1
|
Sirvi A, Janjal A, Debaje S, Sangamwar AT. Influence of polymer and surfactant-based precipitation inhibitors on supersaturation-driven absorption of Ibrutinib from high-dose lipid-based formulations. Int J Pharm 2025; 669:125079. [PMID: 39674385 DOI: 10.1016/j.ijpharm.2024.125079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
There is a growing pharmaceutical interest in supersaturated lipid-based formulations (Super-LbF) as an innovative strategy to enhance drug loading capacities while simultaneously reducing pill burden. This approach involves increasing the drug concentration above its equilibrium solubility in a lipid solution, achieved through temperature-induced supersaturation or the dissolution of lipophilic ionic salts. However, the physical instability and potential drug precipitation upon the dispersion of LbF remain critical. The focus of this work was to assess the impact of polymer and surfactant as precipitation inhibitors (PIs) in Super-LbF and investigate whether PIs can effectively address the aforementioned challenges. Ibrutinib (Ibr) was selected as a model drug due to its limited solubility and dissolution characteristics. The optimized formulations were characterized with a focus on dispersibility, lipolysis-permeation, and physical stability during storage. The inclusion of PIs in Super-LbF significantly enhanced physical stability by increasing viscosity and reducing the degree of supersaturation through elevated equilibrium solubility. During the dispersion and digestion study, varying levels of transient supersaturation were observed for both Super-LbF and PI-loaded Super-LbF. A noteworthy 2.5 to 3-fold increase in the solubilization ratio was observed for PI-loaded Super-LbF in comparison to Super-LbF without PI. This increase indicates a significant rise in transient drug supersaturation through kinetic and thermodynamic precipitation inhibition mechanisms. Moreover, lipolysis-permeation studies revealed increased flux values with enhanced solubilization, except in the case of Pluronic® F68, which exhibited a reduced free drug concentration near the Permeapad® barrier. Further, the in vivo absorption study confirmed that prolonged supersaturation, facilitated by PIs, contributed to enhancement in drug exposure in rats. PI-loaded Super-LbFs demonstrated a significant improvement (5.1 to 8.9-fold) in the absorption profile compared to Super-LbF without PI (p < 0.001). The study results indicate that incorporating PIs into Super-LbF enhances physical stability and maintains transient drug supersaturation under digestive conditions. Overall, this formulation approach shows promise for expanding the application of LbF to enable the successful oral delivery of high-dose regimen drugs.
Collapse
Affiliation(s)
- Arvind Sirvi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India
| | - Akash Janjal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India
| | - Shubham Debaje
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India
| | - Abhay T Sangamwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India.
| |
Collapse
|
2
|
Co-carrier-based solid dispersion of celecoxib improves dissolution rate and oral bioavailability in rats. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
3
|
Lemanowicz M, Chrzanowska J, Kotek M, Mielańczyk A, Kupczak M, Niewolik D, Korytkowska-Wałach A, Klymenko O, Kocur A, Neugebauer D. Stimuli-Responsive Star Polymer as an Admixture for Crystallization of Hollow Crystals. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8240. [PMID: 36431723 PMCID: PMC9692294 DOI: 10.3390/ma15228240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Polymers are becoming a very popular tool in the crystallization of different compounds. In this work, a new method of crystallization is proposed using stimuli-responsive star polymer in order to obtain hollow structure crystals. In these experiments, amphiphilic copolymer of acrylic acid (AA) and methyl acrylate (MA) were used for isohydric crystallization via they cooling of KCl in deionized water solution. The experiments were realized in quartz cuvette with a magnetic stirrer using a specialized spectrometer with precise temperature control. The crystallization course was monitored by the absorbance readings and analysis of the nucleation energetic effect. It was proved that the moment of the polymer's phase transition occurrence had an important role in the crystal growth process. On the other hand, the occurrence of phase transition did not trigger the nucleation. The supercoolings achieved in the presence of the polymer were significantly higher compared to pure salt crystallization. On the basis of analysis of Particle Size Distribution (PSD) and Critical Aggregation Concentration (CAC) of the polymer, it was proposed that the hydrophobic particles of macromolecules created from polymeric aggregates served as templates for the formation of hollow crystals. Their purity was verified using thermogravimetric analysis (TGA), 1H NMR, and XRD. Only trace amounts of polymer were found in the crystalline product.
Collapse
Affiliation(s)
- Marcin Lemanowicz
- Department of Chemical Engineering and Process Design, Faculty of Chemistry, Silesian University of Technology, ks. M. Strzody 7, 44-100 Gliwice, Poland
| | - Justyna Chrzanowska
- Department of Chemical Engineering and Process Design, Faculty of Chemistry, Silesian University of Technology, ks. M. Strzody 7, 44-100 Gliwice, Poland
| | - Milena Kotek
- Department of Chemical Engineering and Process Design, Faculty of Chemistry, Silesian University of Technology, ks. M. Strzody 7, 44-100 Gliwice, Poland
| | - Anna Mielańczyk
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, ks. M. Strzody 9, 44-100 Gliwice, Poland
| | - Maria Kupczak
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, ks. M. Strzody 9, 44-100 Gliwice, Poland
| | - Daria Niewolik
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, ks. M. Strzody 9, 44-100 Gliwice, Poland
| | - Anna Korytkowska-Wałach
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Olesya Klymenko
- Department of Histology and Embryology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, ul. Jordana 19, 41-808 Zabrze, Poland
| | - Alicja Kocur
- Department of Chemical Engineering and Process Design, Faculty of Chemistry, Silesian University of Technology, ks. M. Strzody 7, 44-100 Gliwice, Poland
| | - Dorota Neugebauer
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, ks. M. Strzody 9, 44-100 Gliwice, Poland
| |
Collapse
|
4
|
Zhou X, Xu D, Xu D, Yan Z, Zhang Z, Zhong B, Wang X. Solid-Liquid Phase Equilibrium of Ammonium Dihydrogen Phosphate and Agricultural Grade Ammonium Polyphosphate (Degree of Polymerization Ranging from 1 to 8) for Mixed Irrigation Strategy. ACS OMEGA 2022; 7:35885-35900. [PMID: 36249349 PMCID: PMC9558714 DOI: 10.1021/acsomega.2c04534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Water-soluble ammonium polyphosphate (APP) has the advantages of good solubility and slow-release characteristics and has the potential to be used in combination with monoammonium phosphate (MAP) as a high phosphorus content slow-release fertilizer to improve the utilization rate of phosphorus during irrigation. Herein, the effects of the APP1 concentration and temperature (278.2-313.2 K) on the solubility of MAP, solution density, and pH value in the ternary equilibrium system (APP1-MAP-water) were measured. The simplified Apelblat model, two empirical polynomials, and rational two-dimensional functions can describe the experimental solubility data, solution density, and pH value well, respectively, with reliable modeling parameters (R 2 > 0.99). In the OptiMax1001 reactor, the focused beam reflectance measurement (FBRM), the particle-view measurement (PVM), and the ReactIR 15 probes were used to observe and reverse verify that they can be synergistically codissolved to achieve economic efficiency. Basic thermodynamic data and models can guide their collaborative application in irrigation to improve the phosphorus utilization rate.
Collapse
|
5
|
Zhao P, Hu G, Chen H, Li M, Wang Y, Sun N, Wang L, Xu Y, Xia J, Tian B, Liu Y, He Z, Fu Q. Revealing the roles of polymers in supersaturation stabilization from the perspective of crystallization behaviors: A case of nimodipine. Int J Pharm 2022; 616:121538. [PMID: 35124119 DOI: 10.1016/j.ijpharm.2022.121538] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/20/2022] [Accepted: 01/29/2022] [Indexed: 10/19/2022]
Abstract
Formulating drugs into amorphous solid dispersions (ASDs) represents an attractive means to enhance the aqueous solubility of drugs. Furthermore, water-soluble polymers have proven highly advantageous for stabilizing supersaturated solutions of ASDs. However, the performance and mechanism of various polymers in stabilizing supersaturated drug solutions have not been well-studied. The aim of this study was to investigate the effects of different commercial polymers on the dissolution behaviors and supersaturation stabilization of the ASDs and to further explore the mechanism of polymer mediated supersaturation maintenance by studying the crystallization behaviors of the ASDs. In this study, nimodipine (NMD) was used as a model drug because of its poor water-solubility and fast crystallization rate in aqueous solution, and three polymers polyvinylpyrrolidone (PVP), vinylpyrrolidone-vinyl acetate copolymer (PVP VA), and polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft co-polymer (Soluplus) was selected as the drug carriers to form the ASDs with NMD. Solid-state characterizations of the ASDs confirmed the amorphous state of the ASD systems. ASDPVP VA demonstrated superior supersaturation maintenance in dissolution experiments compared to the other two ASD systems. Among the polymers tested, PVP VA most efficiently maintained dissolution of NMD and prevented its crystallization from the supersaturated solution. The ability of PVP VA to most-effectively maintain supersaturation of the drug was manifested by inhibition of crystal nucleation rather than inhibition of crystal growth following nucleation. These results suggest that nucleation inhibition was instrumental in enabling the polymer-mediated supersaturation maintenance, at least with NMD.
Collapse
Affiliation(s)
- Peixu Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guowei Hu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Haonan Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Mo Li
- Liaoning Institute for Drug Control, No. 7 Chongshan West Road, Shenyang 110016, China
| | - Yiting Wang
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Nan Sun
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Lulu Wang
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Yuan Xu
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Jialong Xia
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Baocheng Tian
- School of Pharmacy, Binzhou Medical University, No. 346, Guanhai Road, Yantai 264003, China
| | - Yanhua Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
6
|
Stabilizing Effect of Soluplus on Erlotinib Metastable Crystal Form in Microparticles and Amorphous Solid Dispersions. Polymers (Basel) 2022; 14:polym14061241. [PMID: 35335571 PMCID: PMC8949943 DOI: 10.3390/polym14061241] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 02/01/2023] Open
Abstract
Microparticles (MPs) and amorphous solid dispersions (SDs) are effective methods to improve the dissolution of insoluble drugs. However, stability is a concern for these two high-energy systems, resulting from high surface area and amorphous polymorph, respectively. As an amphiphilic polymer, Soluplus (SOL) is usually used as a carrier in SDs. In this study, erlotinib microparticles (ERL MPs) and erlotinib solid dispersions (ERL SDs) were prepared with SOL by bottom-up technology and solvent evaporation. The solid-state properties of ERL MPs and ERL SDs were characterized by Differential Scanning Calorimetry (DSC), Powder X-Ray Diffraction (PXRD) and Scanning Electron Microscopy (SEM). The ERL MPs existed in a metastable crystal form A while the ERL SDs existed in an amorphous state. Fourier transform infrared spectroscopy (FT-IR) showed that there was a hydrogen bond interaction between the N-H group of ERL and the carbonyl group of SOL in ERL MPs and SDs. The dissolution profiles of ERL SDs and ERL MPs were improved significantly. ERL MPs showed better stability than ERL SDs in accelerated stability test. The discrepant stabilizing effects of polymer SOL in two systems may provide effective ideas for solubilization of insoluble drugs and the stability of drugs after recrystallization.
Collapse
|
7
|
Lemanowicz M, Mielańczyk A, Walica T, Kotek M, Gierczycki A. Application of Polymers as a Tool in Crystallization-A Review. Polymers (Basel) 2021; 13:polym13162695. [PMID: 34451235 PMCID: PMC8401169 DOI: 10.3390/polym13162695] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/22/2022] Open
Abstract
The application of polymers as a tool in the crystallization process is gaining more and more interest among the scientific community. According to Web of Science statistics the number of papers dealing with “Polymer induced crystallization” increased from 2 in 1990 to 436 in 2020, and for “Polymer controlled crystallization”—from 4 in 1990 to 344 in 2020. This is clear evidence that both topics are vivid, attractive and intensively investigated nowadays. Efficient control of crystallization and crystal properties still represents a bottleneck in the manufacturing of crystalline materials ranging from pigments, antiscalants, nanoporous materials and pharmaceuticals to semiconductor particles. However, a rapid development in precise and reliable measuring methods and techniques would enable one to better describe phenomena involved, to formulate theoretical models, and probably most importantly, to develop practical indications for how to appropriately lead many important processes in the industry. It is clearly visible at the first glance through a number of representative papers in the area, that many of them are preoccupied with the testing and production of pharmaceuticals, while the rest are addressed to new crystalline materials, renewable energy, water and wastewater technology and other branches of industry where the crystallization process takes place. In this work, authors gathered and briefly discuss over 100 papers, published in leading scientific periodicals, devoted to the influence of polymers on crystallizing solutions.
Collapse
Affiliation(s)
- Marcin Lemanowicz
- Department of Chemical Engineering and Process Design, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (T.W.); (M.K.); (A.G.)
- Correspondence: (M.L.); (A.M.); Tel.: +48-32-237-28-32 (M.L.); +48-32-237-15-73 (A.M.); Fax: +48-32-237-14-61 (M.L.); +48-32-237-15-09 (A.M.)
| | - Anna Mielańczyk
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
- Correspondence: (M.L.); (A.M.); Tel.: +48-32-237-28-32 (M.L.); +48-32-237-15-73 (A.M.); Fax: +48-32-237-14-61 (M.L.); +48-32-237-15-09 (A.M.)
| | - Tomasz Walica
- Department of Chemical Engineering and Process Design, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (T.W.); (M.K.); (A.G.)
| | - Milena Kotek
- Department of Chemical Engineering and Process Design, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (T.W.); (M.K.); (A.G.)
| | - Andrzej Gierczycki
- Department of Chemical Engineering and Process Design, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (T.W.); (M.K.); (A.G.)
| |
Collapse
|
8
|
Crestani C, Bernardo A, Costa C, Giulietti M. An artificial neural network model applied to convert sucrose chord length distributions into particle size distributions. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.01.075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
9
|
Barros L, Gim-Krumm M, Seriche G, Quilaqueo M, Castillo C, Ihle CF, Ruby-Figueroa R, Estay H. In-situ and real-time aggregation size evolution of copper sulfide precipitates using focused beam reflectance measurement (FBRM). POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.11.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
10
|
Elucidation of alginate-drug miscibility on its crystal growth inhibition effect in supersaturated drug delivery system. Carbohydr Polym 2020; 230:115601. [DOI: 10.1016/j.carbpol.2019.115601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/29/2019] [Accepted: 11/09/2019] [Indexed: 11/21/2022]
|