1
|
Guo Y, Shao YY, Zhao YN, Zhang X, Chang ZP, Sun YF, Liu JJ, Gao J, Hou RG. Pharmacokinetics, distribution and excretion of inulin-type fructan CPA after oral or intravenous administration to mice. Food Funct 2022; 13:4130-4141. [PMID: 35316828 DOI: 10.1039/d1fo04327g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this work has been to establish and validate a simple and efficient method to detect the concentration of inulin-type fructan CPA from the roots of Codonopsis pilosula (Franch.) Nannf. in biosamples, and then apply it to evaluate the pharmacokinetics behavior, distribution character in tissue and excretion in mice. In this work, fluorescein isothiocyanate (FITC) was used to label CPA. Then FCPA was intravenously and orally administered to mice at different doses. In both i.v and p.o administration, FCPA concentration slowly declined in the circulatory system with a much longer T1/2 and MRT. After p.o administration, the area under the time curve (AUC0-∞) was dose-dependently increased. Taken together, FCPA showed poor absorption and wide tissue distribution. These pharmacokinetic results yield helpful insights into the pharmacological actions of FCPA.
Collapse
Affiliation(s)
- Yao Guo
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China. .,School of Pharmaceutical, Shanxi Medical University, Shanxi 030000, China
| | - Yun-Yun Shao
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China. .,School of Pharmaceutical, Shanxi Medical University, Shanxi 030000, China
| | - Yi-Nan Zhao
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China. .,School of Pharmaceutical, Shanxi Medical University, Shanxi 030000, China
| | - Xiao Zhang
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China. .,School of Pharmaceutical, Shanxi Medical University, Shanxi 030000, China
| | - Zhuang-Peng Chang
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China. .,School of Pharmaceutical, Shanxi Medical University, Shanxi 030000, China
| | - Yi-Fan Sun
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China. .,School of Pharmaceutical, Shanxi Medical University, Shanxi 030000, China
| | - Jun-Jin Liu
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China. .,School of Pharmaceutical, Shanxi Medical University, Shanxi 030000, China
| | - Jianping Gao
- School of Pharmaceutical, Shanxi Medical University, Shanxi 030000, China
| | - Rui-Gang Hou
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China. .,School of Pharmaceutical, Shanxi Medical University, Shanxi 030000, China
| |
Collapse
|
2
|
New therapeutics beyond amyloid-β and tau for the treatment of Alzheimer's disease. Acta Pharmacol Sin 2021; 42:1382-1389. [PMID: 33268824 PMCID: PMC8379190 DOI: 10.1038/s41401-020-00565-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/25/2020] [Indexed: 02/06/2023] Open
Abstract
As the population ages, Alzheimer's disease (AD), the most common neurodegenerative disease in elderly people, will impose social and economic burdens to the world. Currently approved drugs for the treatment of AD including cholinesterase inhibitors (donepezil, rivastigmine, and galantamine) and an N-methyl-D-aspartic acid receptor antagonist (memantine) are symptomatic but poorly affect the progression of the disease. In recent decades, the concept of amyloid-β (Aβ) cascade and tau hyperphosphorylation leading to AD has dominated AD drug development. However, pharmacotherapies targeting Aβ and tau have limited success. It is generally believed that AD is caused by multiple pathological processes resulting from Aβ abnormality, tau phosphorylation, neuroinflammation, neurotransmitter dysregulation, and oxidative stress. In this review we updated the recent development of new therapeutics that regulate neurotransmitters, inflammation, lipid metabolism, autophagy, microbiota, circadian rhythm, and disease-modified genes for AD in preclinical research and clinical trials. It is to emphasize the importance of early diagnosis and multiple-target intervention, which may provide a promising outcome for AD treatment.
Collapse
|
3
|
Lu J, Pan Q, Zhou J, Weng Y, Chen K, Shi L, Zhu G, Chen C, Li L, Geng M, Zhang Z. Pharmacokinetics, distribution, and excretion of sodium oligomannate, a recently approved anti-Alzheimer's disease drug in China. J Pharm Anal 2021; 12:145-155. [PMID: 35573885 PMCID: PMC9073255 DOI: 10.1016/j.jpha.2021.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 05/17/2021] [Accepted: 06/03/2021] [Indexed: 11/18/2022] Open
Abstract
The National Medical Products Administration has authorized sodium oligomannate for treating mild-to-moderate Alzheimer's disease. In this study, an LC-MS/MS method was developed and validated to quantitate sodium oligomannate in different biomatrices. The plasma pharmacokinetics, tissue distribution, and excretion of sodium oligomannate in Sprague-Dawley rats and beagle dogs were systematically investigated. Despite its complicated structural composition, the absorption, distribution, metabolism, and excretion profiles of the oligosaccharides in sodium oligomannate of different sizes and terminal derivatives were indiscriminate. Sodium oligomannate mainly crossed the gastrointestinal epithelium through paracellular transport following oral administration, with very low oral bioavailability in rats (0.6%–1.6%) and dogs (4.5%–9.3%). Absorbed sodium oligomannate mainly resided in circulating body fluids in free form with minimal distribution into erythrocytes and major tissues. Sodium oligomannate could penetrate the blood-cerebrospinal fluid (CSF) barrier of rats, showing a constant area under the concentration-time curve ratio (CSF/plasma) of approximately 5%. The cumulative urinary excretion of sodium oligomannate was commensurate with its oral bioavailability, supporting that excretion was predominantly renal, whereas no obvious biliary secretion was observed following a single oral dose to bile duct-cannulated rats. Moreover, only 33.7% (male) and 26.3% (female) of the oral dose were recovered in the rat excreta within 96 h following a single oral administration, suggesting that the intestinal flora may have ingested a portion of unabsorbed sodium oligomannate as a nutrient. ADME profiles of sodium oligomannate oligosaccharides were indiscriminate. An LC-MS/MS method was developed and validated for the ADME study of sodium oligomannate. Sodium oligomannate was absorbed through paracellular transport with very low BA. Approximately 5% of sodium oligomannate penetrated the blood–CSF barrier of rats. The absorbed drug was excreted through the kidney; unabsorbed drug was excreted in feces.
Collapse
|
4
|
Guo H, Chen B, Yan Z, Gao J, Tang J, Zhou C. Metabolites profiling and pharmacokinetics of troxipide and its pharmacodynamics in rats with gastric ulcer. Sci Rep 2020; 10:13619. [PMID: 32788674 PMCID: PMC7423950 DOI: 10.1038/s41598-020-70312-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022] Open
Abstract
Troxipide is widely used to treat gastric ulcer (GU) in the clinic. However, a lack of systematic metabolic, pharmacokinetic and pharmacological studies limits its clinical use. This study aimed to firstly explore the metabolic, pharmacokinetic and pharmacological mechanisms of troxipide in rats with GU compared to normal control (NC) rats. First, metabolic study was perormed by a highly selective, high-resolution mass spectrometry method. A total of 45 metabolites, including 9 phase I metabolites and 36 phase II metabolites, were identified based on MS/MS spectra. Subsequently, the pharmacokinetics results suggested that the Cmax, Ka, t1/2, AUC(0-t) and AUC(0-∞) of troxipide were significantly increased in rats with GU compared with NC rats. The Vz, K10 and absolute bioavailability of troxipide were obviously decreased in rats with GU compared with NC rats, and its tissue distribution (in the liver, lung and kidney) was significantly different between the two groups of rats. Additionally, the pharmacodynamic results suggested that the levels of biochemical factors (IL-17, IL-6, TNF-α, IFN-γ, AP-1, MTL, GAS, and PG-II) were significantly increased, the PG-Ӏ level was obviously decreased, and the protein expression levels of HSP-90, C-Cas-3 and C-PARP-1 were markedly increased in rats with GU compared with NC rats. The above results suggested that the therapeutic mechanisms underlying the metabolic, pharmacokinetic and pharmacological properties of troxipide in vivo in rats deserve further attention based on the importance of troxipide in the treatment of GU in this study, and these mechanisms could be targets for future studies.
Collapse
Affiliation(s)
- Hongbin Guo
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, 180 WuSi Road, Lianchi District, Baoding, 071002, China
| | - Baohua Chen
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, 180 WuSi Road, Lianchi District, Baoding, 071002, China
| | - Zihan Yan
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, 180 WuSi Road, Lianchi District, Baoding, 071002, China
| | - Jian Gao
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, 180 WuSi Road, Lianchi District, Baoding, 071002, China
| | - Jiamei Tang
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, 180 WuSi Road, Lianchi District, Baoding, 071002, China
| | - Chengyan Zhou
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, 180 WuSi Road, Lianchi District, Baoding, 071002, China.
| |
Collapse
|