1
|
Ren Q, Qu L, Yuan Y, Wang F. Natural Modulators of Key Signaling Pathways in Skin Inflammageing. Clin Cosmet Investig Dermatol 2024; 17:2967-2988. [PMID: 39712942 PMCID: PMC11663375 DOI: 10.2147/ccid.s502252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/11/2024] [Indexed: 12/24/2024]
Abstract
Low-grade chronic inflammation without obvious infection is defined as "inflammageing" and a key driver of skin ageing. Although the importance of modulating inflammageing for treating skin diseases and restoring cutaneous homeostasis is increasingly being recognized. However, the mechanisms underlying skin inflammageing, particularly those associated with natural treatments, have not been systematically elucidated. This review explores the signaling pathways associated with skin inflammageing, as well as the natural plants and compounds that directly or indirectly target these pathways. Nine signaling pathways and 60 plants/constituents related to skin anti-inflammageing are discussed, exploring plant mechanisms to mitigate skin inflammageing. Common natural plants with anti-inflammageing activity are detailed by active ingredients, mechanisms, therapeutic potential, and quantitative effects on skin inflammageing modulation. This review strengthens our understanding of these botanical ingredients as natural interventions against skin inflammageing and provides directions for future research.
Collapse
Affiliation(s)
- Qianqian Ren
- Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, 650106, People’s Republic of China
| | - Liping Qu
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, 650106, People’s Republic of China
| | - Yonglei Yuan
- Botanee Research Institute, Shanghai Jiyan Bio-Pharmaceutical Development Co., Ltd., Shanghai, 201702, People’s Republic of China
| | - Feifei Wang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, 650106, People’s Republic of China
| |
Collapse
|
2
|
Qu L, Wang F, Ma X. The extract from Portulaca oleracea L. rehabilitates skin photoaging via adjusting miR-138-5p/Sirt1-mediated inflammation and oxidative stress. Heliyon 2023; 9:e21955. [PMID: 38034793 PMCID: PMC10682634 DOI: 10.1016/j.heliyon.2023.e21955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/18/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Photoaging is the main form of external skin aging, and ultraviolet radiation is the main cause. Long-term ultraviolet radiation can cause oxidative stress, inflammation, immune responses, and skin cell apoptosis. Therefore, it is necessary to explore active products from plants to treat skin photoaging. C57BL/6J mice were randomly divided into control, model, and purslane (Portulaca oleracea L.) extract-treated groups (150, 300, and 600 mg/kg). Ultraviolet (UV) radiation induces skin photoaging. Histopathological changes in the skin were observed by hematoxylin and eosin (H&E), Masson's trichrome, and toluidine staining. Levels of hydroxyproline (HYP), hyaluronic acid (HA), collagen I (COL1), catalase (CAT), malondialdehyde (MDA), and total superoxide dismutase (T-SOD) were measured. UVB-induced BJ and HaCaT cells were used to evaluate the effects of the crude extract. The effects of the purslane extract on miR-138-5p/Sirt1 signaling were then tested. The results showed that the purslane extract significantly increased cell viability in UVB-induced cells and decreased oxidative damage and inflammation. In addition, the extract affected the miR-138-5p levels in vivo and in vitro, and increased the levels of the target gene Sirt1. In UVB-induced cells, purslane extract significantly altered the expression levels of genes or proteins associated with miR-138-5p/Sirt1 signaling. Inflammation and oxidative damage were significantly enhanced when miR-138-5p was overexpressed, and the expression levels of the genes and proteins were reversed by the extract. Co-transfection with the miR-138-5p inhibitor and si-Sirt1 showed the same effects as the extract on the signal. Similar results have been observed in mice. In summary, purslane extract showed potent protective effects against skin photoaging by regulating the miR-138-5p/Sirt1 axis and should be used as a natural product for skin care.
Collapse
Affiliation(s)
- Liping Qu
- Innovation Materials Research and Development Center, Botanee Research Institute, Shanghai Jiyan Bio-Pharmaceutical Development Co., Ltd., Shanghai 201702, China
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China
- Yunnan Botanee Bio-technology Group Co., Ltd., Kunming 650106, China
| | - Feifei Wang
- Innovation Materials Research and Development Center, Botanee Research Institute, Shanghai Jiyan Bio-Pharmaceutical Development Co., Ltd., Shanghai 201702, China
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China
- Yunnan Botanee Bio-technology Group Co., Ltd., Kunming 650106, China
| | - Xiao Ma
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China
- Yunnan Botanee Bio-technology Group Co., Ltd., Kunming 650106, China
| |
Collapse
|
3
|
Yousry C, Saber MM, Abd-Elsalam WH. A Cosmeceutical Topical Water-in-Oil Nanoemulsion of Natural Bioactives: Design of Experiment, in vitro Characterization, and in vivo Skin Performance Against UVB Irradiation-Induced Skin Damages. Int J Nanomedicine 2022; 17:2995-3012. [PMID: 35832117 PMCID: PMC9272272 DOI: 10.2147/ijn.s363779] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/27/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Damage to human skin occurs either chronologically or through repetitive exposure to ultraviolet (UV) radiation, where collagen photodegradation leads to the formation of wrinkles and skin imperfections. Consequently, cosmeceutical products containing natural bioactives to restore or regenerate collagen have gained a remarkable attention as an ameliorative remedy. Methods This study aimed to develop and optimize collagen-loaded water-in-oil nanoemulsion (W/O NE) through a D-optimal mixture design to achieve an ideal multifunctional nanosystem containing active constituents. Vit E was included as a constituent of the formulation for its antioxidant properties to minimize the destructive impact of UV radiation. The formulated systems were characterized in terms of their globule size, optical clarity, and viscosity. An optimized system was selected and evaluated for its physical stability, in vitro wound healing properties, and in vivo permeation and protection against UV radiation. In addition, the effect of collagen-loaded NE was compared to Vit C-loaded NE and collagen-/Vit C-loaded NEs mixture as Vit C is known to enhance collagen production within the skin. Results The optimized NE was formulated with 25% oils (Vit E: safflower oil, 1:3), 54.635% surfactant/cosurfactant (Span 80: Kolliphor EL: Arlasolve, 1:1:1), and 20.365% water. The optimized NE loaded with either collagen or Vit C exhibited a skin-friendly appearance with boosted permeability, and improved cell viability and wound healing properties on fibroblast cell lines. Moreover, the in vivo study and histopathological investigations confirmed the efficacy of the developed system to protect the skin against UV damage. The results revealed that the effect of collagen-/Vit C-loaded NEs mixture was more pronounced, as both drugs reduced the skin damage to an extent that it was free from any detectable alterations. Conclusion NE formulated using Vit E and containing collagen and/or Vit C could be a promising ameliorative remedy for skin protection against UVB irradiation.
Collapse
Affiliation(s)
- Carol Yousry
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mona M Saber
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Wessam H Abd-Elsalam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
Shin SH, Roh YJ, Jin SC, Hong EP, Park JK, Li K, Seo SJ, Park KY. Rheological properties and preclinical data of novel hyaluronic acid filler containing epidermal growth factor. Exp Dermatol 2022; 31:1685-1692. [DOI: 10.1111/exd.14638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/06/2022] [Accepted: 06/30/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Sun Hye Shin
- Department of Dermatology, Chung‐Ang University College of Medicine Seoul Korea
| | - Yoon Jin Roh
- Department of Dermatology, Chung‐Ang University College of Medicine Seoul Korea
| | | | | | | | - Kapsok Li
- Department of Dermatology, Chung‐Ang University College of Medicine Seoul Korea
| | - Seong Jun Seo
- Department of Dermatology, Chung‐Ang University College of Medicine Seoul Korea
| | - Kui Young Park
- Department of Dermatology, Chung‐Ang University College of Medicine Seoul Korea
| |
Collapse
|
5
|
Sevilla A, Chéret J, Slominski RM, Slominski AT, Paus R. Revisiting the role of melatonin in human melanocyte physiology: A skin context perspective. J Pineal Res 2022; 72:e12790. [PMID: 35133682 PMCID: PMC8930624 DOI: 10.1111/jpi.12790] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 11/30/2022]
Abstract
The evolutionarily ancient methoxyindoleamine, melatonin, has long perplexed investigators by its versatility of functions and mechanisms of action, which include the regulation of vertebrate pigmentation. Although first discovered through its potent skin-lightening effects in amphibians, melatonin's role in human skin and hair follicle pigmentation and its impact on melanocyte physiology remain unclear. Synthesizing our limited current understanding of this role, we specifically examine its impact on melanogenesis, oxidative biology, mitochondrial function, melanocyte senescence, and pigmentation-related clock gene activity, with emphasis on human skin, yet without ignoring instructive pointers from nonhuman species. Given the strict dependence of melanocyte functions on the epithelial microenvironment, we underscore that melanocyte responses to melatonin are best interrogated in a physiological tissue context. Current evidence suggests that melatonin and some of its metabolites inhibit both, melanogenesis (via reducing tyrosinase activity) and melanocyte proliferation by stimulating melatonin membrane receptors (MT1, MT2). We discuss whether putative melanogenesis-inhibitory effects of melatonin may occur via activation of Nrf2-mediated PI3K/AKT signaling, estrogen receptor-mediated and/or melanocortin-1 receptor- and cAMP-dependent signaling, and/or via melatonin-regulated changes in peripheral clock genes that regulate human melanogenesis, namely Bmal1 and Per1. Melatonin and its metabolites also accumulate in melanocytes where they exert net cyto- and senescence-protective as well as antioxidative effects by operating as free radical scavengers, stimulating the synthesis and activity of ROS scavenging enzymes and other antioxidants, promoting DNA repair, and enhancing mitochondrial function. We argue that it is clinically and biologically important to definitively clarify whether melanocyte cell culture-based observations translate into melatonin-induced pigmentary changes in a physiological tissue context, that is, in human epidermis and hair follicles ex vivo, and are confirmed by clinical trial results. After defining major open questions in this field, we close by suggesting how to begin answering them in clinically relevant, currently available preclinical in situ research models.
Collapse
Affiliation(s)
- Alec Sevilla
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jérémy Chéret
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Radomir M. Slominski
- Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Pathology Laboratory Service, Veteran Administration Medical Center at Birmingham, Birmingham, AL35294, USA
- Corresponding authors: Ralf Paus, MD, DSc: ; Andrzej T. Slominski, MD, PhD:
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Monasterium Laboratory, Münster, Germany
- CUTANEON – Skin & Hair Innovations, Hamburg, Germany
- Corresponding authors: Ralf Paus, MD, DSc: ; Andrzej T. Slominski, MD, PhD:
| |
Collapse
|
6
|
Recent progress in preventive effect of collagen peptides on photoaging skin and action mechanism. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
7
|
Almohaimeed HM, Albadawi EA, Mohammedsaleh ZM, Alghabban HM, Seleem HS, Ramadan OI, Ayuob NN. Brain-derived Neurotropic factor (BDNF) mediates the protective effect of Cucurbita pepo L. on salivary glands of rats exposed to chronic stress evident by structural, biochemical and molecular study. J Appl Oral Sci 2021; 29:e20201080. [PMID: 34614119 PMCID: PMC8523095 DOI: 10.1590/1678-7757-2020-1080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/29/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Acute and chronic stresses affect the salivary glands, representing the source of plasma BDNF during stressful conditions. Pumpkin is a medicinal plant with an evident antioxidant, anti-inflammatory and potential antidepressant effects. OBJECTIVE To assess the structural and biochemical effects induced by exposure to chronic unpredictable mild stress (CUMS) on salivary glands of albino rats, and to evaluate the role of pumpkin extract (Pump) in ameliorating this effect. METHODOLOGY Four groups (n=10 each) of male albino rats were included in this study: the control, CUMS, Fluoxetine-treated and Pump-treated. The corticosterone, the pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), and the oxidant/antioxidant profile were all assessed in the serum. The level of BDNF mRNA was measured in the salivary glands using qRT-PCR. Histopathological changes of the salivary glands were also assessed. RESULTS The depressive-like status was confirmed behaviorally and biochemically. Exposure to CUMS significantly up-regulated (p<0.001) the level of serum corticosterone. CUMS induced degenerative changes in the secretory and ductal elements of the salivary glands evident by increased apoptosis. Both Fluoxetine and Pumpkin significantly up-regulated (p<0.001) BDNF expression in the salivary glands and ameliorated the CUMS-induced histopathological and biochemical alterations in the salivary glands. Pumpkin significantly (p<0.001) increased the serum levels of antioxidant enzymes SOD, GPX and CAT, and reduced the serum levels of the pro-inflammatory cytokines TNF-α, IL-6. CONCLUSION Pumpkin ameliorates the depressive-like status induced in rats following exposure to chronic stress through exerting a promising anti-inflammatory, antioxidant and anti-depressant-like effects. The pumpkin, subsequently, improved stress-induced structural changes in the salivary glands that might be due to up-regulation of BDNF expression in the glands.
Collapse
Affiliation(s)
- Hailah M Almohaimeed
- Princess Nourah bint Abdulrahman University (PNU), College of Medicine, Department of Basic Science, Riyadh, Saudi Arabia
| | - Emad A Albadawi
- Taibah University, College of Medicine, Department of Anatomy, Kingdom of Saudi Arabia
| | - Zuhair M Mohammedsaleh
- University of Tabuk, Faculty of Applied Medical Sciences, Department of Medical Laboratory Technology, Tabuk 71491, Saudi Arabia
| | - Hadel M Alghabban
- University of Taibah, Faculty of Applied Medical Sciences, Department of Medical Laboratory Technology, Saudi Arabia
| | - Hanan S Seleem
- Menoufia University, Faculty of Medicine, Department of Histology, Shebin ElKoum, Menofia, Egypt.,Qassim University, Unaizah College of Medicine and Medical Sciences, Department of Basic Medical Sciences, Saudi Arabia
| | - Osama I Ramadan
- Al Azhar University, Damietta Faculty of Medicine, Histology Department, Cairo, Egypt
| | - Nasra N Ayuob
- Damietta University, Faculty of Medicine, Department of Medical Histology, Damietta, Egypt
| |
Collapse
|
8
|
Balgoon MJ, Al-Zahrani MH, Jaouni SA, Ayuob N. Combined Oral and Topical Application of Pumpkin ( Cucurbita pepo L.) Alleviates Contact Dermatitis Associated With Depression Through Downregulation Pro-Inflammatory Cytokines. Front Pharmacol 2021; 12:663417. [PMID: 34040528 PMCID: PMC8141732 DOI: 10.3389/fphar.2021.663417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Depression and contact dermatitis (CD) are considered relatively common health problems that are linked with psychological stress. The antioxidant, anti-inflammatory, and antidepressant activities of pumpkin were previously reported. Objectives: This study aimed to evaluate the efficacy of the combined topical and oral application of pumpkin fruit (Cucurbita pepo L.) extract (PE) in relieving CD associated with chronic stress-induced depression and compare it to the topical pumpkin extract alone and to the standard treatment. Materials and Methods: Forty male albino rats were exposed to chronic unpredictable mild stress (CUMS) for 4 weeks for induction of depression and then exposed to (1-fluoro-2, 4-dinitrofluorobenzene, DNFB) for 2 weeks for induction of CD. Those rats were assigned into 4 groups (n = 10 each); untreated, betamethasone-treated, PE-treated and pumpkin extract cream, and oral-treated groups. Treatments were continued for 2 weeks. All groups were compared to the negative control group (n = 10). Depression was behaviorally and biochemically confirmed. Serum and mRNA levels of pro-inflammatory cytokines, such as TNF-α, IL-6, COX-2, and iNOS, were assessed. Oxidant/antioxidant profile was assessed in the serum and skin. Histopathological and immunohistochemical assessments of affected skin samples were performed. Results: Pumpkin extract, used in this study, included a large amount of oleic acid (about 56%). The combined topical and oral administration of PE significantly reduced inflammatory and oxidative changes induced by CD and depression compared to the CD standard treatment and to the topical PE alone. PE significantly alleviated CD signs and the histopathological score (p < 0.001) mostly through the downregulation of pro-inflammatory cytokines and the upregulation of antioxidants. Conclusion: Pumpkin extract, applied topically and orally, could be an alternative and/or complementary approach for treating contact dermatitis associated with depression. Further studies on volunteer patients of contact dermatitis are recommended.
Collapse
Affiliation(s)
- Maha Jameal Balgoon
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maryam H Al-Zahrani
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Soad Al Jaouni
- Department of Hematology/Pediatric Oncology and Yousef Abdullatif Jameel Chair of Prophetic Medical Applications (YAJCPMA), Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nasra Ayuob
- Department of Medical Histology, Faculty of Medicine, Damietta University, Damietta, Egypt
| |
Collapse
|
9
|
Ansary TM, Hossain MR, Kamiya K, Komine M, Ohtsuki M. Inflammatory Molecules Associated with Ultraviolet Radiation-Mediated Skin Aging. Int J Mol Sci 2021; 22:ijms22083974. [PMID: 33921444 PMCID: PMC8069861 DOI: 10.3390/ijms22083974] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
Skin is the largest and most complex organ in the human body comprised of multiple layers with different types of cells. Different kinds of environmental stressors, for example, ultraviolet radiation (UVR), temperature, air pollutants, smoking, and diet, accelerate skin aging by stimulating inflammatory molecules. Skin aging caused by UVR is characterized by loss of elasticity, fine lines, wrinkles, reduced epidermal and dermal components, increased epidermal permeability, delayed wound healing, and approximately 90% of skin aging. These external factors can cause aging through reactive oxygen species (ROS)-mediated inflammation, as well as aged skin is a source of circulatory inflammatory molecules which accelerate skin aging and cause aging-related diseases. This review article focuses on the inflammatory pathways associated with UVR-mediated skin aging.
Collapse
|
10
|
Gao W, Wang X, Si Y, Pang J, Liu H, Li S, Ding Q, Wang Y. Exosome Derived from ADSCs Attenuates Ultraviolet B-mediated Photoaging in Human Dermal Fibroblasts. Photochem Photobiol 2021; 97:795-804. [PMID: 33351957 DOI: 10.1111/php.13370] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022]
Abstract
Stem cell therapies have attracted a lot of attention in the fields of dermatological and esthetic medicine. The paracrine action of stem cells is deemed to play a crucial role in skin treatments. Many reports have demonstrated the beneficial effects of conditioned medium (CM) derived from ADSCs on skin photoaging. However, few reports have presented the application of exosome (Exo) derived from ADSCs in the treatment of photoaging. To clarify the effects of Exo, we collected Exo from the CM of ADSCs and the photoprotective effects of Exo, as well as those of the CM with and without Exo, were investigated by detecting the intracellular ROS, DNA damage and some photoaging-associated signal pathways on UVB-treated human dermal fibroblasts. The results showed that Exo had significant efficiency in preventing photoaging, and it could inhibit UVB-induced cellular DNA damage, overexpression of ROS and MMP-1 via regulating Nrf2 and MAPK/AP-1 pathway. In addition, Exo could effectively activate the TGF-β/Smad pathway to elevate the expression of procollagen type I. However, these photoprotective effects were weakened when Exo was removed from the CM. Taken together, the results suggested that Exo, a key component of paracrine activity, played an important role in the treatment of photoaging.
Collapse
Affiliation(s)
- Wei Gao
- Department of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Xiu Wang
- Department of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Yue Si
- Department of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Jinlong Pang
- Department of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Hao Liu
- Department of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Shanshan Li
- Department of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Qi Ding
- Department of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Yushuai Wang
- Department of Pharmacy, Bengbu Medical College, Bengbu, China
| |
Collapse
|
11
|
TGFβ Signaling in Photoaging and UV-Induced Skin Cancer. J Invest Dermatol 2021; 141:1104-1110. [PMID: 33358021 DOI: 10.1016/j.jid.2020.11.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 01/06/2023]
Abstract
UVR is a major etiology for premature skin aging that leads to photoaging and UV-induced skin cancers. In the skin, TGFβ signaling is a growth inhibitor for keratinocytes and a profibrotic factor in the dermis. It exerts context-dependent effects on tumor progression. Chronic UV exposure likely causes TGFβ1/SMAD3 signaling activation and contributes to metalloproteinase-induced collagen degradation and photoinflammation in photoaging. UV irradiation also causes gene mutations in key elements of the TGFβ pathway, including TGFβRI, TGFβRII, SMAD2, and SMAD4. These mutations enable tumor cells to escape from TGFβ-induced growth inhibition and induce genomic instability and cancer stem cells, leading to the initiation, progression, invasion, and metastasis of cutaneous squamous cell carcinoma (cSCC). Furthermore, UV-induced mutations cause TGFβ overexpression in the tumor microenvironment (TME) of cSCC, basal cell carcinoma (BCC), and cutaneous melanoma, resulting in inflammation, angiogenesis, cancer-associated fibroblasts, and immune inhibition, supporting cancer survival, immune evasion, and metastasis. The pleiotropic effects of TGFβ provide possible treatment options for photoaging and skin cancer. Given the high UV-induced mutational burden and immune-repressive TME seen in cSCC, BCC, and cutaneous melanoma, treatment with the combination of a TGFβ signaling inhibitor and immune checkpoint blockade could reverse immune evasion to reduce tumor growth.
Collapse
|
12
|
Natural components in sunscreens: Topical formulations with sun protection factor (SPF). Biomed Pharmacother 2020; 134:111161. [PMID: 33360043 DOI: 10.1016/j.biopha.2020.111161] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 02/05/2023] Open
Abstract
Artificial sunscreens are already gaining traction in order to protect the skin from sunburns, photoaging and photocarcinogenesis. However, the efficacy and safety of most artificial sunscreen constituents are hindered by their photostability, toxicity and damage to marine ecosystems. Natural selection and evolution have ensured that plants and animals have developed effective protective mechanisms against the deleterious side effects of oxidative stress and ultraviolet radiation (UV). Hence, natural antioxidants such as sun blockers are drawing considerable attention. The exact mechanism by which natural components act as sunscreen molecules has not been clearly established. However, conjugated π system is reported to play an important role in protecting the vital genetic material within the organism. Compared to artificial sunscreens, natural sunscreens with strong UV absorptive capacities are largely limited by low specific extinction value and by their inability to spread in large-scale sunscreen cosmetic applications. Previous studies have documented that natural components exert their photoprotective effects (such as improved skin elasticity and hydration, skin texture, and wrinkles) through their antioxidant effects, and through the regulation of UV-induced skin inflammation, barrier impairment and aging. This review focuses on natural antioxidant topical formulations with sun protection factor (SPF). Lignin, melanin, silymarin and other ingredients have been added to high sun protection nature sunscreens without any physical or chemical UV filters. This paper also provides a reference for adopting novel technical measures (extracting high content components, changing the type of solution, optimizing formulation, applying Nano technology, et al) to design and prepare nature sunscreen formulations equated with commercial sunscreen formulations. Another strategy is to add natural antioxidants from plants, animals, microorganisms and marine organisms as special enhancer or modifier ingredients to reinforce SPF values. Although the photoprotective effects of natural components have been established, their deleterious side effects have not been elucidated.
Collapse
|
13
|
Xu D, Wang W, Liao J, Liao L, Li C, Zhao M. Walnut protein hydrolysates, rich with peptide fragments of WSREEQEREE and ADIYTEEAGR ameliorate UV-induced photoaging through inhibition of the NF-κB/MMP-1 signaling pathway in female rats. Food Funct 2020; 11:10601-10616. [PMID: 33206078 DOI: 10.1039/d0fo02027c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Skin photoaging is a complicated pathological process, and the imbalance of inflammatory regulation is associated highly with photoaging progression. Previously, prepared walnut protein hydrolysates (WPH), rich with peptide fragments of WSREEQEREE and ADIYTEEAGR demonstrated desirable photoprotection. However, it remains unclear if the photoprotection is mediated by the targeted inhibition of the NF-κB signaling pathway. Herein, we examined the regulation of WPH on inflammatory cytokine expression, and elucidated the modulation of the NF-κB/MMP-1 signaling pathway by WPH in a photoaging SD rat model. WPH significantly reduced the expression level of inflammatory cytokines IL-1β and IL-6, but significantly increased the level of IL-2 (all P < 0.05). Furthermore, WPH dramatically inhibited the activation of the NF-κB signaling pathway by mitigating the phosphorylation of IκB and p-65 proteins in a dose-dependent manner. The histopathological results indicated that WPH predominately attenuated epidermal hyperplasia, reduced the inflammatory filtration, and promoted collagen deposition in the photoaging skin tissue. Furthermore, WPH significantly stimulated the expression of TGF-β and procollagen type I, and inhibited the MMP-1 activities (all P < 0.05). Overall, the underlying mechanism of WPH ameliorating skin photoaging may be attributed to the synergistic modulation via reversing the inflammatory imbalance, suppressing the activation of the NF-κB signal pathway, stimulating procollagen type I synthesis, and inhibiting MMP-1 activities. According to these results, it can be concluded that WPH has the potential as an anti-photoaging agent in functional foods.
Collapse
Affiliation(s)
- Defeng Xu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province 524088, China.
| | | | | | | | | | | |
Collapse
|
14
|
Bora NS, Bairy PS, Salam A, Kakoti BB. Antidiabetic and antiulcerative potential of Garcinia lanceifolia Roxb. bark. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00101-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
AbstractBackgroundGarcinia lanceifoliaRoxb. has been used by many ethnic communities of Northeast India to mitigate various disorders like dyspepsia, ulcers, diabetes, etc. However, a robust scientific study on its antidiabetic and antiulcer potential is unavailable till date. The aim of this present study is to scientifically validate if the antidiabetic and antiulcer effects reported by the ethnic tribes of Assam has any scientific value or not. The effects were tested in adult Wistar albino rats using approved animal models for preclinical testing of pharmacological activities.ResultsThe hydroalcoholic extract of the bark ofGarcinia lanceifoliaRoxb. was prepared and its LD50was calculated. The LD50was determined to be greater than 5000 mg/kg body weight. The extract at doses of 250 mg/kg body weight and 500 mg/kg body weight was found to exhibit a very potent dose-dependent antidiabetic activity. The results were backed by a battery of test including analysis of serum levels of blood glucose, lipid profiles, in vivo antioxidant enzymes, and histopathological studies. Evidence of dose-dependent antiulcer activity of the extract was backed by robust scientific data. It was found that HAEGL induced a significant dose-dependent increase in the ulcer index in both alcohol-induced and acetic acid-induced ulcer models, which was evident from the macroscopic observation of the inner lining of the gastric mucosa and the histological evaluation of the extracted stomach.ConclusionThe results suggested that the bark ofGarcinia lanceifolia(Roxb.) has significant antidiabetic and antiulcer potential. Further studies with respect to the development herbal dosage forms and its safety evaluation are required.
Collapse
|
15
|
Huwait EA. Efficacy of Sweet Pumpkin in Relieving Contact Dermatitis in Chronically Stressed Rats. J Microsc Ultrastruct 2020; 8:55-61. [PMID: 32766119 PMCID: PMC7365511 DOI: 10.4103/jmau.jmau_37_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 09/13/2019] [Indexed: 11/05/2022] Open
Abstract
Background: Contact dermatitis (CD) is considered among the common inflammatory skin diseases worldwide. Cucurbita moschata Duchesne has antioxidant, anti-inflammatory, and antidepressant activity beside many other beneficial effects. Objectives: This study aimed to assess the effect of pumpkin fruit extract in treating CD in mice exposed to chronic stress and to explore the mechanism through which pumpkin can relief these changes. Materials and Methods: Thirty male albino rats were divided into three groups (n = 10); the control and two experimental groups that were exposure to chronic unpredictable mild stress for 4 weeks then painting with 1-fluoro-2,4-dinitrofluorobenzene (DNFB) for 3 consecutive days/week for 2 weeks to induce CD. Biochemical assessment of corticosterone level and antioxidants activity was performed. Skin of affected areas was excised, processed for histopathological examination. Results: DNFB-induced CD presented with dryness, hardness, and scaling. There was a significant reduction (P < 0.001) in the levels of superoxide dismutase, glutathione peroxidase and catalase activity in the skin of rats had CD. Histopathologically, the shin showed hyperplastic-thickened epidermis, focal elongation of the rete ridges, inflammatory cells infiltration in the superficial dermis, and increased collagen fibers. Local administration of pumpkin extract significantly increased the antioxidants activity in the skin and alleviated the CD-associated changes. Conclusions: This study showed that the pumpkin fruit extract could have a potential in treating CD in stressed conditions mainly via its enhancement of skin antioxidant activity.
Collapse
Affiliation(s)
- Etedal Abbas Huwait
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
16
|
Yin Z, Yang B, Ren H. Preventive and Therapeutic Effect of Ganoderma (Lingzhi) on Skin Diseases and Care. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1182:311-321. [DOI: 10.1007/978-981-32-9421-9_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Sharma Bora N, Mazumder B, Patowary P, Kishor S, Doma Bhutia Y, Chattopadhyay P, Dwivedi SK. Formulation development and accelerated stability testing of a novel sunscreen cream for ultraviolet radiation protection in high altitude areas. Drug Dev Ind Pharm 2019; 45:1332-1341. [DOI: 10.1080/03639045.2019.1616750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Nilutpal Sharma Bora
- Division of Pharmaceutical Technology, Defence Research Laboratory, Defence Research and Development Organization, Ministry of Defence, Government of India, Tezpur, India
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Bhaskar Mazumder
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Pompy Patowary
- Division of Pharmaceutical Technology, Defence Research Laboratory, Defence Research and Development Organization, Ministry of Defence, Government of India, Tezpur, India
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Sumit Kishor
- Division of Pharmaceutical Technology, Defence Research Laboratory, Defence Research and Development Organization, Ministry of Defence, Government of India, Tezpur, India
| | - Yangchen Doma Bhutia
- Division of Pharmaceutical Technology, Defence Research Laboratory, Defence Research and Development Organization, Ministry of Defence, Government of India, Tezpur, India
| | - Pronobesh Chattopadhyay
- Division of Pharmaceutical Technology, Defence Research Laboratory, Defence Research and Development Organization, Ministry of Defence, Government of India, Tezpur, India
| | - Sanjai Kumar Dwivedi
- Division of Pharmaceutical Technology, Defence Research Laboratory, Defence Research and Development Organization, Ministry of Defence, Government of India, Tezpur, India
| |
Collapse
|