1
|
Hernández-Ayala LF, Guzmán-López EG, Pérez-González A, Reina M, Galano A. Molecular Insights on Coffee Components as Chemical Antioxidants. J MEX CHEM SOC 2024; 68:888-969. [DOI: 10.29356/jmcs.v68i4.2238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Coffee is not only a delicious beverage but also an important dietary source of natural antioxidants. We live in a world where it is impossible to avoid pollution, stress, food additives, radiation, and other sources of oxidants that eventually lead to severe health disorders. Fortunately, there are chemicals in our diet that counteract the hazards posed by the reactive species that trigger oxidative stress. They are usually referred to as antioxidants; some of them can be versatile compounds that exert such a role in many ways. This review summarizes, from a chemical point of view, the antioxidant effects of relevant molecules found in coffee. Their mechanisms of action, trends in activity, and the influence of media and pH in aqueous solutions, are analyzed. Structure-activity relationships are discussed, and the protective roles of these compounds are examined. A particular section is devoted to derivatives of some coffee components, and another one to their bioactivity. The data used in the analysis come from theoretical and computational protocols, which have been proven to be very useful in this context. Hopefully, the information provided here will pro-mote further investigations into the amazing chemistry contained in our morning coffee cup.
Resumen. El café no solo es una bebida deliciosa, sino también una importante fuente dietética de antioxidantes naturales. Vivimos en un mundo donde es imposible evitar la contaminación, el estrés, los aditivos alimentarios, la radiación y otras fuentes de oxidantes que eventualmente conducen a trastornos de salud graves. Afortunadamente, existen sustancias químicas en nuestra dieta que contrarrestan los peligros planteados por las especies reactivas que desencadenan el estrés oxidativo. Por lo general, se les denomina antioxidantes; algunos de ellos pueden ser compuestos versátiles que ejercen dicho papel de muchas maneras. Este artículo de revisión resume, desde un punto de vista químico, los efectos antioxidantes de moléculas relevantes encontradas en el café. Se analizan sus mecanismos de acción, tendencias en la actividad y la influencia del medio y el pH en soluciones acuosas. Se discuten las relaciones estructura-actividad, y se examinan los roles protectores de estos compuestos. Se dedica una sección particular a los derivados de algunos componentes del café, y otra a su bioactividad. Los datos utilizados en el análisis provienen de protocolos teóricos y computacionales, que han demostrado ser muy útiles en este contexto. Se espera que la información proporcionada aquí promueva investigaciones futuras sobre la química contenida en nuestra taza de café matutina.
Collapse
|
2
|
Soltan OM, Abdel-Aziz SA, Sh Shaykoon M, Osawa K, Narumi A, Abdel-Aziz M, Shoman ME, Konno H. Development of 1,5-diarylpyrazoles as EGFR/JNK-2 dual inhibitors: design, synthesis, moleecular docking, and bioactivity evaluation. Bioorg Med Chem Lett 2024; 102:129673. [PMID: 38408511 DOI: 10.1016/j.bmcl.2024.129673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
The eradication of multifactorial diseases, such as cancer, requires the design of drug candidates that attack multiple targets that contribute to the progression and proliferation of such diseases. Here, 1,5-diarylpyrazole derivatives bearing vanillin or sulfanilamide are developed as potential dual inhibitors of epidermal growth factor receptor (EGFR)/c-Jun N-terminal kinase 2 (JNK-2) for possible anticancer activity. These derivatives inhibited the growths of DLD-1, HeLa, K-562, SUIT-2 and HepG2 cancer cell lines, with minimum concentration required to inhibit half of the cellular growth (IC50) values of 2.7-63 μM. The tests confirmed that 5b and 5d were potent JNK-2 inhibitors, with IC50 of 2.0 and 0.9 μM, respectively, whereas 6 h selectively inhibited EGFR protein kinase (EGFR-PK) (IC50 = 1.7 μM). Notably, 6c inhibited both kinases, with IC50 values of 2.7 and 3.0 μM against EGFR-PK and JNK-2, respectively, offering a reference for designing mutual inhibitors of EGFR/JNK-2. The docking studies revealed the ability of the pyrazole ring to bind to the hinge region of the ATP binding site, thereby supporting the experimental inhibitory results. Furthermore, the developed compounds could induce apoptosis and induce cell cycle arrest at different cell phases.
Collapse
Affiliation(s)
- Osama M Soltan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Salah A Abdel-Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, 61111 Minia, Egypt
| | - Montaser Sh Shaykoon
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Keima Osawa
- Department of Chemistry and Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Jonan 4-3-16, Yonezawa, Yamagata 992-8510, Japan
| | - Atsushi Narumi
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Jonan 4-3-16, Yonezawa, Yamagata 992-8510, Japan
| | - Mohamed Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Mai E Shoman
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Hiroyuki Konno
- Department of Chemistry and Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Jonan 4-3-16, Yonezawa, Yamagata 992-8510, Japan.
| |
Collapse
|
3
|
Liaqat F, Xu L, Khazi MI, Ali S, Rahman MU, Zhu D. Extraction, purification, and applications of vanillin: A review of recent advances and challenges. INDUSTRIAL CROPS AND PRODUCTS 2023; 204:117372. [DOI: 10.1016/j.indcrop.2023.117372] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
|
4
|
Ma Y, Zhu H, Jiang X, Zhou Z, Zhou Y, Tian Y, Zhang H, Sun M, Tu L, Lu J, Niu Y, Liu H, Liu Y, Chen P. Biological Evaluation of 8-Methoxy-2,5-dimethyl-5H-indolo[2,3-b] Quinoline as a Potential Antitumor Agent via PI3K/AKT/mTOR Signaling. Int J Mol Sci 2023; 24:15142. [PMID: 37894822 PMCID: PMC10606936 DOI: 10.3390/ijms242015142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/28/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Chemotherapy is commonly used clinically to treat colorectal cancer, but it is usually prone to drug resistance, so novel drugs need to be developed continuously to treat colorectal cancer. Neocryptolepine derivatives have attracted a lot of attention because of their good cytotoxic activity; however, cytotoxicity studies on colorectal cancer cells are scarce. In this study, the cytotoxicity of 8-methoxy-2,5-dimethyl-5H-indolo[2,3-b] quinoline (MMNC) in colorectal cells was evaluated. The results showed that MMNC inhibits the proliferation of HCT116 and Caco-2 cells, blocks the cell cycle in the G2/M phase, decreases the cell mitochondrial membrane potential and induces apoptosis. In addition, the results of western blot experiments suggest that MMNC exerts cytotoxicity by inhibiting the expression of PI3K/AKT/mTOR signaling pathway-related proteins. Based on these results, MMNC is a promising lead compound for anticancer activity in the treatment of human colorectal cancer.
Collapse
Affiliation(s)
- Yunhao Ma
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China; (Y.M.); (H.Z.); (X.J.); (Z.Z.); (Y.Z.); (H.Z.); (M.S.); (L.T.); (J.L.); (Y.N.)
| | - Hongmei Zhu
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China; (Y.M.); (H.Z.); (X.J.); (Z.Z.); (Y.Z.); (H.Z.); (M.S.); (L.T.); (J.L.); (Y.N.)
| | - Xinrong Jiang
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China; (Y.M.); (H.Z.); (X.J.); (Z.Z.); (Y.Z.); (H.Z.); (M.S.); (L.T.); (J.L.); (Y.N.)
| | - Zhongkun Zhou
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China; (Y.M.); (H.Z.); (X.J.); (Z.Z.); (Y.Z.); (H.Z.); (M.S.); (L.T.); (J.L.); (Y.N.)
| | - Yong Zhou
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China; (Y.M.); (H.Z.); (X.J.); (Z.Z.); (Y.Z.); (H.Z.); (M.S.); (L.T.); (J.L.); (Y.N.)
| | - Yanan Tian
- Faculty of Applied Science, Macao Polytechnic University, Macao, China; (Y.T.); (H.L.)
| | - Hao Zhang
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China; (Y.M.); (H.Z.); (X.J.); (Z.Z.); (Y.Z.); (H.Z.); (M.S.); (L.T.); (J.L.); (Y.N.)
| | - Mengze Sun
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China; (Y.M.); (H.Z.); (X.J.); (Z.Z.); (Y.Z.); (H.Z.); (M.S.); (L.T.); (J.L.); (Y.N.)
| | - Lixue Tu
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China; (Y.M.); (H.Z.); (X.J.); (Z.Z.); (Y.Z.); (H.Z.); (M.S.); (L.T.); (J.L.); (Y.N.)
| | - Juan Lu
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China; (Y.M.); (H.Z.); (X.J.); (Z.Z.); (Y.Z.); (H.Z.); (M.S.); (L.T.); (J.L.); (Y.N.)
| | - Yuqing Niu
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China; (Y.M.); (H.Z.); (X.J.); (Z.Z.); (Y.Z.); (H.Z.); (M.S.); (L.T.); (J.L.); (Y.N.)
| | - Huanxiang Liu
- Faculty of Applied Science, Macao Polytechnic University, Macao, China; (Y.T.); (H.L.)
| | - Yingqian Liu
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China; (Y.M.); (H.Z.); (X.J.); (Z.Z.); (Y.Z.); (H.Z.); (M.S.); (L.T.); (J.L.); (Y.N.)
| | - Peng Chen
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China; (Y.M.); (H.Z.); (X.J.); (Z.Z.); (Y.Z.); (H.Z.); (M.S.); (L.T.); (J.L.); (Y.N.)
| |
Collapse
|
5
|
Sharma V, Ali SW. Functionalization of cellulosic and polyester textiles using reduced Schiff base (RSB) of eco-friendly vanillin. CELLULOSE (LONDON, ENGLAND) 2023; 30:3317-3338. [PMID: 36817563 PMCID: PMC9923662 DOI: 10.1007/s10570-023-05085-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
UNLABELLED Vanillin is an active ingredient found in the crop 'vanilla' and is traditionally extracted from the 'vanilla pod'. Vanillin intrinsically is not a suitable candidate for imparting durable functional features into textile substate due to its smaller chemical structure which leads to leaching of the same during washing operation. To enlarge the structure, in the present study, vanillin has been converted into 4-(benzylamino) methyl))-2-methoxyphenol vanillin derivative (reduced Schiff base) with considerable amount of yield by using a simple one-step process and the synthesized product has been characterized by 1H, C13 NMR, FTIR, and Raman analysis. Thereafter, the reduced Schiff base of vanillin (RSB) has been integrated on cotton as well as polyethylene terephthalate (PET) fabric using high temperature high pressure (HT-HP) technique for imparting multiple functionalities. FESEM EDX analysis has confirmed the integration of RSB on both the fabrics by revealing uniform presence of the nitrogen (of the synthesized derivative) on the treated textile materials. Both types of functionalized textiles have demonstrated appealing color shades with an excellent antimicrobial activity of about 90% against Escherichia coli (E. coli) bacteria. The treated fabrics could cater pleasing fragrance and exhibit 90% antioxidant properties. Moreover, enlarged vanillin derivative in the form of RSB can retain its properties in the fabrics even after repeated machine launderings. RSB-treated cotton fabric has shown ultra-violet protection factor (UPF) of 38 which drops to 24 after washing whereas in case of PET treated fabric, the observed UPF values are 265 and 164 before and after washing, respectively. The RSB treatment has been found to be cytotoxically secure and biocompatible as tested on the PET fabric. Other required properties of the treated fabrics such as water absorbency, flexibility, etc. have also been found to be intact. Thus, the presented study reveals a new class of safe material that can be derived from eco-friendly vanillin and has the potential to replace hazardous chemicals that are currently used in textile chemical processing industries. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10570-023-05085-z.
Collapse
Affiliation(s)
- Veerender Sharma
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 India
| | - S. Wazed Ali
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 India
| |
Collapse
|
6
|
Marjanović JS, Ćoćić D, Caković AZ, Petrović N, Kosanić M, Kostić MD, Divac VM. Seleno‐L‐cystine and Vanillin Schiff's base: Synthesis, Reaction Mechanism and Biological activity. ChemistrySelect 2023. [DOI: 10.1002/slct.202204603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jovana S Marjanović
- Department of Chemistry Faculty of Science University of Kragujevac Radoja Domanovica 12 34 000 Kragujevac Serbia
| | - Dušan Ćoćić
- Department of Chemistry Faculty of Science University of Kragujevac Radoja Domanovica 12 34 000 Kragujevac Serbia
| | - Angelina Z Caković
- Department of Chemistry Faculty of Science University of Kragujevac Radoja Domanovica 12 34 000 Kragujevac Serbia
| | - Nevena Petrović
- Department of Biology and Ecology Faculty of Science University of Kragujevac Radoja Domanovica 12 34 000 Kragujevac Serbia
| | - Marijana Kosanić
- Department of Biology and Ecology Faculty of Science University of Kragujevac Radoja Domanovica 12 34 000 Kragujevac Serbia
| | - Marina D Kostić
- Institute for Information Technologies Kragujevac University of Kragujevac Jovana Cvijića bb 34 000 Kragujevac Serbia
| | - Vera M Divac
- Department of Chemistry Faculty of Science University of Kragujevac Radoja Domanovica 12 34 000 Kragujevac Serbia
| |
Collapse
|
7
|
Zhang R, Luo Y, Du C, Wu L, Wang Y, Chen Y, Li S, Jiang X, Xie Y. Synthesis and biological evaluation of novel SN38-glucose conjugate for colorectal cancer treatment. Bioorg Med Chem Lett 2023; 81:129128. [PMID: 36639036 DOI: 10.1016/j.bmcl.2023.129128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/11/2023]
Abstract
7-Ethyl-10-hydroxycamptothecin (SN38), the bioactive metabolite of irinotecan (CPT-11), has been shown to be 100-1000 times more effective than CPT-11. However, the poor water solubility and bioavailability of SN38 constrained its clinical application. In this study, we synthesized a novel SN38-glucose conjugate (FSY04) to address this issue. Our in vitro studies indicated that FSY04 had a potent inhibitory ability against colorectal cancer (CRC) cell lines of SW-480 and HCT-116 compared to the inhibitory capacity of CPT-11. Interestingly, FSY04 possessed lower cytotoxicity against normal cell lines of LO2 and 293T in contrast with CPT-11. Moreover, FSY04 is more active than CPT-11 in inducing apoptosis, inhibiting migration, and invasion. In vivo experiments suggested that half of the equivalent of FSY04 inhibited the growth of SW480 in the xenograft tumor model better than one equivalent of CPT-11. Our data demonstrated FSY04 to be a promising agent in CRC therapy.
Collapse
Affiliation(s)
- Ruiming Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, PR China
| | - Yi Luo
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Chenghao Du
- Department of Biological Sciences, USC Dana and David Dornsife College of Letters, Arts and Sciences, Los Angeles 90089, USA
| | - Ling Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, PR China
| | - Yankang Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, PR China
| | - Yuanduan Chen
- Guizhou Jinqianguo Biotechnology Co. Ltd., Bijie 551714, PR China
| | - Shouqian Li
- Guizhou Jinqianguo Biotechnology Co. Ltd., Bijie 551714, PR China
| | - Xin Jiang
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Yongmei Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, PR China.
| |
Collapse
|
8
|
Ou S, Wang H, Tao Y, Luo K, Ye J, Ran S, Guan Z, Wang Y, Hu H, Huang R. Fusobacterium nucleatum and colorectal cancer: From phenomenon to mechanism. Front Cell Infect Microbiol 2022; 12:1020583. [PMID: 36523635 PMCID: PMC9745098 DOI: 10.3389/fcimb.2022.1020583] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/09/2022] [Indexed: 11/30/2022] Open
Abstract
Colorectal cancer(CRC) is the third most frequent malignant tumor. The gut microbiome acts as a vital component of CRC etiology. Fusobacterium nucleatum(Fn) is a key member of colorectal cancer-associated bacteria. But we lack a systematic and in-depth understanding on its role in CRC evolution. In this article, We reviewed the abundance changes and distribution of Fn in CRC occurrence and development, potential effect of Fn in the initiation of CRC, the source of intratumoral Fn and the cause of its tropism to CRC. In addition, We described the mechanism by which Fn promotes the malignant biological behavior of CRC, affects CRC response to therapy, and shapes the tumor immune microenvironment in great detail. Based on the relationship between Fn and CRC, we proposed strategies for CRC prevention and treatment, and discussed the feasibility and limitations of specific cases, to gain insights into further basic and clinical research in the future.
Collapse
Affiliation(s)
- Suwen Ou
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hufei Wang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yangbao Tao
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Kangjia Luo
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China,Department of Gastrointestinal Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Jinhua Ye
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Songlin Ran
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zilong Guan
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China,Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yuliuming Wang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hanqing Hu
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Rui Huang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China,*Correspondence: Rui Huang,
| |
Collapse
|
9
|
CFNC, a neocryptolepine derivative, inhibited the growth of gastric cancer AGS cells by inhibiting PI3K/AKT signaling pathway. Eur J Pharmacol 2022; 938:175408. [PMID: 36442620 DOI: 10.1016/j.ejphar.2022.175408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022]
Abstract
Gastric cancer is highly heterogeneous and there is still a lack of efficient, low-toxicity small molecule compounds for the treatment of gastric cancer. Natural products are important sources for the development of antitumor compounds. Therefore, it is promising strategy to find the lead compound of anti-gastric cancer agents by structural modification of natural products. The aim of this study was to synthesize a novel neocryptolepine derivative CFNC and explore its potential anti-gastric cancer effect and molecular mechanism. The MTT assay showed that the IC50 of CFNC on AGS cells reached 148 nM. CFNC arrested AGS cells in the G2/M phase of the cell cycle. Furthermore, CFNC inhibited cell proliferation and migration, leading to the loss of membrane potential by causing mitochondrial dysfunction, which induced the apoptosis of AGS cells. Western blot assay suggested that CFNC could inhibit the expression of important proteins in the PI3K/AKT/mTOR signaling pathway. These results showed that CFNC exhibited strong cytotoxic activity in gastric cancer cell lines by regulating the PI3K/AKT/mTOR signaling pathway. Taken together, CFNC could be a promising lead compound for the clinical treatment of gastric cancer.
Collapse
|
10
|
Synthesis and Biological Evaluation of Novel Allobetulon/Allobetulin-Nucleoside Conjugates as AntitumorAgents. Molecules 2022; 27:molecules27154738. [PMID: 35897914 PMCID: PMC9329720 DOI: 10.3390/molecules27154738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022] Open
Abstract
Allobetulin is structurally similar tobetulinic acid, inducing the apoptosis of cancer cells with low toxicity. However, both of them exhibited weak antiproliferation against several tumor cell lines. Therefore, the new series of allobetulon/allobetulin–nucleoside conjugates 9a–10i were designed and synthesized for potency improvement. Compounds 9b, 9e, 10a, and 10d showed promising antiproliferative activity toward six tested cell lines, compared to zidovudine, cisplatin, and oxaliplatin based on their antitumor activity results. Among them, compound 10d exhibited much more potent antiproliferative activity against SMMC-7721, HepG2, MNK-45, SW620, and A549 human cancer cell lines than cisplatin and oxaliplatin. In the preliminary study for the mechanism of action, compound 10d induced cell apoptosis and autophagy in SMMC cells, resulting in antiproliferation and G0/G1 cell cycle arrest by regulating protein expression levels of Bax, Bcl-2, and LC3. Consequently, the nucleoside-conjugated allobetulin (10d) evidenced that nucleoside substitution was a viable strategy to improve allobetulin/allobetulon’s antitumor activity based on our present study.
Collapse
|
11
|
Hu S, Ma W, Wang J, Ma Y, Zhou Z, Zhang R, Du K, Zhang H, Sun M, Jiang X, Tu H, Tang X, Yao X, Chen P. Synthesis and anticancer evaluations of novel 1H-imidazole [4,5-f][1,10] phenanthroline derivative for the treatment of colorectal cancer. Eur J Pharmacol 2022; 928:175120. [PMID: 35753402 DOI: 10.1016/j.ejphar.2022.175120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022]
Abstract
1H-imidazole [4,5-f][1,10] phenanthroline is a promising chemical structure for cancer treatment. Herein, we synthesized a novel 1H-imidazole [4,5-f][1,10] phenanthroline derivative named IPM714 and found it exhibited selectively colorectal cancer (CRC) cells inhibitory activities, with half maximal inhibitory concentration (IC50) of 1.74 μM and 2 μM in HCT116 cells and SW480 cells, respectively. The present study is intended to explore the cytotoxicity of IPM714 in cancer cells of various types and its anticancer mechanism in vitro. Cellular functional analyses indicated IPM714 can arrest HCT116 cell cycle in S phase and induce apoptosis in both HCT116 and SW480 cells. Western blot and molecular docking showed that IPM714 may suppress PI3K/AKT/mTOR pathway to inhibit cell proliferation and regulate cell cycle and apoptosis. This study proved IPM714 to be a promising drug in CRC therapy.
Collapse
Affiliation(s)
- Shujian Hu
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Wantong Ma
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Junyi Wang
- College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Wenzhou, 325060, PR China
| | - Yunhao Ma
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Zhongkun Zhou
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Rentao Zhang
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Kangjia Du
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Hao Zhang
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Mengze Sun
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Xinrong Jiang
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Hongyuan Tu
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Xiaoliang Tang
- College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, PR China
| | - Xiaojun Yao
- Macau Institute for Applied Research in Medicine and Health, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Peng Chen
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China.
| |
Collapse
|
12
|
Zhou Z, Wang Y, Ji R, Zhang D, Ma C, Ma W, Ma Y, Jiang X, Du K, Zhang R, Chen P. Vanillin Derivatives Reverse Fusobacterium nucleatum-Induced Proliferation and Migration of Colorectal Cancer Through E-Cadherin/β-Catenin Pathway. Front Pharmacol 2022; 13:841918. [PMID: 35308221 PMCID: PMC8931468 DOI: 10.3389/fphar.2022.841918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/21/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a common clinical malignant tumor and closely related to intestinal microbiome disorders. Especially, Fusobacterium nucleatum (F. nucleatum) is one of the most prevalent pathogens in CRC. However, its change in CRC patients of Northwest China, an area with a high incidence of gastrointestinal tumors, is unclear, and therapeutic strategies targeting F. nucleatum remain unresolved. Here, fecal samples of healthy people and CRC patients were studied using 16S rRNA sequencing to explore microbial community alterations. Additionally, vanillin derivate (IPM711 and IPM712) intervention by coculture with CRC cells and potential mechanism were investigated. Results showed that intestinal microbial homeostasis was gradually dysregulated, and the abundance of Fusobacterium was higher in CRC patients. Moreover, IPM711 and IPM712 showed better anti-F. nucleatum activity than vanillin by increasing cell membrane permeability and destroying bacterial integrity. In addition, IPM711 and IPM712 could downregulate the expression of E-cadherin and β-catenin, thus, suppressing the migration of HCT116. Collectively, IPM711 and IPM712 have both anticolorectal cancer and anti-F. nucleatum activities, providing potential natural product drug candidates for microbe-targeted strategies for the treatment of CRC.
Collapse
Affiliation(s)
- Zhongkun Zhou
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yiqing Wang
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Rui Ji
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Dekui Zhang
- The Second Hospital of Lanzhou University, Lanzhou, China
| | - Chi Ma
- The Second Hospital of Lanzhou University, Lanzhou, China
| | - Wantong Ma
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yunhao Ma
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xinrong Jiang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Kangjia Du
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Rentao Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Peng Chen
- School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
13
|
Hu S, Ma W, Wang J, Zhou Z, Ma Y, Zhang R, Du K, Zhang H, Sun M, Jiang X, Tu H, Tang X, Yao X, Chen P. Synthesis and biological activity of 1H-imidazo[4,5-f][1,10]phenanthroline as a potential antitumor agent with PI3K/AKT/mTOR signaling. Eur J Pharmacol 2022; 915:174514. [PMID: 34560078 DOI: 10.1016/j.ejphar.2021.174514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 12/24/2022]
Abstract
1H-imidazo[4,5-f][1,10]phenanthroline (IPM713) is a type of tricyclic conjugated rigid planar structure with potential medical applications, but its anticancer activity has not yet been fully studied. In the present research, cells from seven different cancer types were used to study the anticancer effect, and IPM713 was found to inhibit the colorectal cancer cell line HCT116 most significantly, with a half maximal inhibitory concentration (IC50) of 1.7 μM. The mechanisms by which IPM713 exerts anti-colorectal cancer activity were studied. IPM713 blocked the cell cycle in G0/G1 phase and induced apoptosis by suppressing the PI3K/AKT/mTOR axis. In addition, an acute toxicity test showed that the median lethal dose (LD50) was above 5000 mg/kg. The findings of this research suggest that IPM713 can interfere with the PI3K/AKT/mTOR signaling pathway and might be a potential therapeutic candidate for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Shujian Hu
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Wantong Ma
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Junyi Wang
- College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Wenzhou, 325060, PR China
| | - Zhongkun Zhou
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Yunhao Ma
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Rentao Zhang
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Kangjia Du
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Hao Zhang
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Mengze Sun
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Xinrong Jiang
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Hongyuan Tu
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Xiaoliang Tang
- College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, PR China
| | - Xiaojun Yao
- Macau Institute for Applied Research in Medicine and Health, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, PR China
| | - Peng Chen
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China.
| |
Collapse
|
14
|
Arya SS, Rookes JE, Cahill DM, Lenka SK. Vanillin: a review on the therapeutic prospects of a popular flavouring molecule. ADVANCES IN TRADITIONAL MEDICINE 2021. [PMCID: PMC7790484 DOI: 10.1007/s13596-020-00531-w] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract Graphic abstract
Collapse
Affiliation(s)
- Sagar S. Arya
- TERI-Deakin NanoBiotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana 122001 India
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC 3216 Australia
| | - James E. Rookes
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC 3216 Australia
| | - David M. Cahill
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC 3216 Australia
| | - Sangram K. Lenka
- TERI-Deakin NanoBiotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana 122001 India
| |
Collapse
|