1
|
Belashov AV, Zhikhoreva AA, Gorbunova IA, Sasin ME, Semenova IV, Vasyutinskii OS. Photophysical, rotational and translational properties of Radachlorin photosensitizer upon binding to serum albumins. Biochim Biophys Acta Gen Subj 2024; 1868:130546. [PMID: 38141885 DOI: 10.1016/j.bbagen.2023.130546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
INTRODUCTION Although photophysical properties of Radachlorin photosensitizer (PS) were extensively studied in solutions and cells, no data is available on variations of its characteristics upon binding to serum albumins, which are major transporters in blood and nutrients in cell culture media. OBJECTIVES The primary objective of this study was to analyze changes in photophysical properties of Radachlorin molecules upon their binding to human and bovine serum albumins at different microenvironment properties. METHODS Experiments were performed using time-resolved fluorescence spectroscopy and fluorescence recovery after photobleaching. Variations in fluorescence spectra and lifetime, fluorescence anisotropy, rotational and translational diffusion of PS molecules upon binding to albumins were studied in normal, basic and acidic conditions and at different concentrations of albumin and PS molecules. RESULTS Radachlorin molecules effectively bind to both types of serum albumins, which causes changes in photophysical properties of the PS. A minor red shift of the fluorescence spectrum, an increase in fluorescence lifetime and anisotropy and substantial decrease of translational and rotational mobility of PS molecules were observed upon their binding to albumins. The analysis of rotational diffusion time provided robust evaluation of the bound fraction of PS molecules. Both the highly acidic microenvironment and increase in alcohol concentration above 40% resulted in detachment of PS molecules from albumins. Photophysical properties of Radachlorin in complexes with BSA and HSA were found to be slightly different. CONCLUSIONS Binding of Radachlorin photosensitizer to either BSA or HSA affects significantly its photophysical properties, which may also vary with microenvironment acidity and alcohol concentration.
Collapse
Affiliation(s)
- A V Belashov
- Ioffe Institute, 26, Polytekhnicheskaya, St.Petersburg 194021, Russia
| | - A A Zhikhoreva
- Ioffe Institute, 26, Polytekhnicheskaya, St.Petersburg 194021, Russia
| | - I A Gorbunova
- Ioffe Institute, 26, Polytekhnicheskaya, St.Petersburg 194021, Russia
| | - M E Sasin
- Ioffe Institute, 26, Polytekhnicheskaya, St.Petersburg 194021, Russia
| | - I V Semenova
- Ioffe Institute, 26, Polytekhnicheskaya, St.Petersburg 194021, Russia.
| | - O S Vasyutinskii
- Ioffe Institute, 26, Polytekhnicheskaya, St.Petersburg 194021, Russia
| |
Collapse
|
2
|
Li D, Cai S, Wang P, Cheng H, Cheng B, Zhang Y, Liu G. Innovative Design Strategies Advance Biomedical Applications of Phthalocyanines. Adv Healthc Mater 2023; 12:e2300263. [PMID: 37039069 DOI: 10.1002/adhm.202300263] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/30/2023] [Indexed: 04/12/2023]
Abstract
Owing to their long absorption wavelengths, high molar absorptivity, and tunable photosensitivity, phthalocyanines have been widely used in photodynamic therapy (PDT). However, phthalocyanines still face the drawbacks of poor targeting, "always-on" photosensitizing properties, and unsatisfactory therapeutic efficiency, which limit their wide applications in biomedical fields. Thus, new design strategies such as modification of targeting molecules, formation of nanoparticles, and activating photosensitizers are developed to improve the above defects. Notably, recent studies have shown that novel phthalocyanines are not only used in fluorescence imaging and PDT, but also in photoacoustic imaging, photothermal imaging, sonodynamic therapy, and photothermal therapy. This review focuses on recent design strategies, applications in biomedicine, and clinical development of phthalocyanines, providing ideas and references for the design and application of phthalocyanine, so as to promote their future transformation into clinical applications.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Shundong Cai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Peiyu Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Hongwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Bingwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- Shen Zhen Research Institute of Xiamen University, Shenzhen, 518057, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
3
|
Sun J, Zhao H, Fu L, Cui J, Yang Y. Global Trends and Research Progress of Photodynamic Therapy in Skin Cancer: A Bibliometric Analysis and Literature Review. Clin Cosmet Investig Dermatol 2023; 16:479-498. [PMID: 36851952 PMCID: PMC9961166 DOI: 10.2147/ccid.s401206] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Background Based on photochemical reactions through the combined use of light and photosensitizers, photodynamic therapy (PDT) is gaining popularity for the treatment of skin cancer. Various photosensitizers and treatment regimens are continuously being developed for enhancing the efficacy of PDT on skin cancer. Reviewing the development history of PDT on skin cancer, and summarizing its development direction and research status, is conducive to the further research. Methods To evaluate the research trends and map knowledge structure, all publications covering PDT on skin cancer were retrieved and extracted from Web of Science database. We applied VOSviewer and CiteSpace softwares to evaluate and visualize the countries, institutes, authors, keywords and research trends. Literature review was performed for the analysis of the research status of PDT on skin cancer. Results A total of 2662 publications were identified. The elements, mechanism, pros and cons, representative molecular photosensitizers, current challenges and research progress of PDT on skin cancer were reviewed and summarized. Conclusion This study provides a comprehensive display of the field of PDT on skin cancer, which will help researchers further explore the mechanism and application of PDT more effectively and intuitively.
Collapse
Affiliation(s)
- Jiachen Sun
- Department of Dermatology, Fourth Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Hongqing Zhao
- Department of Dermatology, Fourth Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Lin Fu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jing Cui
- Navy Clinical College, the Fifth School of Clinical Medicine, Anhui Medical University, Hefei, People's Republic of China
| | - Yuguang Yang
- Department of Dermatology, Fourth Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
4
|
He H, Zhang Y, Xu J, Li Y, Fang H, Liu Y, Zhang S. Discovery of Orally Bioavailable SOS1 Inhibitors for Suppressing KRAS-Driven Carcinoma. J Med Chem 2022; 65:13158-13171. [PMID: 36173339 DOI: 10.1021/acs.jmedchem.2c00986] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The interaction between son of sevenless 1 (SOS1) gene and Kirsten rat sarcoma viral oncogene (KRAS) is crucial for activating signals of proliferation and survival in a range of cancers. We previously discovered compound 40a with a tetracyclic quinazoline pharmacophore as a potent orally bioavailable SOS1 inhibitor. Herein, we disclosed the discovery of compound 13c, which substituted the third ring with the seven-membered ring, as a clinical drug candidate for suppressing KRAS-driven tumors. 13c strongly disrupted the protein-protein interaction between SOS1 and KRAS with low IC50 values of 3.9 nM (biochemical) and 21 nM (cellular). 13c showed a favorable pharmacokinetic profile with a bioavailability of 86.8% in beagles and exhibited 83.0% tumor suppression in Mia-paca-2 pancreas xenograft mice tumor models. 13c exhibited a weak time-dependent CY3A4P inhibition than BI-3406, thereby reducing the risk of drug-drug interaction in drug combination. Toxicological investigations revealed that 13c had a lower risk of sudden cardiac death than BI-3406. Overall, 13c has been under evaluation in preclinical trials.
Collapse
Affiliation(s)
- Huan He
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- Wuhan Yuxiang Pharmaceutical Technology Co., Ltd., Wuhan 430200, P. R. China
| | - Yu Zhang
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Juan Xu
- College of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi 435003, P. R. China
- Wuhan Yuxiang Pharmaceutical Technology Co., Ltd., Wuhan 430200, P. R. China
| | - Yuanyuan Li
- Wuhan Yuxiang Pharmaceutical Technology Co., Ltd., Wuhan 430200, P. R. China
- School of Life Science and Technology & School Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
| | - Huaxiang Fang
- Wuhan Yuxiang Pharmaceutical Technology Co., Ltd., Wuhan 430200, P. R. China
| | - Yi Liu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- School of Life Science and Technology & School Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
- State Key Laboratory of Membrane Separation and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| | - Silong Zhang
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- Wuhan Yuxiang Pharmaceutical Technology Co., Ltd., Wuhan 430200, P. R. China
| |
Collapse
|
5
|
Tracy EC, Bowman MJ, Pandey RK, Baumann H. Tumor cell-specific retention of photosensitizers determines the outcome of photodynamic therapy for head and neck cancer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112513. [PMID: 35841739 DOI: 10.1016/j.jphotobiol.2022.112513] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 12/25/2022]
Abstract
Pheophorbide-based photosensitizers have demonstrated tumor cell-specific retention. The lead compound 3-[1'-hexyloxyethyl]-2-devinylpyropheophorbide-a (HPPH) in a clinical trial for photodynamic therapy of head and neck cancer lesions indicated a complete response in 80% of patients. The question arises whether the partial response in 20% of patients is due to inefficient retention of photosensitizers by tumor cells and, if so, can the photosensitizer preference of individual cancer cases be identified prior to photodynamic therapy. This study determined the specificity of head and neck cancer cells and tumor tissues for the uptake and retention of diffusible pheophorbides differing in peripheral groups on the macrocycle that contribute to cellular binding. The relationship between photosensitizer level and light-mediated photoreaction was characterized to identify markers for predicting the effectiveness of photodynamic therapy in situ. The experimental models were stromal and epithelial cells isolated from head and neck tumor samples and integrated into monotypic tissue cultures, reconstituted three-dimensional co-cultures, and xenografts. Tumor cell-specific photosensitizer retention patterns were identified, and a procedure was developed to allow the diagnostic evaluation of HPPH binding by tumor cells in individual cancer cases. The findings of this study may assist in designing conditions for photosensitizer application and photodynamic therapy of head and neck cancer lesions optimized for each patient's case.
Collapse
Affiliation(s)
- Erin C Tracy
- Department of Molecular Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States of America
| | - Mary-Jo Bowman
- Department of Molecular Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States of America.
| | - Ravindra K Pandey
- Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States of America.
| | - Heinz Baumann
- Department of Molecular Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States of America.
| |
Collapse
|
6
|
Li R, Zhou Y, Liu Y, Jiang X, Zeng W, Gong Z, Zheng G, Sun D, Dai Z. Asymmetric, amphiphilic RGD conjugated phthalocyanine for targeted photodynamic therapy of triple negative breast cancer. Signal Transduct Target Ther 2022; 7:64. [PMID: 35228516 PMCID: PMC8885659 DOI: 10.1038/s41392-022-00906-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/09/2022] [Accepted: 01/14/2022] [Indexed: 12/12/2022] Open
Abstract
Targeted photodynamic therapy (TPDT) is considered superior to conventional photodynamic therapy due to the enhanced uptake of photosensitizers by tumor cells. In this paper, an amphiphilic and asymmetric cyclo-Arg-Gly-Asp-d-Tyr-Lys(cRGDyK)-conjugated silicon phthalocyanine (RSP) was synthesized by covalently attaching the tripeptide Arg-Gly-Asp (RGD) to silicone phthalocyanine in the axial direction for TPDT of triple-negative breast cancer (TNBC). RSP was characterized by spectroscopy as a monomer in physiological buffer. Meanwhile, the modification of RSP with RGD led to a high accumulation of the photosensitizer in TNBC cells overexpressing ανβ3 integrin receptors which can bind RGD, greatly reducing the risk of phototoxicity. In vitro photodynamic experiments showed that the IC50 of RSP was 295.96 nM in the 4T1 cell line, which caused significant apoptosis of the tumor cells. The tumor inhibition rate of RSP on the orthotopic murine TNBC achieved 74%, while the untargeted photosensitizer exhibited no obvious tumor inhibition. Overall, such novel targeted silicon phthalocyanine has good potential for clinical translation due to its simple synthesis route, strong targeting, and high therapeutic efficacy for TPDT treatment of TNBC.
Collapse
Affiliation(s)
- Rui Li
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, 100871, China
| | - Yiming Zhou
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, 100871, China
| | - Yijia Liu
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, 100871, China
| | - Xingpeng Jiang
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, 100871, China
| | - Wenlong Zeng
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, 100871, China
| | - Zhuoran Gong
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, 100871, China
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, PMCRT 5-354, Toronto, Ontario, M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Desheng Sun
- Department of Ultrasonic Imaging, Peking University Shenzhen Hospital, Shenzhen, China.
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, 100871, China.
| |
Collapse
|
7
|
Li Z, Wu Z, Wang J, Huang M, Lin M. Expanding the applications of photodynamic therapy-tooth bleaching. Clin Oral Investig 2022; 26:2175-2186. [PMID: 34657223 DOI: 10.1007/s00784-021-04199-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 09/21/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVES The current tooth bleaching materials are associated with adverse effect. Photodynamic method based on a novel photosensitizer alone, without combining with peroxides, is evaluated for tooth bleaching application. MATERIALS AND METHODS Teeth samples were randomly divided into 3 groups with different treatment schemes, including negative control group (group A, physiological saline), experimental group (group B, ZnPc(Lys)5), and the positive control group (group C, hydrogen peroxide). Tooth color, surface microhardness, and roughness were determined at baseline, right after the first and second phase of bleaching, as well as 1 week and 1 month post-bleaching. Four samples in each group was randomly selected to evaluate the changes in surface morphology using the scanning electron microscope. RESULTS The color change values (ΔE) in group B (7.10 ± 1.03) and C (12.22 ± 2.35) were significantly higher than that in group A (0.93 ± 0.30, P < 0.05). Additionally, surface microhardness and roughness were significantly affected in group C, but not in the group A and B. Furthermore, the scanning electron microscope images showed no adverse effect of enamel in the group A and B while the group C demonstrated corrosive changes. CONCLUSIONS ZnPc(Lys)5 had a satisfactory bleaching effect and is promising to be a new type of tooth bleaching agent. CLINICAL RELEVANCE The current tooth bleaching materials give a satisfactory clinical outcome and long-term stability, but associated with some adverse reactions. Photosenstizer ZnPc(Lys)5 eliminated the main side effects observed in hydrogen peroxide-based agents on the enamel, and also had a satisfactory bleaching effect and provide a novel selective bleaching scheme for clinical use.
Collapse
Affiliation(s)
- Zhengquan Li
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fujian, 350000, China
| | - Zhouyan Wu
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fujian, 350000, China
| | - Jie Wang
- Research Center of Dental Esthetics and Biomechanics, Fujian Medical University, Fujian, 350000, China
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, Fujian, China.
| | - Minkui Lin
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fujian, 350000, China.
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fujian, 350000, China.
| |
Collapse
|
8
|
Synthesis of 29H,31H-phthalocyanine and chloro (29H,31H-phthalocyaninato) aluminum derivatives showed anti-cancer and anti-bacterial actions. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|