1
|
Safarov R, Fedotova O, Uvarova A, Gordienko M, Menshutina N. Review of Intranasal Active Pharmaceutical Ingredient Delivery Systems. Pharmaceuticals (Basel) 2024; 17:1180. [PMID: 39338342 PMCID: PMC11435088 DOI: 10.3390/ph17091180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
In recent decades, there has been an increased interest in the development of intranasal delivery systems for active pharmaceutical ingredients (APIs) not only for treating local nasal diseases but also for treating systemic diseases, central nervous system (CNS) disorders, and vaccine delivery. The nasal cavity possesses a unique set of anatomical characteristics for delivering active pharmaceutical ingredients, but there are several limitations that recent research in the field of the intranasal administration of APIs aims to overcome. For the effective delivery of nasal preparations, active pharmaceutical ingredients are incorporated into various micro- and nanosystems. Some of the most commonly encountered API delivery systems in the scientific literature include liposomal systems, polymer particles with mucoadhesive properties, in situ gels, nano- and microemulsions, and solid lipid particles. This article provides a review of research on the development of nasal preparations for treating local nasal cavity diseases (in particular, for antibiotic delivery), systemic diseases (analgesics, drugs for cardiovascular diseases, antiviral and antiemetic drugs), CNS disorders (Alzheimer's disease, Parkinson's disease, epilepsy, schizophrenia, depression), and vaccine delivery. The literature data show that active research is underway to reformulate drugs of various pharmacotherapeutic groups into a nasal form.
Collapse
Affiliation(s)
| | - Olga Fedotova
- Department of Chemical and Pharmaceutical Engineering, Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047 Moscow, Russia (A.U.)
| | | | | | | |
Collapse
|
2
|
Pires PC, Fernandes M, Nina F, Gama F, Gomes MF, Rodrigues LE, Meirinho S, Silvestre S, Alves G, Santos AO. Innovative Aqueous Nanoemulsion Prepared by Phase Inversion Emulsification with Exceptional Homogeneity. Pharmaceutics 2023; 15:1878. [PMID: 37514064 PMCID: PMC10384498 DOI: 10.3390/pharmaceutics15071878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/22/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Formulating low-solubility or low-permeability drugs is a challenge, particularly with the low administration volumes required in intranasal drug delivery. Nanoemulsions (NE) can solve both issues, but their production and physical stability can be challenging, particularly when a high proportion of lipids is necessary. Hence, the aim of the present work was to develop a NE with good solubilization capacity for lipophilic drugs like simvastatin and able to promote the absorption of drugs with low permeability like fosphenytoin. Compositions with high proportion of two lipids were screened and characterized. Surprisingly, one of the compositions did not require high energy methods for high droplet size homogeneity. To better understand formulation factors important for this feature, several related compositions were evaluated, and their relative cytotoxicity was screened. Optimized compositions contained a high proportion of propylene glycol monocaprylate NF, formed very homogenous NE using a low-energy phase inversion method, solubilized simvastatin at high drug strength, and promoted a faster intranasal absorption of the hydrophilic prodrug fosphenytoin. Hence, a new highly homogeneous NE obtained by a simple low-energy method was successfully developed, which is a potential alternative for industrial application for the solubilization and protection of lipophilic actives, as well as (co-)administration of hydrophilic molecules.
Collapse
Affiliation(s)
- Patrícia C Pires
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Mariana Fernandes
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Francisca Nina
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Francisco Gama
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Maria F Gomes
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Lina E Rodrigues
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Sara Meirinho
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Samuel Silvestre
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Faculty of Sciences, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Gilberto Alves
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Adriana O Santos
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
3
|
Du L, Chen L, Liu F, Wang W, Huang H. Nose-to-brain drug delivery for the treatment of CNS disease: New development and strategies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 171:255-297. [PMID: 37783558 DOI: 10.1016/bs.irn.2023.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Delivering drugs to the brain has always been a challenging task due to the restrictive properties of the blood-brain barrier (BBB). Intranasal delivery is therefore emerging as an efficient method of administration, making it easy to self-administration and thus provides a non-invasive and painless alternative to oral and parenteral administration for delivering therapeutics to the central nervous system (CNS). Recently, drug formulations have been developed to further enhance this nose-to-brain transport, primarily using nanoparticles (NPs). Therefore, the purposes of this review are to highlight and describe the anatomical basis of nasal-brain pathway and provide an overview of drug formulations and current drugs for intranasal administration in CNS disease.
Collapse
Affiliation(s)
- Li Du
- Biotherapeutic Research Center, Beijing Tsinghua Changgung Hospital, Beijing, P.R. China
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital of Beijing University of Traditional Chinese Medicine, Beijing, P.R. China
| | - Fangfang Liu
- Department of Neurology, Jilin City Central Hospital, Jilin, China
| | - Wenya Wang
- Biotherapeutic Research Center, Beijing Tsinghua Changgung Hospital, Beijing, P.R. China,.
| | - Hongyun Huang
- Institute of Neurorestoratology, Third Medical Center of General Hospital of PLA, Beijing, P.R. China; Beijing Hongtianji Neuroscience Academy, Beijing, P.R. China.
| |
Collapse
|
4
|
Martínez-Razo G, Pires PC, Domínguez-López ML, Veiga F, Vega-López A, Paiva-Santos AC. Norcantharidin Nanoemulsion Development, Characterization, and In Vitro Antiproliferation Effect on B16F1 Melanoma Cells. Pharmaceuticals (Basel) 2023; 16:ph16040501. [PMID: 37111258 PMCID: PMC10143330 DOI: 10.3390/ph16040501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Melanoma is a highly lethal type of cancer that has had an increase in incidence in the last decades. Nevertheless, current therapies lack effectiveness and have highly disabling side effects, which calls for new therapeutic strategies. Norcantharidin (NCTD) is an acid derivative with potential antitumor activity isolated from natural blister beetles. However, its solubility limitations restrict its use. To address this issue, we developed an oil-in-water nanoemulsion using commonly available cosmetic ingredients, which increased NCTD solubility 10-fold compared to water. The developed nanoemulsion showed a good droplet size and homogeneity, with adequate pH and viscosity for skin application. In vitro drug release studies showed a sustained release profile, ideal for prolonged therapeutic effects. Accelerated stability studies proved that the formulation was reasonably stable under stress conditions, with particle separation fingerprints, instability index, particle size, and sedimentation velocity analyses being conducted. To assess the therapeutic potential of the developed formulation, in vitro studies were conducted on melanoma B16F1 cells; results showed an IC50 of 1.026 +/− 0.370 mg/kg, and the cells’ metabolic activity decreased after exposure to the NCTD nanoemulsion. Hence, a new “easy-to-make” nanoformulation with therapeutic potential on melanoma cells was developed, as a possible adjuvant for future melanoma treatment.
Collapse
|
5
|
Alberto M, Paiva-Santos AC, Veiga F, Pires PC. Lipid and Polymeric Nanoparticles: Successful Strategies for Nose-to-Brain Drug Delivery in the Treatment of Depression and Anxiety Disorders. Pharmaceutics 2022; 14:pharmaceutics14122742. [PMID: 36559236 PMCID: PMC9783528 DOI: 10.3390/pharmaceutics14122742] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Intranasal administration has gained an increasing interest for brain drug delivery since it allows direct transport through neuronal pathways, which can be quite advantageous for central nervous system disorders, such as depression and anxiety. Nanoparticles have been studied as possible alternatives to conventional formulations, with the objective of improving drug bioavailability. The present work aimed to analyze the potential of intranasal nanoparticle administration for the treatment of depression and anxiety, using the analysis of several studies already performed. From the carried-out analysis, it was concluded that the use of nanoparticles allows the drug's protection from enzymatic degradation, and the modulation of its components allows controlled drug release and enhanced drug permeation. Furthermore, the results of in vivo studies further verified these systems' potential, with the drug reaching the brain faster and leading to increased bioavailability and, consequently, therapeutic effect. Hence, in general, the intranasal administration of nanoparticles leads to a faster onset of action, with increased and prolonged brain drug concentrations and, consequently, therapeutic effects, presenting high potential as an alternative to the currently available therapies for the treatment of depression and anxiety.
Collapse
Affiliation(s)
- Margarida Alberto
- Faculty of Pharmacy, University of Coimbra (FFUC), Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Faculty of Pharmacy, University of Coimbra (FFUC), Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Rede de Química e Tecnologia/Laboratório Associado para a Química Verde (REQUIMTE/LAQV), Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Correspondence: (A.C.P.-S.); (P.C.P.)
| | - Francisco Veiga
- Faculty of Pharmacy, University of Coimbra (FFUC), Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Rede de Química e Tecnologia/Laboratório Associado para a Química Verde (REQUIMTE/LAQV), Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Patrícia C. Pires
- Faculty of Pharmacy, University of Coimbra (FFUC), Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Rede de Química e Tecnologia/Laboratório Associado para a Química Verde (REQUIMTE/LAQV), Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Correspondence: (A.C.P.-S.); (P.C.P.)
| |
Collapse
|
6
|
Sastri KT, Gupta NV, M S, Chakraborty S, Kumar H, Chand P, Balamuralidhara V, Gowda D. Nanocarrier facilitated drug delivery to the brain through intranasal route: A promising approach to transcend bio-obstacles and alleviate neurodegenerative conditions. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
7
|
Self-Emulsifying Drug Delivery Systems: An Alternative Approach to Improve Brain Bioavailability of Poorly Water-Soluble Drugs through Intranasal Administration. Pharmaceutics 2022; 14:pharmaceutics14071487. [PMID: 35890385 PMCID: PMC9319231 DOI: 10.3390/pharmaceutics14071487] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022] Open
Abstract
Efforts in discovering new and effective neurotherapeutics are made daily, although most fail to reach clinical trials. The main reason is their poor bioavailability, related to poor aqueous solubility, limited permeability through biological membranes, and the hepatic first-pass metabolism. Nevertheless, crossing the blood–brain barrier is the major drawback associated with brain drug delivery. To overcome it, intranasal administration has become more attractive, in some cases even surpassing the oral route. The unique anatomical features of the nasal cavity allow partial direct drug delivery to the brain, circumventing the blood–brain barrier. Systemic absorption through the nasal cavity also avoids the hepatic first-pass metabolism, increasing the systemic bioavailability of highly metabolized entities. Nevertheless, most neurotherapeutics present physicochemical characteristics that require them to be formulated in lipidic nanosystems as self-emulsifying drug delivery systems (SEDDS). These are isotropic mixtures of oils, surfactants, and co-surfactants that, after aqueous dilution, generate micro or nanoemulsions loading high concentrations of lipophilic drugs. SEDDS should overcome drug precipitation in absorption sites, increase their permeation through absorptive membranes, and enhance the stability of labile drugs against enzymatic activity. Thus, combining the advantages of SEDDS and those of the intranasal route for brain delivery, an increase in drugs’ brain targeting and bioavailability could be expected. This review deeply characterizes SEDDS as a lipidic nanosystem, gathering important information regarding the mechanisms associated with the intranasal delivery of drugs loaded in SEDDS. In the end, in vivo results after SEDDS intranasal or oral administration are discussed, globally revealing their efficacy in comparison with common solutions or suspensions.
Collapse
|
8
|
Ahmad MZ, Ahmad J, Alasmary MY, Akhter S, Aslam M, Pathak K, Jamil P, Abdullah M. Nanoemulgel as an approach to improve the biopharmaceutical performance of lipophilic drugs: Contemporary research and application. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Meirinho S, Rodrigues M, Ferreira CL, Oliveira RC, Fortuna A, Santos AO, Falcão A, Alves G. Intranasal delivery of lipid-based nanosystems as a promising approach for brain targeting of the new-generation antiepileptic drug perampanel. Int J Pharm 2022; 622:121853. [PMID: 35623483 DOI: 10.1016/j.ijpharm.2022.121853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/19/2022] [Indexed: 01/29/2023]
Abstract
Perampanel (PER), a new-generation antiepileptic drug effective against different types of seizures, has already demonstrated a potential in status epilepticus therapy. Considering the growing interest of intranasal (IN) administration for nose-to-brain delivery, PER could be envisioned as a good candidate for this route, especially if formulated in a lipid-based nanosystem. With that purpose, a hydrophobic formulation (FO1.2) and a self-microemulsifying drug delivery system (SMEDDS) (FH5) loaded with PER were developed and characterized. Following PER IN administration (1 mg/kg) to mice, its pharmacokinetics was characterized and compared with intravenous and oral routes. Histopathological toxicity was also examined after a 7-day repeated dose study. FH5 homogeneously formed nanodroplets upon dispersion (20.07 ± 0.03 nm), showing a sustained in vitro PER release profile up to 4 h. By IN route, PER brain delivery was more extensive with FH5 (Cmax and AUC of 52.32 ng/g and 190.35 ng.h/g for FO1.2; 93.87 ng/g and 257.75 ng.h/g for FH5). Maximum brain concentration and total brain exposure were higher than those obtained after oral dosage, with maximum PER concentrations reached significantly faster than post-oral administration (15 min vs 2 h). An improvement in PER plasmatic concentration was also obtained, demonstrated by high relative bioavailability values (134.1% for FH5 and 107.8% for FO1.2). PER absolute plasma bioavailability after IN delivery was 55.5% for FH5 and 44.6% for FO1.2, ensuring a somewhat improved targeting of PER to the brain by the IN route compared to the IV route. No signs of toxicity were found by histopathologic evaluation. Results suggest that IN administration of PER might be a feasible and safe approach for acute and chronic epilepsy management, especially using delivery systems as SMEDDS.
Collapse
Affiliation(s)
- Sara Meirinho
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Márcio Rodrigues
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; CPIRN-UDI-IPG-Center for Potential and Innovation of Natural Resources, Research Unit for Inland Development, Polythecnic of Guarda, 6300-559 Guarda, Portugal
| | - Catarina L Ferreira
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Rui Caetano Oliveira
- Pathology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Adriana O Santos
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
10
|
Salave S, Rana D, Pardhe R, Bule P, Benival D. Unravelling Micro and Nano vesicular System in Intranasal Drug Delivery for Epilepsy. Pharm Nanotechnol 2022; 10:PNT-EPUB-122916. [PMID: 35473543 DOI: 10.2174/2211738510666220426115340] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/02/2022] [Accepted: 03/10/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Epilepsy is one of the major neurological disorders, affecting about 50 million people globally. Oral, intravenous, and rectal delivery systems are available for the management of epileptic seizures. However, intranasal delivery serves beneficial for delivering anti-epileptic drugs owing to the advantages it offers. OBJECTIVE Various approaches have been developed over the years aiming to attain either a safer or faster brain delivery; a nasal delivery system proposes significant outcomes. The non-invasiveness and high vascularity contribute to the high permeability of the nasal mucosa, allowing rapid drug absorption. This review highlights some of the promising novel approaches delivering antiepileptic drugs efficiently employing the nasal route. METHODS The method includes a collection of data from different search engines like PubMed, ScienceDirect, SciFinder for obtaining appropriate and relevant literature regarding epilepsy, intranasal delivery of antiepileptic agents, and novel therapeutics. RESULTS The present review underlines the majority of work related to intranasal delivery in the treatment of epilepsy, aiming to draw the attention of the researchers towards the easiest and efficient ways of formulation for the delivery of antiepileptics during seizures. CONCLUSION This review intends to provide understanding about the delivery aspects of anti-epileptic drugs, the benefits of intranasal delivery, and the novel approaches employed for the treatment of epilepsy.
Collapse
Affiliation(s)
- Sagar Salave
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Dhwani Rana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Rupali Pardhe
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Prajakta Bule
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Derajram Benival
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| |
Collapse
|
11
|
Pires PC, Rodrigues M, Alves G, Santos AO. Strategies to Improve Drug Strength in Nasal Preparations for Brain Delivery of Low Aqueous Solubility Drugs. Pharmaceutics 2022; 14:588. [PMID: 35335964 PMCID: PMC8955176 DOI: 10.3390/pharmaceutics14030588] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 01/21/2023] Open
Abstract
Intranasal administration is a promising route for brain drug delivery. However, it can be difficult to formulate drugs that have low water solubility into high strength intranasal solutions. Hence, the purpose of this work was to review the strategies that have been used to increase drug strength in intranasal liquid formulations. Three main groups of strategies are: the use of solubilizers (change in pH, complexation and the use cosolvents/surfactants); incorporation of the drugs into a carrier nanosystem; modifications of the molecules themselves (use of salts or hydrophilic prodrugs). The use of high amounts of cosolvents and/or surfactants and pH decrease below 4 usually lead to local adverse effects, such as nasal and upper respiratory tract irritation. Cyclodextrins and (many) different carrier nanosystems, on the other hand, could be safer for intranasal administration at reasonably high concentrations, depending on selected excipients and their dose. While added attributes such as enhanced permeation, sustained delivery, or increased direct brain transport could be achieved, a great effort of optimization will be required. On the other hand, hydrophilic prodrugs, whether co-administered with a converting enzyme or not, can be used at very high concentrations, and have resulted in a fast prodrug to parent drug conversion and led to high brain drug levels. Nevertheless, the choice of which strategy to use will always depend on the characteristics of the drug and must be a case-by-case approach.
Collapse
Affiliation(s)
- Patrícia C. Pires
- Faculty of Pharmacy (FFUC-UC), University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (M.R.); (G.A.)
| | - Márcio Rodrigues
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (M.R.); (G.A.)
- Faculty of Health Sciences (FCS-UBI), University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
- Center for Potential and Innovation of Natural Resources, Research Unit for Inland Development (CPIRN-UDI-IPG), Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| | - Gilberto Alves
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (M.R.); (G.A.)
- Faculty of Health Sciences (FCS-UBI), University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Adriana O. Santos
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (M.R.); (G.A.)
- Faculty of Health Sciences (FCS-UBI), University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
12
|
Khan KU, Minhas MU, Badshah SF, Suhail M, Ahmad A, Ijaz S. Overview of nanoparticulate strategies for solubility enhancement of poorly soluble drugs. Life Sci 2022; 291:120301. [PMID: 34999114 DOI: 10.1016/j.lfs.2022.120301] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 12/20/2022]
Abstract
Poor aqueous solubility and poor bioavailability are major issues with many pharmaceutical industries. By some estimation, 70-90% drug candidates in development stage while up-to 40% of the marketed products are poorly soluble which leads to low bioavailability, reduced therapeutic effects and dosage escalation. That's why solubility is an important factor to consider during design and manufacturing of the pharmaceutical products. To-date, various strategies have been explored to tackle the issue of poor solubility. This review article focuses the updated overview of commonly used macro and nano drug delivery systems and techniques such as micronization, solid dispersion (SD), supercritical fluid (SCF), hydrotropy, co-solvency, micellar solubilization, cryogenic technique, inclusion complex formation-based techniques, nanosuspension, solid lipid nanoparticles, and nanogels/nanomatrices explored for solubility enhancement of poorly soluble drugs. Among various techniques, nanomatrices were found a promising and impeccable strategy for solubility enhancement of poorly soluble drugs. This article also describes the mechanism of action of each technique used in solubilization enhancement.
Collapse
Affiliation(s)
- Kifayat Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Punjab, Pakistan; Quaid-e-Azam College of Pharmacy, Sahiwal, Punjab, Pakistan
| | - Muhammad Usman Minhas
- College of Pharmacy, University of Sargodha, University Road, Sargodha City, Punjab, Pakistan.
| | - Syed Faisal Badshah
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Punjab, Pakistan
| | - Muhammad Suhail
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan Ist Road, Kaohsiung City 807, Taiwan, ROC
| | - Aousaf Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Punjab, Pakistan; Quaid-e-Azam College of Pharmacy, Sahiwal, Punjab, Pakistan
| | - Shakeel Ijaz
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Punjab, Pakistan; Quaid-e-Azam College of Pharmacy, Sahiwal, Punjab, Pakistan
| |
Collapse
|
13
|
Xue F, Li X, Qin L, Liu X, Li C, Adhikari B. Anti-aging properties of phytoconstituents and phyto-nanoemulsions and their application in managing aging-related diseases. Adv Drug Deliv Rev 2021; 176:113886. [PMID: 34314783 DOI: 10.1016/j.addr.2021.113886] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/13/2021] [Accepted: 07/18/2021] [Indexed: 12/22/2022]
Abstract
Aging is spontaneous and inevitable process in all living beings. It is a complex natural phenomenon that manifests as a gradual decline of physiological functions and homeostasis. Aging inevitably leads to age-associated injuries, diseases, and eventually death. The research on aging-associated diseases aimed at delaying, preventing or even reversing the aging process are of great significance for healthy aging and also for scientific progress. Numerous plant-derived compounds have anti-aging effects, but their therapeutic potential is limited due to their short shelf-life and low bioavailability. As the novel delivery system, nanoemulsion can effectively improve this defect. Nanoemulsions enhance the delivery of drugs to the target site, maintain the plasma concentration for a longer period, and minimize adverse reaction and side effects. This review describes the importance of nanoemulsions for the delivery of phyto-derived compounds and highlights the importance of nanoemulsions in the treatment of aging-related diseases. It also covers the methods of preparation, fate and safety of nanoemulsions, which will provide valuable information for the development of new strategies in treatment of aging-related diseases.
Collapse
|
14
|
Progress in nasal drug delivery systems. Int J Pharm 2021; 607:120994. [PMID: 34390810 DOI: 10.1016/j.ijpharm.2021.120994] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 01/02/2023]
Abstract
Most of the available drugs are usually administered orally (e.g. in tablets or capsules) or by parenteral injection in the case of substances being destroyed in the gastric environment or not being absorbed. However, this bears disadvantages as many people have trouble swallowing tablets and parenteral injection requires trained personnel and/or a reasonably sterile environment to minimize the possibility of contamination. Thus, as an easy to use alternative nasal drug delivery was developed. Drug delivery systems are used to achieve a reproducible high drug concentration. These systems overcome various disadvantages leading to stabilization of the drug, advanced drug transport, improvement of the physicochemical properties of the drug like water solubility, and increase of drug uptake and bioavailability. In addition, properties such as bad taste or smell of the drug are masked. Nasal drug delivery systems are suitable for use both locally and systemically. In the last five years, the development and progression of nasal drug delivery systems has gained importance due to their numerous advantages. This work gives an overview of the basics, such as structure and function of the nose, as well as a short introduction to local and systemic application of drugs. Furthermore, selected drug delivery systems are explained with examples of active ingredients, as well as additional possibilities to increase nasal drug uptake and factors influencing the absorption.
Collapse
|
15
|
Wu H, Zhou Y, Wang Y, Tong L, Wang F, Song S, Xu L, Liu B, Yan H, Sun Z. Current State and Future Directions of Intranasal Delivery Route for Central Nervous System Disorders: A Scientometric and Visualization Analysis. Front Pharmacol 2021; 12:717192. [PMID: 34322030 PMCID: PMC8311521 DOI: 10.3389/fphar.2021.717192] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Background: The management of various central nervous system (CNS) disorders has been challenging, due to highly compact blood-brain barrier (BBB) impedes the access of most pharmacological agents to the brain. Among multiple strategies proposed to circumvent this challenge, intranasal delivery route has sparked great interest for brain targeting in the past decades. The aim of this study was to apply scientometric method to estimate the current status and future trends of the field from a holistic perspective. Methods: All relevant publications during 1998–2020 were retrieved from the Web of Science Core Collection (SCIE, 1998-present). Two different scientometric software including VOS viewer and CiteSpace, and one online platform were used to conduct co-authorship, co-citation, and co-occurrence analysis of journals, countries, institutes, authors, references and keywords. Results: A total of 2,928 documents, including 2,456 original articles and 472 reviews, were retrieved. Our analysis revealed a significant increasing trend in the total number of scientific publications over the past 2 decades (R2 = 0.98). The United States dominated the field, reflecting in the largest amount of publications (971), the highest H-index (99), and extensive international collaboration. Jamia Hamdard contributed to most publications. Frey WH and Illum L were key researchers with the highest number of publications and citations, respectively. The International Journal of Pharmaceutics was the most influential academic journal, and Pharmacology/Pharmacy and Neurosciences/Neurology were the hottest research categories in this field. Based on keywords occurrence analysis, four main topics were identified, and the current research focus of this field has shifted from cluster 4 (pathways and mechanisms of intranasal delivery) to cluster 2 (the study of nasal drug delivery systems), especially the nanostructured and nano-sized carrier systems. Keywords burst detection revealed that the research focus on oxidative stress, drug delivery, neuroinflammation, nanostructured lipid carrier, and formulation deserves our continued attention. Conclusion: To the authors’ knowledge, this is the first scientometric analysis regarding intranasal delivery research. This study has demonstrated a comprehensive knowledge map, development landscape and future directions of intranasal delivery research, which provides a practical and valuable reference for scholars and policymakers in this field.
Collapse
Affiliation(s)
- Haiyang Wu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Yan Zhou
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Yulin Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Linjian Tong
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Fanchen Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Sirong Song
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Lixia Xu
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Baolong Liu
- Department of Ultrasound, Tianjin Huanhu Hospital, Tianjin, China
| | - Hua Yan
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhiming Sun
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China.,Department of Spine and Spinal Cord, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
16
|
Cunha S, Forbes B, Sousa Lobo JM, Silva AC. Improving Drug Delivery for Alzheimer's Disease Through Nose-to-Brain Delivery Using Nanoemulsions, Nanostructured Lipid Carriers (NLC) and in situ Hydrogels. Int J Nanomedicine 2021; 16:4373-4390. [PMID: 34234432 PMCID: PMC8256381 DOI: 10.2147/ijn.s305851] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/29/2021] [Indexed: 12/18/2022] Open
Abstract
Current treatments for Alzheimer's disease (AD) attenuate the progression of symptoms and aim to improve the patient's quality of life. Licensed medicines are mostly for oral administration and are limited by the difficulty in crossing the blood-brain barrier (BBB). Here in, the nasal route has been explored as an alternative pathway that allows drugs to be directly delivered to the brain via the nasal cavity. However, clearance mechanisms in the nasal cavity impair the delivery of drugs to the brain and limit their bioavailability. To optimize nose-to-brain delivery, formulations of lipid-based nanosystems, namely nanoemulsions and nanostructured lipid carriers (NLC), formulated in situ gelling hydrogels have been proposed as approaches for nose-to-brain delivery. These formulations possess characteristics that facilitate drug transport directly to the brain, minimizing side effects and maximizing therapeutic benefits. It has been recommended that the manufacture of these drug delivery systems follows the quality by design (QbD) approach based on nasal administration requirements. This review provides an insight into the current knowledge of the AD, highlighting the need for an effective drug delivery to the brain. Considering the mounting interest in the use of nanoemulsions and NLC for nose-to-brain delivery, a description of drug transport pathways in the nasal cavity and the application of these nanosystems and their in situ hydrogels through the intranasal route are presented. Relevant preclinical studies are summarised, and the future prospects for the use of lipid-based nanosystems in the treatment of AD are emphasized.
Collapse
Affiliation(s)
- Sara Cunha
- UCIBIO/REQUIMTE, MEDTECH Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
| | - Ben Forbes
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King’s College London, London, SE1 9NH, UK
| | - José Manuel Sousa Lobo
- UCIBIO/REQUIMTE, MEDTECH Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
| | - Ana Catarina Silva
- UCIBIO/REQUIMTE, MEDTECH Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
- UFP Energy, Environment and Health Research Unit (FP ENAS), Fernando Pessoa University, Porto, 4249-004, Portugal
| |
Collapse
|
17
|
Pires PC, Fazendeiro AC, Rodrigues M, Alves G, Santos AO. Nose-to-brain delivery of phenytoin and its hydrophilic prodrug fosphenytoin combined in a microemulsion - formulation development and in vivo pharmacokinetics. Eur J Pharm Sci 2021; 164:105918. [PMID: 34174414 DOI: 10.1016/j.ejps.2021.105918] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/25/2021] [Accepted: 06/20/2021] [Indexed: 11/16/2022]
Abstract
Phenytoin is a low aqueous solubility antiepileptic drug, but its phosphate ester prodrug fosphenytoin is soluble, although less permeable. In a previous study, the intranasal administration of aqueous-based formulations of fosphenytoin led to high but delayed phenytoin bioavailability compared to the intravenous route. In this work, we hypothesized that formulating an association of the prodrug fosphenytoin and the drug phenytoin (the active and diffusible form), could result in a faster and/or more effective brain targeting. Hence, nano or microemulsions containing both active drug and prodrug were developed and characterized regarding viscosity, osmolality, pH, mean size and in vitro drug release. Then, in vivo pharmacokinetics of a selected microemulsion containing fosphenytoin and phenytoin was evaluated in mice following intranasal administration and compared with a similar microemulsion containing fosphenytoin only. Both microemulsions led to higher brain drug levels at short time points than previously developed simpler aqueous based fosphenytoin formulations, likely due to the microemulsion's permeation enhancing effect. In addition, having a small amount of phenytoin in the formulation led to an equivalent maximum brain drug concentration and an overall higher absolute bioavailability, with a prolonged drug exposure. Hence, it can be concluded that if there is a need for a fast and prolonged therapeutic effect, a drug/phosphate ester prodrug combination in a microemulsion is ideal, but if a fast effect is all that is needed, having the prodrug alone could be enough, while considering a formulation with permeation enhancing components.
Collapse
Affiliation(s)
- Patrícia C Pires
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - Ana C Fazendeiro
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - Márcio Rodrigues
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; Research Unit for Inland Development (UDI-IPG), Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal.
| | - Gilberto Alves
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - Adriana O Santos
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
18
|
Droplet breakup mechanisms in premix membrane emulsification and related microfluidic channels. Adv Colloid Interface Sci 2021; 290:102393. [PMID: 33770649 DOI: 10.1016/j.cis.2021.102393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
Premix membrane emulsification (PME) is a pressure driven process of droplet breakup, caused by their motion through membrane pores. The process is widely used for high-throughput production of sized-controlled emulsion droplets and microparticles using low energy inputs. The resultant droplet size depends on numerous process, membrane, and formulation factors such as flow velocity in pores, number of extrusions, initial droplet size, internal membrane geometry, wettability of pore walls, and physical properties of emulsion. This paper provides a comprehensive review of different mechanisms of droplet deformation and breakup in membranes with versatile pore morphologies including sintered glass and ceramic filters, SPG and polymeric membranes with sponge-like structures, micro-engineered metallic membranes with ordered straight-through pore arrays, and dynamic membranes composed of unconsolidated particles. Fundamental aspects of droplet motion and breakup in idealized pore networks have also been covered including droplet disruption in T-junctions, channel constrictions, and obstructed channels. The breakup mechanisms due to shear interactions with pore walls and localized shear (direct breaking) or due to interfacial tension effects and Rayleigh-Plateau instability (indirect breaking) are systematically discussed based on recent experimental and numerical studies. Non-dimensional droplet size correlations based on capillary, Weber, and Ohnesorge numbers are also presented.
Collapse
|
19
|
Lima-Sousa R, de Melo-Diogo D, Alves CG, Cabral CS, Miguel SP, Mendonça AG, Correia IJ. Injectable in situ forming thermo-responsive graphene based hydrogels for cancer chemo-photothermal therapy and NIR light-enhanced antibacterial applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111294. [DOI: 10.1016/j.msec.2020.111294] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/06/2020] [Accepted: 07/21/2020] [Indexed: 02/01/2023]
|
20
|
Pires PC, Santos LT, Rodrigues M, Alves G, Santos AO. Intranasal fosphenytoin: The promise of phosphate esters in nose-to-brain delivery of poorly soluble drugs. Int J Pharm 2020; 592:120040. [PMID: 33157214 DOI: 10.1016/j.ijpharm.2020.120040] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 10/23/2022]
Abstract
Intranasal administration could increase both safety and efficacy of drugs acting on the central nervous system, but low solubility severely limits administration through this route. Phenytoin's prodrug, fosphenytoin, is hydrophilic and freely soluble in water, but less permeable since it is dianionic. We aimed to assess whether this phosphoester prodrug could be a suitable alternative to phenytoin in intranasal delivery. Secondly, we aimed to compare simple formulation strategies in fosphenytoin delivery. Fosphenytoin formulations containing thermosensitive and/or mucoadhesive (hydroxypropyl methylcellulose, HPMC) polymers were developed, guided by viscosity, gelling temperatures, osmolality, and in vitro drug release tests. Then, a pharmacokinetic study was performed, comparing an intravenous fosphenytoin solution, an intranasal fosphenytoin solution, and intranasal fosphenytoin mucoadhesive formulations with or without albumin. Formulations containing HPMC allowed high drug strengths, and had a relatively fast release profile, which was not changed by albumin. Intranasal administration of a formulation with HPMC and albumin prolonged drug concentration over time and led to complete or even increased absolute bioavailability. Moreover, phenytoin's blood levels did not reach the high peak obtained with intravenous administration. In conclusion, the use of phosphate ester prodrugs could be an efficient and safe strategy to increase the intranasal bioavailability of poorly soluble drugs.
Collapse
Affiliation(s)
- Patrícia C Pires
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - Liliana T Santos
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - Márcio Rodrigues
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; Research Unit for Inland Development (UDI-IPG), Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal.
| | - Gilberto Alves
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - Adriana O Santos
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|