Cheng C. Pharmacokinetic Drug-drug Interaction of Antibiotics Used in Sepsis Care in China. Curr Drug Metab 2021; 22:5-23. [PMID: 32990533 DOI: 10.2174/1389200221666200929115117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/17/2020] [Accepted: 07/07/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Many antibiotics have a high potential for interactions with drugs, as a perpetrator and/or victim, in critically ill patients, and particularly in sepsis patients. METHODS The aim of this review is to summarize the pharmacokinetic drug-drug interaction (DDI) of 45 antibiotics commonly used in sepsis care in China. Literature search was conducted to obtain human pharmacokinetics/ dispositions of the antibiotics, their interactions with drug-metabolizing enzymes or transporters, and their associated clinical drug interactions. Potential DDI is indicated by a DDI index ≥ 0.1 for inhibition or a treatedcell/ untreated-cell ratio of enzyme activity being ≥ 2 for induction. RESULTS The literature-mined information on human pharmacokinetics of the identified antibiotics and their potential drug interactions is summarized. CONCLUSION Antibiotic-perpetrated drug interactions, involving P450 enzyme inhibition, have been reported for four lipophilic antibacterials (ciprofloxacin, erythromycin, trimethoprim, and trimethoprim-sulfamethoxazole) and three antifungals (fluconazole, itraconazole, and voriconazole). In addition, seven hydrophilic antibacterials (ceftriaxone, cefamandole, piperacillin, penicillin G, amikacin, metronidazole, and linezolid) inhibit drug transporters in vitro. Despite no clinical PK drug interactions with the transporters, caution is advised in the use of these antibacterials. Eight hydrophilic antibiotics (all β-lactams; meropenem, cefotaxime, cefazolin, piperacillin, ticarcillin, penicillin G, ampicillin, and flucloxacillin), are potential victims of drug interactions due to transporter inhibition. Rifampin is reported to perpetrate drug interactions by inducing CYP3A or inhibiting OATP1B; it is also reported to be a victim of drug interactions, due to the dual inhibition of CYP3A4 and OATP1B by indinavir. In addition, three antifungals (caspofungin, itraconazole, and voriconazole) are reported to be victims of drug interactions because of P450 enzyme induction. Reports for other antibiotics acting as victims in drug interactions are scarce.
Collapse
Affiliation(s)
- Xuan Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zixuan Chu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jian Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Rongrong He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yaya Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chen Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
3
|
Ali Y, Shams T, Cheng Z, Li Y, Chun CSW, Shu W, Bao X, Zhu L, Murray M, Zhou F. Impaired Transport Activity of Human Organic Anion Transporters (OATs) and Organic Anion Transporting Polypeptides (OATPs) by Wnt Inhibitors. J Pharm Sci 2020; 110:914-924. [PMID: 33049263 DOI: 10.1016/j.xphs.2020.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/21/2020] [Accepted: 10/06/2020] [Indexed: 12/23/2022]
Abstract
The Wnt/β-catenin signaling pathway is dysregulated in diseases and Wnt inhibitors like PRI-724 are in clinical development. This study evaluated the regulatory actions of PRI-724 and other Wnt inhibitors on the transport activity of human renal Organic anion transporters (OATs) and Organic anion transporting polypeptides (OATPs). The substrate uptake by OAT4 and OATP2B1 was markedly decreased by PRI-724 (Vmax/Km: ∼26% and ∼17% of corresponding control), with less pronounced decreases in OAT1, OAT3 and OAT1A2. PRI-724 decreased the plasma membrane expression of inhibited OATs/OATPs but didn't affect their total cellular expression. Two model Wnt inhibitors - FH535 and 21H7 - were also tested in comparative studies. Like PRI-724, they also strongly decreased the activities and membrane expression of multiple OATs/OATPs. In contrast, FH535 didn't affect the substrate uptake by organic cation transporters. In control studies, the EGFR inhibitor lapatinib did not inhibit the function of some OATs/OATPs. Together these findings suggest that Wnt inhibitors selectively modulate the function of multiple organic anions transporters, so their clinical use may have unanticipated effects on drug entry into cells. These findings are pertinent to current clinical trials that have been designed to understand the safety and efficacy of new Wnt inhibitor drugs.
Collapse
Affiliation(s)
- Youmna Ali
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health, New South Wales, 2006 Australia
| | - Tahiatul Shams
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health, New South Wales, 2006 Australia
| | - Zhengqi Cheng
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health, New South Wales, 2006 Australia
| | - Yue Li
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health, New South Wales, 2006 Australia
| | - Chelsea Siu-Wai Chun
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health, New South Wales, 2006 Australia
| | - Wenying Shu
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health, New South Wales, 2006 Australia; Department of Pharmacy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangdong Province, 511400 China
| | - Xiaofeng Bao
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, 226019 China
| | - Ling Zhu
- The University of Sydney, Save Sight Institute, Sydney, New South Wales, 2000 Australia
| | - Michael Murray
- The University of Sydney, Discipline of Pharmacology, Faculty of Medicine and Health, New South Wales 2006, Australia
| | - Fanfan Zhou
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health, New South Wales, 2006 Australia.
| |
Collapse
|
4
|
Ali Y, Shams T, Wang K, Cheng Z, Li Y, Shu W, Bao X, Zhu L, Murray M, Zhou F. The involvement of human organic anion transporting polypeptides (OATPs) in drug-herb/food interactions. Chin Med 2020; 15:71. [PMID: 32670395 PMCID: PMC7346646 DOI: 10.1186/s13020-020-00351-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/03/2020] [Indexed: 02/08/2023] Open
Abstract
Organic anion transporting polypeptides (OATPs) are important transporter proteins that are expressed at the plasma membrane of cells, where they mediate the influx of endogenous and exogenous substances including hormones, natural compounds and many clinically important drugs. OATP1A2, OATP2B1, OATP1B1 and OATP1B3 are the most important OATP isoforms and influence the pharmacokinetic performance of drugs. These OATPs are highly expressed in the kidney, intestine and liver, where they determine the distribution of drugs to these tissues. Herbal medicines are increasingly popular for their potential health benefits. Humans are also exposed to many natural compounds in fruits, vegetables and other food sources. In consequence, the consumption of herbal medicines or food sources together with a range of important drugs can result in drug-herb/food interactions via competing specific OATPs. Such interactions may lead to adverse clinical outcomes and unexpected toxicities of drug therapies. This review summarises the drug-herb/food interactions of drugs and chemicals that are present in herbal medicines and/or food in relation to human OATPs. This information can contribute to improving clinical outcomes and avoiding unexpected toxicities of drug therapies in patients.
Collapse
Affiliation(s)
- Youmna Ali
- Faculty of Medicine and Health, Sydney Pharmacy School, The University of Sydney, Camperdown, NSW 2006 Australia
| | - Tahiatul Shams
- Faculty of Medicine and Health, Sydney Pharmacy School, The University of Sydney, Camperdown, NSW 2006 Australia
| | - Ke Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu China
| | - Zhengqi Cheng
- Faculty of Medicine and Health, Sydney Pharmacy School, The University of Sydney, Camperdown, NSW 2006 Australia
| | - Yue Li
- Faculty of Medicine and Health, Sydney Pharmacy School, The University of Sydney, Camperdown, NSW 2006 Australia
| | - Wenying Shu
- Faculty of Medicine and Health, Sydney Pharmacy School, The University of Sydney, Camperdown, NSW 2006 Australia.,Department of Pharmacy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province 511400 China
| | - Xiaofeng Bao
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226019 China
| | - Ling Zhu
- The University of Sydney, Save Sight Institute, Sydney, NSW 2000 Australia
| | - Michael Murray
- Faculty of Medicine and Health, Discipline of Pharmacology, The University of Sydney, Camperdown, NSW 2006 Australia
| | - Fanfan Zhou
- Faculty of Medicine and Health, Sydney Pharmacy School, The University of Sydney, Camperdown, NSW 2006 Australia
| |
Collapse
|
5
|
Kawahara I, Nishikawa S, Yamamoto A, Kono Y, Fujita T. The Impact of Breast Cancer Resistance Protein (BCRP/ABCG2) on Drug Transport Across Caco-2 Cell Monolayers. Drug Metab Dispos 2020; 48:491-498. [PMID: 32193356 DOI: 10.1124/dmd.119.088674] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 03/06/2020] [Indexed: 01/16/2023] Open
Abstract
Breast cancer resistance protein (BCRP) is expressed on the apical membrane of small intestinal epithelial cells and functions as an efflux pump with broad substrate recognition. Therefore, quantitative evaluation of the contribution of BCRP to the intestinal permeability of new chemical entities is very important in drug research and development. In this study, we assessed the BCRP-mediated efflux of several model drugs in Caco-2 cells using WK-X-34 as a dual inhibitor of P-glycoprotein (P-gp) and BCRP and LY335979 as a selective inhibitor of P-gp. The permeability of daidzein was high with an apparent permeability coefficient for apical-to-basal transport (P AB) of 20.3 × 10-6 cm/s. In addition, its efflux ratio (ER) was 1.55, indicating that the contribution of BCRP to its transport is minimal. Estrone-3-sulfate and ciprofloxacin showed relatively higher ER values (>2.0), whereas their BCRP-related absorptive quotient (AQ BCRP) was 0.21 and 0.3, respectively. These results indicate that BCRP does not play a major role in regulating the permeability of estrone-3-sulfate and ciprofloxacin in Caco-2 cells. Nitrofurantoin showed a P AB of 1.8 × 10-6 cm/s, and its ER was 7.6. However, the AQ BCRP was 0.37, suggesting minimal contribution of BCRP to nitrofurantoin transport in Caco-2 cells. In contrast, topotecan, SN-38, and sulfasalazine had low P AB values (0.81, 1.13, and 0.19 × 10-6 cm/s, respectively), and each AQ BCRP was above 0.6, indicating that BCRP significantly contributes to the transport of these compounds in Caco-2 cells. In conclusion, Caco-2 cells are useful to accurately estimate the contribution of BCRP to intestinal drug absorption. SIGNIFICANCE STATEMENT: We performed an in vitro assessment of the contribution of breast cancer resistance protein (BCRP) to the transport of BCRP and/or P-glycoprotein (P-gp) substrates across Caco-2 cell monolayers using absorptive quotient, which has been proposed to represent the contribution of drug efflux transporters to the net efflux. The present study demonstrates that the combined use of a BCRP/P-gp dual inhibitor and a P-gp selective inhibitor is useful to estimate the impact of BCRP and P-gp on the permeability of tested compounds in Caco-2 cells.
Collapse
Affiliation(s)
- Iichiro Kawahara
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Kyoto, Japan (I.K., S.N., A.Y.) and Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan (Y.K., T.F.)
| | - Satoyo Nishikawa
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Kyoto, Japan (I.K., S.N., A.Y.) and Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan (Y.K., T.F.)
| | - Akira Yamamoto
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Kyoto, Japan (I.K., S.N., A.Y.) and Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan (Y.K., T.F.)
| | - Yusuke Kono
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Kyoto, Japan (I.K., S.N., A.Y.) and Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan (Y.K., T.F.)
| | - Takuya Fujita
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Kyoto, Japan (I.K., S.N., A.Y.) and Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan (Y.K., T.F.)
| |
Collapse
|
6
|
Gowarty JL, Patel IJ, Herrington JD. Altered methotrexate clearance in the treatment of CNS lymphoma with concurrent use of nitrofurantoin for a urinary tract infection. J Oncol Pharm Pract 2018; 25:1794-1797. [PMID: 30486745 DOI: 10.1177/1078155218813691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Methotrexate is a widely used chemotherapy agent with a propensity for drug interactions placing the patient at risk for toxicities. There are several modes for altering methotrexate clearance including concomitant drugs leading to toxic effects on the kidneys, medications producing an acidic urine pH, and agents interfering with methotrexate transporters including the organic anion transporter and breast cancer resistance protein efflux pump. We report a case of a patient with central nervous system non-Hodgkin's lymphoma receiving high-dose methotrexate and being concomitantly treated for a urinary tract infection with nitrofurantoin. Subsequently, her initial methotrexate clearance was altered by the introduction of nitrofurantoin and returned to baseline when her nitrofurantoin was discontinued. This is the first case report describing the altered methotrexate clearance from concurrent administration of methotrexate and nitrofurantoin.
Collapse
Affiliation(s)
- Jasmine L Gowarty
- 1 Department of Medicine, Baylor Scott & White Medical Center - Temple, Baylor Scott & White Health, Temple, TX, USA
| | - Ina J Patel
- 1 Department of Medicine, Baylor Scott & White Medical Center - Temple, Baylor Scott & White Health, Temple, TX, USA
| | - Jon D Herrington
- 2 Department of Pharmacy, Baylor Scott & White Medical Center - Temple, Baylor Scott & White Health, Temple, TX, USA
- 3 Texas A&M University College of Medicine, Temple, TX, USA
| |
Collapse
|
7
|
Lu X, Chan T, Cheng Z, Shams T, Zhu L, Murray M, Zhou F. The 5'-AMP-Activated Protein Kinase Regulates the Function and Expression of Human Organic Anion Transporting Polypeptide 1A2. Mol Pharmacol 2018; 94:1412-1420. [PMID: 30348897 DOI: 10.1124/mol.118.113423] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022] Open
Abstract
The organic anion transporting polypeptides (OATPs) are important membrane proteins that mediate the cellular uptake of drugs and endogenous substances. OATP1A2 is widely distributed in many human tissues that are targeted in drug therapy; defective OATP1A2 leads to altered drug disposition influencing therapeutic outcomes. 5'-AMP-activated protein kinase (AMPK) signaling plays an important role in the pathogenesis of the metabolic syndrome characterized by an increased incidence of type II diabetes and nonalcoholic fatty liver disease. This study investigated the regulatory role of AMPK in OATP1A2 transport function and expression. We found that the treatment of AMPK-specific inhibitor compound C (dorsomorphin dihydrochloride) decreased OATP1A2-mediated uptake of estrone-3-sulfate in a concentration- and time-dependent manner. The impaired OATP1A2 function was associated with a reduced Vmax [154.6 ± 17.9 pmol × (μg × 4 minutes)-1 in compound C-treated cells vs. 413.6 ± 52.5 pmol × (μg × 4 minutes)-1 in controls]; the Km was unchanged. The cell-surface expression of OATP1A2 was decreased by compound C treatment, but total cellular expression was unchanged. The impaired cell-surface expression of OATP1A2 was associated with accelerated internalization and impaired targeting/recycling. Silencing of the AMPK α1-subunit using specific small interfering RNA corroborated the findings with compound C and revealed a role for AMPK in regulating OATP1A2 protein stability. Overall, this study implicated AMPK in the regulation of the function and expression of OATP1A2, which potentially impacts on the disposition of OATP1A2 drug substrates that may be used to treat patients with the metabolic syndrome and other diseases.
Collapse
Affiliation(s)
- Xiaoxi Lu
- School of Pharmacy (X.L., T.C., Z.C., T.S., F.Z.), Save Sight Institute (L.Z.), and Discipline of Pharmacology (M.M.), Faculty of Medicine and Health, University of Sydney, New South Wales, Australia; and Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan (T.C.)
| | - Ting Chan
- School of Pharmacy (X.L., T.C., Z.C., T.S., F.Z.), Save Sight Institute (L.Z.), and Discipline of Pharmacology (M.M.), Faculty of Medicine and Health, University of Sydney, New South Wales, Australia; and Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan (T.C.)
| | - Zhengqi Cheng
- School of Pharmacy (X.L., T.C., Z.C., T.S., F.Z.), Save Sight Institute (L.Z.), and Discipline of Pharmacology (M.M.), Faculty of Medicine and Health, University of Sydney, New South Wales, Australia; and Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan (T.C.)
| | - Tahiatul Shams
- School of Pharmacy (X.L., T.C., Z.C., T.S., F.Z.), Save Sight Institute (L.Z.), and Discipline of Pharmacology (M.M.), Faculty of Medicine and Health, University of Sydney, New South Wales, Australia; and Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan (T.C.)
| | - Ling Zhu
- School of Pharmacy (X.L., T.C., Z.C., T.S., F.Z.), Save Sight Institute (L.Z.), and Discipline of Pharmacology (M.M.), Faculty of Medicine and Health, University of Sydney, New South Wales, Australia; and Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan (T.C.)
| | - Michael Murray
- School of Pharmacy (X.L., T.C., Z.C., T.S., F.Z.), Save Sight Institute (L.Z.), and Discipline of Pharmacology (M.M.), Faculty of Medicine and Health, University of Sydney, New South Wales, Australia; and Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan (T.C.)
| | - Fanfan Zhou
- School of Pharmacy (X.L., T.C., Z.C., T.S., F.Z.), Save Sight Institute (L.Z.), and Discipline of Pharmacology (M.M.), Faculty of Medicine and Health, University of Sydney, New South Wales, Australia; and Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan (T.C.)
| |
Collapse
|
8
|
Kim HY, Veal GJ, Zhou F, Boddy AV. The role of solute carrier (SLC) transporters in actinomycin D pharmacokinetics in paediatric cancer patients. Eur J Clin Pharmacol 2018; 74:1575-1584. [PMID: 30167756 DOI: 10.1007/s00228-018-2544-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/15/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND Actinomycin D is used for treatment of paediatric cancers; however, a large inter-patient pharmacokinetic (PK) variability and hepatotoxicity are significant limitations to its use and warrant further investigation. Elimination of actinomycin D may be mediated by transporters, as the drug does not seem to undergo significant metabolism. We investigated the role of solute carrier (SLC) transporters in actinomycin D PK. METHODS Fourteen key SLCs were screened through probe substrate uptake inhibition by actinomycin D in HEK293 cells. Uptake of actinomycin D was further studied in candidate SLCs by measuring intracellular actinomycin D using a validated LCMS assay. Pharmacogenetic analysis was conducted for 60 patients (Clinical trial: NCT00900354), who were genotyped for SNPs for OAT4 and PEPT2. RESULTS OAT4, OCT2, OCT3 and PEPT2 showed significantly lower probe substrate uptake (mean ± SD 75.0 ± 3.5% (p < 0.0001), 74.8 ± 11.2% (p = 0.001), 81.2 ± 14.0% (p = 0.0083) and 70.7 ± 5.7% (p = 0.0188)) compared to that of control. Intracellular accumulation of actinomycin D was greater compared to vector control in OAT4-transfected cells by 1.5- and 1.4-fold at 10 min (p = 0.01) and 20 min (p = 0.03), and in PEPT2-transfected cells by 1.5- and 1.7-fold at 10 min (p = 0.047) and 20 min (p = 0.043), respectively. Subsequent clinical study did not find a significant association between OAT4 rs11231809 and PEPT2 rs2257212 genotypes, and actinomycin D PK parameters such as clearance (CL) and volume of distribution (Vd). CONCLUSION Transport of actinomycin D was mediated by OAT4 and PEPT2 in vitro. There was a lack of clinical significance of OAT4 and PEPT2 genotypes as predictors of actinomycin D disposition in paediatric cancer patients.
Collapse
Affiliation(s)
- Hannah Yejin Kim
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| | - Gareth J Veal
- Northern Institute of Cancer Research, Newcastle University, Newcastle, Tyne, UK
| | - Fanfan Zhou
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Alan V Boddy
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
9
|
Schmutz JL. Interactions médicamenteuses entre méthotrexate et antibiotiques. Ann Dermatol Venereol 2018; 145:469-470. [DOI: 10.1016/j.annder.2018.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Mercier C, Hodin S, He Z, Perek N, Delavenne X. Pharmacological Characterization of the RPMI 2650 Model as a Relevant Tool for Assessing the Permeability of Intranasal Drugs. Mol Pharm 2018; 15:2246-2256. [PMID: 29709196 DOI: 10.1021/acs.molpharmaceut.8b00087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The RPMI 2650 cell line has been described as a potent model of the human nasal mucosa. Nevertheless, pharmacological data are still insufficient, and the role of drug efflux transporters has not been fully elucidated. We therefore pursued the pharmacological characterization of this model, initially investigating the expression of four well-known adenosine triphosphate [ATP]-binding cassette (ABC) transporters (P-glycoprotein (P-gp), multidrug resistance associated protein (MRP)1, MRP2, and breast cancer resistance protein (BCRP)) by means of ELISA and immunofluorescence staining. The functional activity of the selected transporters was assessed by accumulation studies based on specific substrates and inhibitors. We then performed standardized bidirectional transport experiments under air-liquid interface (ALI) culture conditions, using four therapeutic compounds of local intranasal relevance in upper airway diseases. Protein expression of P-gp, MRP1, MRP2, and BCRP was detected at the membrane of the RPMI 2650 cells. In addition, all four transporters exhibited functional activity at the cellular level. In the bidirectional transport experiments, the RPMI 2650 model was able to accurately discriminate the four therapeutic compounds according to their physicochemical properties. The ABC transporters tested did not play a major role in the efflux of these compounds at the barrier level. In conclusion, the RPMI 2650 model represents a promising tool for assessing the nasal absorption of drugs on the basis of preclinical pharmacological data.
Collapse
Affiliation(s)
- Clément Mercier
- Dysfonction Vasculaire et Hémostase , INSERM, U1059 , Saint-Etienne CS 82301 , France
| | - Sophie Hodin
- Dysfonction Vasculaire et Hémostase , INSERM, U1059 , Saint-Etienne CS 82301 , France.,Université de Lyon , Saint-Etienne F-42023 , France
| | - Zhiguo He
- Université de Lyon , Saint-Etienne F-42023 , France.,Laboratoire de Biologie, d'Ingénierie et d'Imagerie de la Greffe de Cornée , BiiGC , EA2521 Saint-Etienne , France
| | - Nathalie Perek
- Dysfonction Vasculaire et Hémostase , INSERM, U1059 , Saint-Etienne CS 82301 , France.,Université de Lyon , Saint-Etienne F-42023 , France
| | - Xavier Delavenne
- Dysfonction Vasculaire et Hémostase , INSERM, U1059 , Saint-Etienne CS 82301 , France.,Université de Lyon , Saint-Etienne F-42023 , France.,Laboratoire de Pharmacologie Toxicologie Gaz du sang , CHU de Saint-Etienne , Saint-Etienne CS 82301 , France
| |
Collapse
|