1
|
Latambale G, Juvale K. Thiazolidinedione derivatives: emerging role in cancer therapy. Mol Divers 2025:10.1007/s11030-024-11093-3. [PMID: 39899123 DOI: 10.1007/s11030-024-11093-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/19/2024] [Indexed: 02/04/2025]
Abstract
Cancer remains the leading cause of death worldwide, with the Globocan 2022 study reporting an estimated 9.7 million cancer deaths. Without the selectivity built for tumour cells, chemotherapeutic agents could be toxic to non-cancerous cells. Administration of such non-selective cytotoxic compounds causes severe side effects and could lead to death. Improved cancer treatments are required to overcome the limitations of the current cancer treatment. The potential of thiazolidinedione derivatives as anticancer drugs has recently drawn attention, despite their primary use as insulin sensitizers in the treatment of type 2 diabetes. The ability of thiazolidinedione derivatives to alter important molecular pathways implicated in carcinogenesis, such as cell proliferation, apoptosis, angiogenesis, Raf kinase, EGFR and HER-2 kinases, HDAC, COX-2 enzyme and metastasis, is highlighted in this review, which examines the growing relevance of these compounds in cancer treatment. Thiazolidinediones have anti-inflammatory, antioxidant, and antiproliferative properties in a variety of cancer types, including breast, colon, and prostate cancers, via activating the peroxisome proliferator-activated gamma receptor (PPARγ). In addition to examining the safety profile and difficulties in clinical translation, the paper looks at preclinical and clinical research that points to these medicines potential to improve the effectiveness of immunotherapy and chemotherapy. This review highlights the encouraging therapeutic possibilities and structure-activity relationship insight of TZDs for their anticancer activity and highlights the molecular level facets of the 'glitazone' pharmacophore for its anticancer activity.
Collapse
Affiliation(s)
- Ganesh Latambale
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Kapil Juvale
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
2
|
Wang Y, Sun Z, Zhao Z, Pang J, Chen J. Recent Progress in the Development of Glucose Transporter (GLUT) Inhibitors. J Med Chem 2025; 68:1033-1050. [PMID: 39746141 DOI: 10.1021/acs.jmedchem.4c02717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Cancer cells exhibit an accelerated glucose uptake and glycolysis. The transmembrane uptake of glucose requires specific carrier proteins, such as glucose transporters (GLUTs) and sodium-coupled glucose cotransporters (SGLTs). GLUTs transport glucose independently of the energy supply and have become promising targets for cancer therapy. This Perspective mainly focuses on the current research progress and design strategy of GLUT inhibitors, particularly those targeting class I (GLUT1-4). To the best of our knowledge, this is the first systematic interpretation of the research progress, opportunities, and challenges faced in the development of GLUT inhibitors from a medicinal chemistry perspective. We hope that this Perspective will provide insights into the development of GLUT inhibitors, offering a feasible approach to cancer therapy.
Collapse
Affiliation(s)
- Yuxuan Wang
- Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China
| | - Zhiqiang Sun
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zean Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianxin Pang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
3
|
Zha C, Yang X, Yang J, Zhang Y, Huang R. Immunosuppressive microenvironment in acute myeloid leukemia: overview, therapeutic targets and corresponding strategies. Ann Hematol 2024; 103:4883-4899. [PMID: 39607487 DOI: 10.1007/s00277-024-06117-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
Similar to other malignancies, immune dysregulation is a key feature of acute myeloid leukemia (AML), manifesting as suppressed anti-leukemia immune cells, immune evasion by leukemia blasts, and disease progression. Various immunosuppressive factors within the AML microenvironment contribute to the weakening of host immune responses and the efficacy of cellular immunotherapy. To address these challenges, strategies targeting immunosuppressive elements within the AML microenvironment aim to bolster host or adoptive immune effector cells, ultimately enhancing leukemia treatment. Additionally, the off-target effects of certain targeted drugs (venetoclax, sorafenib, ivosidenib, etc.) may also positively impact anti-AML immunity and immunotherapy. This review provides an overview of the immunosuppressive factors present in AML microenvironment and the strategies developed to rescue immune cells from immunosuppression. We also outline how targeted agents can alter the immune landscape in AML patients, and discuss the potential of targeted drugs to benefit host anti-leukemia immunity and immunotherapy for AML.
Collapse
Affiliation(s)
- Chenyu Zha
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinyu Yang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jun Yang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yujie Zhang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Rui Huang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
4
|
Gupta S, Jha S, Rani S, Arora P, Kumar S. Medicinal Perspective of 2,4-Thiazolidinediones Derivatives: An Insight into Recent Advancements. ChemistryOpen 2024; 13:e202400147. [PMID: 39246226 PMCID: PMC11564877 DOI: 10.1002/open.202400147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/25/2024] [Indexed: 09/10/2024] Open
Abstract
2,4-Thiazolidinedione derivatives represent nitrogen-containing heterocyclic compounds utilized in type 2 diabetes mellitus management. Recent advances in medicinal chemistry have unveiled diverse therapeutic potentials and structural modifications of these derivatives. This review delves into novel TZD derivatives, encompassing their synthesis, structure-activity relationships, and pharmacokinetic profiles. Various therapeutic potentials of TZDs are explored, including anticancer, antimicrobial, anti-inflammatory, antioxidant, anticonvulsant, antihyperlipidemic, anticorrosive, and antitubercular activities. Additionally, it addresses mitigating side effects associated with marketed TZD derivatives such as weight gain, oedema, fractures, and congestive heart failure in type 2 diabetes mellitus management. The review elaborates on in vivo, in vitro, and ex vivo studies supporting different biological activities, alongside predicting ADME and drug-likeness properties of TZDs. Computational studies are also integrated to elucidate binding modes and affinities of novel TZD derivatives. Furthermore, a plethora of novel TZD derivatives with varied and enhanced therapeutic potentials are presented, warranting further evaluation of their biological activities.
Collapse
Affiliation(s)
- Sneha Gupta
- School of Pharmaceutical SciencesLovely Professional UniversityJalandhar-Delhi G.T. RoadPhagwaraPunjab144411India
| | - Sumeet Jha
- School of Pharmaceutical SciencesLovely Professional UniversityJalandhar-Delhi G.T. RoadPhagwaraPunjab144411India
| | - Supriya Rani
- School of Pharmaceutical SciencesLovely Professional UniversityJalandhar-Delhi G.T. RoadPhagwaraPunjab144411India
| | - Pinky Arora
- School of bioengineering and biosciencesLovely Professional UniversityJalandhar-Delhi G.T. RoadPhagwaraPunjab144411India
| | - Shubham Kumar
- School of Pharmaceutical SciencesLovely Professional UniversityJalandhar-Delhi G.T. RoadPhagwaraPunjab144411India
| |
Collapse
|
5
|
Abusharkh KAN, Comert Onder F, Çınar V, Onder A, Sıkık M, Hamurcu Z, Ozpolat B, Ay M. Novel benzothiazole/benzothiazole thiazolidine-2,4-dione derivatives as potential FOXM1 inhibitors: In silico, synthesis, and in vitro studies. Arch Pharm (Weinheim) 2024:e2400504. [PMID: 39318080 DOI: 10.1002/ardp.202400504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/25/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024]
Abstract
The oncogenic transcription factor FOXM1 overexpressed in breast and other solid cancers, is a key driver of tumor growth and progression through complex interactions, making it an attractive molecular target for the development of targeted therapies. Despite the availability of small-molecule inhibitors, their limited specificity, potency, and efficacy hinder clinical translation. To identify effective FOXM1 inhibitors, we synthesized novel benzothiazole derivatives (KC10-KC13) and benzothiazole hybrids with thiazolidine-2,4-dione (KC21-KC36). These compounds were evaluated for FOXM1 inhibition. Molecular docking and molecular dynamics simulation analysis revealed their binding patterns and affinities for the FOXM1-DNA binding domain. The interactions with key amino acids such as Asn283, His287, and Arg286, crucial for FOXM1 inhibition, have been determined with the synthesized compounds. Additionally, the molecular modeling study indicated that KC12, KC21, and KC30 aligned structurally and interacted similarly to the reference compound FDI-6. In vitro studies with the MDA-MB-231 breast cancer cell line demonstrated that KC12, KC21, and KC30 significantly inhibited FOXM1, showing greater potency than FDI-6, with IC50 values of 6.13, 10.77, and 12.86 µM, respectively, versus 20.79 µM for FDI-6. Our findings suggest that KC12, KC21, and KC30 exhibit strong activity as FOXM1 inhibitors and may be suitable for in vivo animal studies.
Collapse
Affiliation(s)
- Khaled A N Abusharkh
- Department of Chemistry, School of Graduate Studies, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
- Department of Chemistry, Natural Products and Drug Research Laboratory, Faculty of Science, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
- Department of Chemistry and Chemical Technology, Faculty of Science and Technology, Al-Quds University, East Jerusalem, Palestine
| | - Ferah Comert Onder
- Department of Medical Biology, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Venhar Çınar
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Alper Onder
- Department of Chemistry, Natural Products and Drug Research Laboratory, Faculty of Science, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Merve Sıkık
- Department of Medical System Biology, School of Graduate Studies, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Zuhal Hamurcu
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Bulent Ozpolat
- Department of Nanomedicine, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas, USA
| | - Mehmet Ay
- Department of Chemistry, Natural Products and Drug Research Laboratory, Faculty of Science, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| |
Collapse
|
6
|
Hadzi-Petrushev N, Stojchevski R, Jakimovska A, Stamenkovska M, Josifovska S, Stamatoski A, Sazdova I, Sopi R, Kamkin A, Gagov H, Mladenov M, Avtanski D. GLUT5-overexpression-related tumorigenic implications. Mol Med 2024; 30:114. [PMID: 39107723 PMCID: PMC11304774 DOI: 10.1186/s10020-024-00879-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
Glucose transporter 5 (GLUT5) overexpression has gained increasing attention due to its profound implications for tumorigenesis. This manuscript provides a comprehensive overview of the key findings and implications associated with GLUT5 overexpression in cancer. GLUT5 has been found to be upregulated in various cancer types, leading to alterations in fructose metabolism and enhanced glycolysis, even in the presence of oxygen, a hallmark of cancer cells. This metabolic shift provides cancer cells with an alternative energy source and contributes to their uncontrolled growth and survival. Beyond its metabolic roles, recent research has unveiled additional aspects of GLUT5 in cancer biology. GLUT5 overexpression appears to play a critical role in immune evasion mechanisms, which further worsens tumor progression and complicates therapeutic interventions. This dual role of GLUT5 in both metabolic reprogramming and immune modulation highlights its significance as a potential diagnostic marker and therapeutic target. Understanding the molecular mechanisms driving GLUT5 overexpression is crucial for developing targeted therapeutic strategies that can disrupt the unique vulnerabilities of GLUT5-overexpressing cancer cells. This review emphasizes the complexities surrounding GLUT5's involvement in cancer and underscores the pressing need for continued research to unlock its potential as a diagnostic biomarker and therapeutic target, ultimately improving cancer management and patient outcomes.
Collapse
Affiliation(s)
- Nikola Hadzi-Petrushev
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia
| | - Radoslav Stojchevski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY, 10022, USA
- Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA
| | - Anastasija Jakimovska
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia
| | - Mimoza Stamenkovska
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia
| | - Slavica Josifovska
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia
| | - Aleksandar Stamatoski
- Faculty of Dental Medicine, University Clinic for Maxillofacial Surgery in Skopje, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia
| | - Iliyana Sazdova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University 'St. Kliment Ohridski', Sofia, 1504, Bulgaria
| | - Ramadan Sopi
- Faculty of Medicine, University of Prishtina, Prishtina, 10 000, Kosovo
| | - Andre Kamkin
- Institute of Physiology of the Federal State Autonomous Educational Institution of Higher Education "N.I. Pirogov Russian National Research Medical University" Ministry of Health, Moscow, Russian Federation
| | - Hristo Gagov
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University 'St. Kliment Ohridski', Sofia, 1504, Bulgaria
| | - Mitko Mladenov
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia
- Institute of Physiology of the Federal State Autonomous Educational Institution of Higher Education "N.I. Pirogov Russian National Research Medical University" Ministry of Health, Moscow, Russian Federation
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY, 10022, USA.
- Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA.
| |
Collapse
|
7
|
Garberová M, Kudličková Z, Michalková R, Tvrdoňová M, Sabolová D, Bekešová S, Gramblička M, Mojžiš J, Vilková M. Design, Synthesis, and Characterization of Novel Thiazolidine-2,4-Dione-Acridine Hybrids as Antitumor Agents. Molecules 2024; 29:3387. [PMID: 39064964 PMCID: PMC11280325 DOI: 10.3390/molecules29143387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
This study focuses on the synthesis and structural characterization of new compounds that integrate thiazolidine-2,4-dione, acridine moiety, and an acetamide linker, aiming to leverage the synergistic effects of these pharmacophores for enhanced therapeutic potential. The newly designed molecules were efficiently synthesized through a multi-step process and subsequently transformed into their hydrochloride salts. Comprehensive spectroscopic techniques, including nuclear magnetic resonance (NMR), high-resolution mass spectrometry (HRMS), infrared (IR) spectroscopy, and elemental analysis, were employed to determine the molecular structures of the synthesized compounds. Biological evaluations were conducted to assess the therapeutic potential of the new compounds. The influence of these derivatives on the metabolic activity of various cancer cell lines was assessed, with IC50 values determined via MTT assays. An in-depth analysis of the structure-activity relationship (SAR) revealed intriguing insights into their cytotoxic profiles. Compounds with electron-withdrawing groups generally exhibited lower IC50 values, indicating higher potency. The presence of the methoxy group at the linking phenyl ring modulated both the potency and selectivity of the compounds. The variation in the acridine core at the nitrogen atom of the thiazolidine-2,4-dione core significantly affects the activity against cancer cell lines, with the acridin-9-yl substituent enhancing the compounds' antiproliferative activity. Furthermore, compounds in their hydrochloride salt forms demonstrated better activity against cancer cell lines compared to their free base forms. Compounds 12c·2HCl (IC50 = 5.4 ± 2.4 μM), 13d (IC50 = 4.9 ± 2.9 μM), and 12f·2HCl (IC50 = 4.98 ± 2.9 μM) demonstrated excellent activity against the HCT116 cancer cell line, and compound 7d·2HCl (IC50 = 4.55 ± 0.35 μM) demonstrated excellent activity against the HeLa cancer cell line. Notably, only a few tested compounds, including 7e·2HCl (IC50 = 11.00 ± 2.2 μM), 7f (IC50 = 11.54 ± 2.06 μM), and 7f·2HCl (IC50 = 9.82 ± 1.92 μM), showed activity against pancreatic PATU cells. This type of cancer has a very high mortality due to asymptomatic early stages, the occurrence of metastases, and frequent resistance to chemotherapy. Four derivatives, namely, 7e·2HCl, 12d·2HCl, 13c·HCl, and 13d, were tested for their interaction properties with BSA using fluorescence spectroscopic studies. The values for the quenching constant (Ksv) ranged from 9.59 × 104 to 10.74 × 104 M-1, indicating a good affinity to the BSA protein.
Collapse
Affiliation(s)
- Monika Garberová
- Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University, Moyzesova 11, 040 01 Košice, Slovakia; (M.G.); (Z.K.); (M.T.); (D.S.)
| | - Zuzana Kudličková
- Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University, Moyzesova 11, 040 01 Košice, Slovakia; (M.G.); (Z.K.); (M.T.); (D.S.)
| | - Radka Michalková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, Trieda SNP 1, 040 01 Košice, Slovakia; (R.M.); (J.M.)
| | - Monika Tvrdoňová
- Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University, Moyzesova 11, 040 01 Košice, Slovakia; (M.G.); (Z.K.); (M.T.); (D.S.)
| | - Danica Sabolová
- Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University, Moyzesova 11, 040 01 Košice, Slovakia; (M.G.); (Z.K.); (M.T.); (D.S.)
| | - Slávka Bekešová
- Thermo Fisher Scientific, Mlynské Nivy 5, 821 09 Bratislava, Slovakia; (S.B.); (M.G.)
| | - Michal Gramblička
- Thermo Fisher Scientific, Mlynské Nivy 5, 821 09 Bratislava, Slovakia; (S.B.); (M.G.)
| | - Ján Mojžiš
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, Trieda SNP 1, 040 01 Košice, Slovakia; (R.M.); (J.M.)
| | - Mária Vilková
- Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University, Moyzesova 11, 040 01 Košice, Slovakia; (M.G.); (Z.K.); (M.T.); (D.S.)
| |
Collapse
|
8
|
Al-Sanea MM, Hamdi A, Mohamed AAB, El-Shafey HW, Moustafa M, Elgazar AA, Eldehna WM, Ur Rahman H, Parambi DGT, Elbargisy RM, Selim S, Bukhari SNA, Magdy Hendawy O, Tawfik SS. New benzothiazole hybrids as potential VEGFR-2 inhibitors: design, synthesis, anticancer evaluation, and in silico study. J Enzyme Inhib Med Chem 2023; 38:2166036. [PMID: 36691927 PMCID: PMC9879182 DOI: 10.1080/14756366.2023.2166036] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A new series of 2-aminobenzothiazole hybrids linked to thiazolidine-2,4-dione 4a-e, 1,3,4-thiadiazole aryl urea 6a-d, and cyanothiouracil moieties 8a-d was synthesised. The in vitro antitumor effect of the new hybrids was assessed against three cancer cell lines, namely, HCT-116, HEPG-2, and MCF-7 using Sorafenib (SOR) as a standard drug. Among the tested compounds, 4a was the most potent showing IC50 of 5.61, 7.92, and 3.84 µM, respectively. Furthermore, compounds 4e and 8a proved to have strong impact on breast cancer cell line with IC50 of 6.11 and 10.86 µM, respectively. The three compounds showed a good safety profile towards normal WI-38 cells. Flow cytometric analysis of the three compounds in MCF-7 cells revealed that compounds 4a and 4c inhibited cell population in the S phase, whereas 8a inhibited the population in the G1/S phase. The most promising compounds were subjected to a VEGFR-2 inhibitory assay where 4a emerged as the best active inhibitor of VEGFR-2 with IC50 91 nM, compared to 53 nM for SOR. In silico analysis showed that the three new hybrids succeeded to link to the active site like the co-crystallized inhibitor SOR.
Collapse
Affiliation(s)
- Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia,CONTACT Mohammad M. Al-Sanea Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf72341, Saudi Arabia
| | - Abdelrahman Hamdi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ahmed A. B. Mohamed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt,Ahmed A. B. Mohamed Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura35516, Egypt
| | - Hamed W. El-Shafey
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mahmoud Moustafa
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Abdullah A. Elgazar
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Hidayat Ur Rahman
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Della G. T. Parambi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Rehab M. Elbargisy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Omnia Magdy Hendawy
- Department of Pharmacology, College of Pharmacy, Jouf University, Aljouf, Saudi Arabia
| | - Samar S. Tawfik
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
9
|
Zhang Y, Qin H, Bian J, Ma Z, Yi H. SLC2As as diagnostic markers and therapeutic targets in LUAD patients through bioinformatic analysis. Front Pharmacol 2022; 13:1045179. [PMID: 36518662 PMCID: PMC9742449 DOI: 10.3389/fphar.2022.1045179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/14/2022] [Indexed: 11/05/2023] Open
Abstract
Facilitative glucose transporters (GLUTs), which are encoded by solute carrier 2A (SLC2A) genes, are responsible for mediating glucose absorption. In order to meet their higher energy demands, cancer cells are more likely than normal tissue cells to have elevated glucose transporters. Multiple pathogenic processes, such as cancer and immunological disorders, have been linked to GLUTs. Few studies, meanwhile, have been conducted on individuals with lung adenocarcinoma (LUAD) to evaluate all 14 SLC2A genes. We first identified increased protein levels of SLC2A1, SLC2A5, SLC2A6, and SLC2A9 via HPA database and downregulated mRNA levels of SLC2A3, SLC2A6, SLC2A9, and SLC2A14 by ONCOMINE and UALCAN databases in patients with LUAD. Additionally, lower levels of SLC2A3, SLC2A6, SLC2A9, SLC2A12, and SLC2A14 and higher levels of SLC2A1, SLC2A5, SLC2A10, and SLC2A11 had an association with advanced tumor stage. SLC2A1, SLC2A7, and SLC2A11 were identified as prognostic signatures for LUAD. Kaplan-Meier analysis, Univariate Cox regression, multivariate Cox regression and ROC analyses further revealed that these three genes signature was a novel and important prognostic factor. Mechanistically, the aberrant expression of these molecules was caused, in part, by the hypomethylation of SLC2A3, SLC2A10, and SLC2A14 and by the hypermethylation of SLC2A1, SLC2A2, SLC2A5, SLC2A6, SLC2A7, and SLC2A11. Additionally, SLC2A3, SLC2A5, SLC2A6, SLC2A9, and SLC2A14 contributed to LUAD by positively modulating M2 macrophage and T cell exhaustion. Finally, pathways involving SLC2A1/BUB1B/mitotic cell cycle, SLC2A5/CD86/negative regulation of immune system process, SLC2A6/PLEK/lymphocyte activation, SLC2A9/CD4/regulation of cytokine production might participate in the pathogenesis of LUAD. In summary, our results will provide the theoretical basis on SLC2As as diagnostic markers and therapeutic targets in LUAD.
Collapse
Affiliation(s)
- Yanli Zhang
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin, China
- Echocardiography Department, The First Hospital of Jilin University, Changchun, China
| | - Han Qin
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin, China
| | - Jing Bian
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Zhanchuan Ma
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin, China
| | - Huanfa Yi
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin, China
| |
Collapse
|
10
|
Targeting Glucose Metabolism Enzymes in Cancer Treatment: Current and Emerging Strategies. Cancers (Basel) 2022; 14:cancers14194568. [PMID: 36230492 PMCID: PMC9559313 DOI: 10.3390/cancers14194568] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Reprogramming of glucose metabolism is a hallmark of cancer and can be targeted by therapeutic agents. Some metabolism regulators, such as ivosidenib and enasidenib, have been approved for cancer treatment. Currently, more advanced and effective glucose metabolism enzyme-targeted anticancer drugs have been developed. Furthermore, some natural products have shown efficacy in killing tumor cells by regulating glucose metabolism, offering novel therapeutic opportunities in cancer. However, most of them have failed to be translated into clinical applications due to low selectivity, high toxicity, and side effects. Recent studies suggest that combining glucose metabolism modulators with chemotherapeutic drugs, immunotherapeutic drugs, and other conventional anticancer drugs may be a future direction for cancer treatment. Abstract Reprogramming of glucose metabolism provides sufficient energy and raw materials for the proliferation, metastasis, and immune escape of cancer cells, which is enabled by glucose metabolism-related enzymes that are abundantly expressed in a broad range of cancers. Therefore, targeting glucose metabolism enzymes has emerged as a promising strategy for anticancer drug development. Although several glucose metabolism modulators have been approved for cancer treatment in recent years, some limitations exist, such as a short half-life, poor solubility, and numerous adverse effects. With the rapid development of medicinal chemicals, more advanced and effective glucose metabolism enzyme-targeted anticancer drugs have been developed. Additionally, several studies have found that some natural products can suppress cancer progression by regulating glucose metabolism enzymes. In this review, we summarize the mechanisms underlying the reprogramming of glucose metabolism and present enzymes that could serve as therapeutic targets. In addition, we systematically review the existing drugs targeting glucose metabolism enzymes, including small-molecule modulators and natural products. Finally, the opportunities and challenges for glucose metabolism enzyme-targeted anticancer drugs are also discussed. In conclusion, combining glucose metabolism modulators with conventional anticancer drugs may be a promising cancer treatment strategy.
Collapse
|
11
|
Yu Z, Zhou X, Wang X. Metabolic Reprogramming in Hematologic Malignancies: Advances and Clinical Perspectives. Cancer Res 2022; 82:2955-2963. [PMID: 35771627 PMCID: PMC9437558 DOI: 10.1158/0008-5472.can-22-0917] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/14/2022] [Accepted: 06/27/2022] [Indexed: 01/07/2023]
Abstract
Metabolic reprogramming is a hallmark of cancer progression. Metabolic activity supports tumorigenesis and tumor progression, allowing cells to uptake essential nutrients from the environment and use the nutrients to maintain viability and support proliferation. The metabolic pathways of malignant cells are altered to accommodate increased demand for energy, reducing equivalents, and biosynthetic precursors. Activated oncogenes coordinate with altered metabolism to control cell-autonomous pathways, which can lead to tumorigenesis when abnormalities accumulate. Clinical and preclinical studies have shown that targeting metabolic features of hematologic malignancies is an appealing therapeutic approach. This review provides a comprehensive overview of the mechanisms of metabolic reprogramming in hematologic malignancies and potential therapeutic strategies to target cancer metabolism.
Collapse
Affiliation(s)
- Zhuoya Yu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, China.,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, China.,Corresponding Authors: Xin Wang, Department of Hematology, Shandong Provincial Hospital, Shandong University, No. 324, Jingwu Road, Jinan, Shandong 250021, China. Phone: 8653-1687-76358; Fax: 8653-1870-61197; E-mail: ; Xiangxiang Zhou, Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, Shandong 250021, China. Phone: 8653-1687-76358; E-mail:
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, China.,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, China.,Corresponding Authors: Xin Wang, Department of Hematology, Shandong Provincial Hospital, Shandong University, No. 324, Jingwu Road, Jinan, Shandong 250021, China. Phone: 8653-1687-76358; Fax: 8653-1870-61197; E-mail: ; Xiangxiang Zhou, Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, Shandong 250021, China. Phone: 8653-1687-76358; E-mail:
| |
Collapse
|
12
|
Singh G, Kajal K, Pradhan T, Bhurta D, Monga V. The medicinal perspective of 2,4-thiazolidinediones based ligands as antimicrobial, antitumor and antidiabetic agents: A review. Arch Pharm (Weinheim) 2022; 355:e2100517. [PMID: 35715383 DOI: 10.1002/ardp.202100517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 11/08/2022]
Abstract
2,4-Thiazolidinedione (2,4-TZD), commonly known as glitazone, is a ubiquitous heterocyclic pharmacophore possessing a plethora of pharmacological activities and offering a vast opportunity for structural modification. The diverse range of biological activities endowed with a novel mode of action, low cost, and easy synthesis has attracted the attention of medicinal chemists. Several researchers have integrated the TZD core with different structural fragments to develop a wide range of lead molecules against various clinical disorders. The most common sites for structural modifications at the 2,4-TZD nucleus are the N-3 and the active methylene at C-5. The review covers the recent development of TZD derivatives such as antimicrobial, anticancer, and antidiabetic agents. Various 2,4-TZD based agents or drugs, which are either under clinical development or in the market, are discussed in the study. Different synthetic methodologies for synthesizing the 2,4-TZD core are also included in the manuscript. The importance of various substitutions at N-3 and C-5 and the mechanisms of action and structure-activity relationships are also discussed. We hope this study will serve as a valuable tool for the scientific community engaged in the structural exploitation of the 2,4-TZD core for developing novel drug m\olecules for life-threatening ailments.
Collapse
Affiliation(s)
- Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Kumari Kajal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Tathagata Pradhan
- Department of Pharmaceutical Chemistry, SPER, Jamia Hamdard, New Delhi, India
| | - Deendyal Bhurta
- Department of Pharmaceutical Chemistry, Rajendra Institute of Technology and Sciences, Sirsa, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India.,Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
13
|
Fujii T, Katoh M, Ootsubo M, Nguyen OTT, Iguchi M, Shimizu T, Tabuchi Y, Shimizu Y, Takeshima H, Sakai H. Cardiac glycosides stimulate endocytosis of GLUT1 via intracellular Na + ,K + -ATPase α3-isoform in human cancer cells. J Cell Physiol 2022; 237:2980-2991. [PMID: 35511727 DOI: 10.1002/jcp.30762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/23/2022] [Accepted: 04/11/2022] [Indexed: 01/20/2023]
Abstract
Glucose transporter GLUT1 plays a primary role in the glucose metabolism of cancer cells. Here, we found that cardiac glycosides (CGs) such as ouabain, oleandrin, and digoxin, which are Na+ ,K+ -ATPase inhibitors, decreased the GLUT1 expression in the plasma membrane of human cancer cells (liver cancer HepG2, colon cancer HT-29, gastric cancer MKN45, and oral cancer KB cells). The effective concentration of ouabain was lower than that for inhibiting the activity of Na+ ,K+ -ATPase α1-isoform (α1NaK) in the plasma membrane. The CGs also inhibited [3 H]2-deoxy- d-glucose uptake, lactate secretion, and proliferation of the cancer cells. In intracellular vesicles of human cancer cells, Na+ ,K+ -ATPase α3-isoform (α3NaK) is abnormally expressed. Here, a low concentration of ouabain inhibited the activity of α3NaK. Knockdown of α3NaK significantly inhibited the ouabain-decreased GLUT1 expression in HepG2 cells, while the α1NaK knockdown did not. Consistent with the results in human cancer cells, CGs had no effect on GLUT1 expression in rat liver cancer dRLh-84 cells where α3NaK was not endogenously expressed. Interestingly, CGs decreased GLUT expression in the dRLh-84 cells exogenously expressing α3NaK. In HepG2 cells, α3NaK was found to be colocalized with TPC1, a Ca2+ -releasing channel activated by nicotinic acid adenine dinucleotide phosphate (NAADP). The CGs-decreased GLUT1 expression was significantly inhibited by a Ca2+ chelator, a Ca2+ -ATPase inhibitor, and a NAADP antagonist. The GLUT1 decrease was also attenuated by inhibitors of dynamin and phosphatidylinositol-3 kinases (PI3Ks). In conclusion, the binding of CGs to intracellular α3NaK elicits the NAADP-mediated Ca2+ mobilization followed by the dynamin-dependent GLUT1 endocytosis in human cancer cells.
Collapse
Affiliation(s)
- Takuto Fujii
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Mizuki Katoh
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Manami Ootsubo
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Oanh T T Nguyen
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Mayumi Iguchi
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Takahiro Shimizu
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama, Japan
| | - Yasuharu Shimizu
- Tokyo Research Center, Kyushin Pharmaceutical Co, Ltd., Tokyo, Japan
| | - Hiroshi Takeshima
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hideki Sakai
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
14
|
Levshin IB, Simonov AY, Lavrenov SN, Panov AA, Grammatikova NE, Alexandrov AA, Ghazy ESMO, Savin NA, Gorelkin PV, Erofeev AS, Polshakov VI. Antifungal Thiazolidines: Synthesis and Biological Evaluation of Mycosidine Congeners. Pharmaceuticals (Basel) 2022; 15:ph15050563. [PMID: 35631390 PMCID: PMC9145892 DOI: 10.3390/ph15050563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 02/01/2023] Open
Abstract
Novel derivatives of Mycosidine (3,5-substituted thiazolidine-2,4-diones) are synthesized by Knoevenagel condensation and reactions of thiazolidines with chloroformates or halo-acetic acid esters. Furthermore, 5-Arylidene-2,4-thiazolidinediones and their 2-thioxo analogs containing halogen and hydroxy groups or di(benzyloxy) substituents in 5-benzylidene moiety are tested for antifungal activity in vitro. Some of the synthesized compounds exhibit high antifungal activity, both fungistatic and fungicidal, and lead to morphological changes in the Candida yeast cell wall. Based on the use of limited proteomic screening and toxicity analysis in mutants, we show that Mycosidine activity is associated with glucose transport. This suggests that this first-in-class antifungal drug has a novel mechanism of action that deserves further study.
Collapse
Affiliation(s)
- Igor B. Levshin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia; (I.B.L.); (A.Y.S.); (S.N.L.); (N.E.G.)
| | - Alexander Y. Simonov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia; (I.B.L.); (A.Y.S.); (S.N.L.); (N.E.G.)
| | - Sergey N. Lavrenov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia; (I.B.L.); (A.Y.S.); (S.N.L.); (N.E.G.)
| | - Alexey A. Panov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia; (I.B.L.); (A.Y.S.); (S.N.L.); (N.E.G.)
- Correspondence:
| | - Natalia E. Grammatikova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia; (I.B.L.); (A.Y.S.); (S.N.L.); (N.E.G.)
| | - Alexander A. Alexandrov
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the RAS, 119071 Moscow, Russia; (A.A.A.); (E.S.M.O.G.)
| | - Eslam S. M. O. Ghazy
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the RAS, 119071 Moscow, Russia; (A.A.A.); (E.S.M.O.G.)
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Department of Microbiology, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Nikita A. Savin
- Research Laboratory of Biophysics, National University of Science and Technology “MISiS”, 4 Leninsky Ave., 119049 Moscow, Russia; (N.A.S.); (P.V.G.); (A.S.E.)
| | - Peter V. Gorelkin
- Research Laboratory of Biophysics, National University of Science and Technology “MISiS”, 4 Leninsky Ave., 119049 Moscow, Russia; (N.A.S.); (P.V.G.); (A.S.E.)
| | - Alexander S. Erofeev
- Research Laboratory of Biophysics, National University of Science and Technology “MISiS”, 4 Leninsky Ave., 119049 Moscow, Russia; (N.A.S.); (P.V.G.); (A.S.E.)
| | - Vladimir I. Polshakov
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave., 119991 Moscow, Russia;
| |
Collapse
|
15
|
Tilekar K, Shelke O, Upadhyay N, Lavecchia A, Ramaa CS. Current status and future prospects of molecular hybrids with thiazolidinedione (TZD) scaffold in anticancer drug discovery. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
16
|
GLUT3 inhibitor discovery through in silico ligand screening and in vivo validation in eukaryotic expression systems. Sci Rep 2022; 12:1429. [PMID: 35082341 PMCID: PMC8791944 DOI: 10.1038/s41598-022-05383-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/06/2022] [Indexed: 12/30/2022] Open
Abstract
The passive transport of glucose and related hexoses in human cells is facilitated by members of the glucose transporter family (GLUT, SLC2 gene family). GLUT3 is a high-affinity glucose transporter primarily responsible for glucose entry in neurons. Changes in its expression have been implicated in neurodegenerative diseases and cancer. GLUT3 inhibitors can provide new ways to probe the pathophysiological role of GLUT3 and tackle GLUT3-dependent cancers. Through in silico screening of an ~ 8 million compounds library against the inward- and outward-facing models of GLUT3, we selected ~ 200 ligand candidates. These were tested for in vivo inhibition of GLUT3 expressed in hexose transporter-deficient yeast cells, resulting in six new GLUT3 inhibitors. Examining their specificity for GLUT1-5 revealed that the most potent GLUT3 inhibitor (G3iA, IC50 ~ 7 µM) was most selective for GLUT3, inhibiting less strongly only GLUT2 (IC50 ~ 29 µM). None of the GLUT3 inhibitors affected GLUT5, three inhibited GLUT1 with equal or twofold lower potency, and four showed comparable or two- to fivefold better inhibition of GLUT4. G3iD was a pan-Class 1 GLUT inhibitor with the highest preference for GLUT4 (IC50 ~ 3.9 µM). Given the prevalence of GLUT1 and GLUT3 overexpression in many cancers and multiple myeloma’s reliance on GLUT4, these GLUT3 inhibitors may discriminately hinder glucose entry into various cancer cells, promising novel therapeutic avenues in oncology.
Collapse
|
17
|
Zeng Z, Nian Q, Chen N, Zhao M, Zheng Q, Zhang G, Zhao Z, Chen Y, Wang J, Zeng J, Gong D, Tang J. Ginsenoside Rg3 inhibits angiogenesis in gastric precancerous lesions through downregulation of Glut1 and Glut4. Biomed Pharmacother 2021; 145:112086. [PMID: 34799220 DOI: 10.1016/j.biopha.2021.112086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023] Open
Abstract
Ginsenoside Rg3 (GRg3) is a ginsenoside extracted from Panax ginseng. GRg3 displays multiple pharmacological properties, such as antitumor, anti-inflammatory, antioxidative and antifibrotic properties. However, whether GRg3 inhibits angiogenesis in gastric precancerous lesions (GPLs) and the possible mechanisms remain unknown. GRg3 attenuated gastric intestinal metaplasia and gastric dysplasia, the hallmark of GPL pathology, in rats with MNNG-ammonia compound induced GPLs. Increased CD34+ microvessel density and VEGF expression, which indicate the presence of angiogenesis, were evident in the rats with GPLs. GRg3 administration reduced VEGF protein expression and CD34+ microvessel density. In addition, GRg3 was capable of attenuating microvascular abnormalities. Data analysis revealed that enhanced protein expression of GLUT1, GLUT3 and GLUT4 were present in both human and animal GPL specimens. The administration of GRg3 caused significant decreases in the mRNA and protein expression levels of GLUT1 and GLUT4 in the rats with GPLs. However, the GRg3-treated rats with GPLs did not demonstrate regulatory effects on GLUT3, GLUT6, GLUT10, and GLUT12. Consistent with in vitro results, GRg3 administration significantly reduced the protein expression levels of GLUT1 and GLUT4 in both AGS and HGC-27 human gastric cancer cells in vitro. In conclusion, GRg3 can attenuate angiogenesis and temper microvascular abnormalities in rats with GPLs, which may be associated with its inhibition on the aberrant activation of GLUT1 and GLUT4.
Collapse
Affiliation(s)
- Zhongzhen Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Qing Nian
- Department of Blood Transfusion, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Nianzhi Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Maoyuan Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Qiao Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Gang Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Ziyi Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Yu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Jundong Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Jinhao Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China.
| | - Daoyin Gong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China.
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China.
| |
Collapse
|
18
|
Development and investigation of thiazolidinedione and pyrazoline compounds as antiangiogenic weapons targeting VEGFR-2. Future Med Chem 2021; 13:1963-1986. [PMID: 34581188 DOI: 10.4155/fmc-2021-0139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Angiogenesis deregulation is often linked to cancer and is thus an essential target. Materials & methods: Twenty-nine compounds were developed as VEGFR-2 inhibitors. Compounds were evaluated to determine their antiangiogenic activity. Results: B1, PB11 and PB16 showed HUVEC's IC50 scores in the submicromolar range. B1, B2 and PB16 reduced cellular migration and capillary tube formation of HUVECs. VEGFR-2 inhibitory activity was found in the nanomolar range: 200 nM of B1, 500 nM of B2 and 600 nM of PB16. B1 and PB16 suppressed the formation of new capillaries on growing CAMs. B1 and PB16 occupied the ATP site and allosteric pocket of VEGFR-2 in docking studies. Conclusion: These compounds can target VEGFR-2 and are endowed with in vitro and in vivo antiangiogenic activity.
Collapse
|
19
|
Upadhyay N, Tilekar K, Safuan S, Kumar AP, Schweipert M, Meyer-Almes FJ, C S R. Multi-target weapons: diaryl-pyrazoline thiazolidinediones simultaneously targeting VEGFR-2 and HDAC cancer hallmarks. RSC Med Chem 2021; 12:1540-1554. [PMID: 34671737 PMCID: PMC8459325 DOI: 10.1039/d1md00125f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022] Open
Abstract
In anticancer drug discovery, multi-targeting compounds have been beneficial due to their advantages over single-targeting compounds. For instance, VEGFR-2 has a crucial role in angiogenesis and cancer management, whereas HDACs are well-known regulators of epigenetics and have been known to contribute significantly to angiogenesis and carcinogenesis. Herein, we have reported nineteen novel VEGFR-2 and HDAC dual-targeting analogs containing diaryl-pyrazoline thiazolidinediones and their in vitro and in vivo biological evaluation. In particular, the most promising compound 14c has emerged as a dual inhibitor of VEGFR-2 and HDAC. It demonstrated anti-angiogenic activity by inhibiting in vitro HUVEC proliferation, migration, and tube formation. Moreover, an in vivo CAM assay showed that 14c repressed new capillary formation in CAMs. In particular, 14c exhibited cytotoxicity potential on different cancer cell lines such as MCF-7, K562, A549, and HT-29. Additionally, 14c demonstrated significant potency and selectivity against HDAC4 in the sub-micromolar range. To materialize the hypothesis, we also performed molecular docking on the crystal structures of both VEGFR-2 (PDB ID: 1YWN) and HDAC4 (PDB-ID: 4CBY), which corroborated the designing and biological activity. The results indicated that compound 14c could be a potential lead to develop more optimized multi-target analogs with enhanced potency and selectivity.
Collapse
Affiliation(s)
- Neha Upadhyay
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy Navi Mumbai India
| | - Kalpana Tilekar
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy Navi Mumbai India
| | - Sabreena Safuan
- Universiti Sains Malaysia School of Health Sciences Health Campus Universiti Sains Malaysia 16150 Kubang Kerian Kelantan Malaysia
| | - Alan P Kumar
- Cancer Science Institute of Singapore, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore Singapore
| | - Markus Schweipert
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt Germany
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt Germany
| | - Ramaa C S
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy Navi Mumbai India
| |
Collapse
|
20
|
Tilekar K, Hess JD, Upadhyay N, Schweipert M, Flath F, Gutierrez DA, Loiodice F, Lavecchia A, Meyer‐Almes F, Aguilera RJ, Ramaa CS. HDAC4 Inhibitors with Cyclic Linker and Non‐hydroxamate Zinc Binding Group: Design, Synthesis, HDAC Screening and
in
vitro
Cytotoxicity evaluation. ChemistrySelect 2021. [DOI: 10.1002/slct.202102061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kalpana Tilekar
- Department of Pharmaceutical Chemistry Bharati Vidyapeeth's College of Pharmacy, Sector 8, CBD Belapur Navi Mumbai India
| | - Jessica D. Hess
- Cellular Characterization and Biorepository Core Facility Border Biomedical Research Center Department of Biological Sciences The University of Texas at El Paso 500 West University Avenue El Paso TX 79968-0519 USA
| | - Neha Upadhyay
- Department of Pharmaceutical Chemistry Bharati Vidyapeeth's College of Pharmacy, Sector 8, CBD Belapur Navi Mumbai India
| | - Markus Schweipert
- Department of Chemical Engineering and Biotechnology University of Applied Science Haardtring 100 64295 Darmstadt Germany
| | - Felix Flath
- Department of Chemical Engineering and Biotechnology University of Applied Science Haardtring 100 64295 Darmstadt Germany
| | - Denisse A. Gutierrez
- Cellular Characterization and Biorepository Core Facility Border Biomedical Research Center Department of Biological Sciences The University of Texas at El Paso 500 West University Avenue El Paso TX 79968-0519 USA
| | - Fulvio Loiodice
- Department of Pharmacy-Drug Science University of Bari “Aldo Moro” Via E. Orabona, 4 70126 Bari Italy
| | - Antonio Lavecchia
- Department of Pharmacy “Drug Discovery” Laboratory University of Napoli “Federico II” Via D. Montesano, 49 80131 Napoli Italy
| | - Franz‐Josef Meyer‐Almes
- Department of Chemical Engineering and Biotechnology University of Applied Science Haardtring 100 64295 Darmstadt Germany
| | - Renato J. Aguilera
- Cellular Characterization and Biorepository Core Facility Border Biomedical Research Center Department of Biological Sciences The University of Texas at El Paso 500 West University Avenue El Paso TX 79968-0519 USA
| | - C. S. Ramaa
- Department of Pharmaceutical Chemistry Bharati Vidyapeeth's College of Pharmacy, Sector 8, CBD Belapur Navi Mumbai India
| |
Collapse
|
21
|
Nazreen S. Design, synthesis, and molecular docking studies of thiazolidinediones as PPAR-γ agonists and thymidylate synthase inhibitors. Arch Pharm (Weinheim) 2021; 354:e2100021. [PMID: 33988883 DOI: 10.1002/ardp.202100021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/06/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023]
Abstract
New thiazolidine-2,4-dione hybrids were designed and synthesized as potential peroxisome proliferator-activated receptor (PPAR)-γ agonists and thymidylate synthase inhibitors. All the synthesized compounds follow Lipinski's and Veber's rules and possess the desired pharmacokinetics properties. The PPAR-γ transactivation results displayed that compounds 12 (78.9%) and 11 (73.4%) were the most active compounds and they increased PPAR-γ gene expression by 2.2- and 2.4-fold, respectively. Compounds 12, 11, and 8 showed promising cytotoxicity, with IC50 values ranging from 1.4 to 4.5 μM against MCF-7 cells and from 1.8 to 8.4 μM against HCT-116 cells. Compounds 11 and 12 also inhibited thymidylate synthase with IC50 values of 5.1 and 3.2 μM, respectively, confirming their mode of action as thymidylate synthase inhibitors. Finally, molecular docking studies supported the in vitro biological activity results.
Collapse
Affiliation(s)
- Syed Nazreen
- Department of Chemistry, Faculty of Science, Albaha University, Albaha, Kingdom of Saudi Arabia
| |
Collapse
|
22
|
Design, Synthesis, and Antibacterial Screening of Some Novel Heteroaryl-Based Ciprofloxacin Derivatives as DNA Gyrase and Topoisomerase IV Inhibitors. Pharmaceuticals (Basel) 2021; 14:ph14050399. [PMID: 33922361 PMCID: PMC8145110 DOI: 10.3390/ph14050399] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 11/16/2022] Open
Abstract
A novel series of ciprofloxacin hybrids comprising various heterocycle derivatives has been synthesized and structurally elucidated using 1H NMR, 13C NMR, and elementary analyses. Using ciprofloxacin as a reference, compounds 1-21 were screened in vitro against Gram-positive bacterial strains such as Staphylococcus aureus and Bacillus subtilis and Gram-negative strains such as Escherichia coli and Pseudomonas aeruginosa. As a result, many of the compounds examined had antibacterial activity equivalent to ciprofloxacin against test bacteria. Compounds 2-6, oxadiazole derivatives, were found to have antibacterial activity that was 88 to 120% that of ciprofloxacin against Gram-positive and Gram-negative bacteria. The findings showed that none of the compounds tested had antifungal activity against Aspergillus flavus, but did have poor activity against Candida albicans, ranging from 23% to 33% of fluconazole, with compound 3 being the most active (33% of fluconazole). The most potent compounds, 3, 4, 5, and 6, displayed an IC50 of 86, 42, 92, and 180 nM against E. coli DNA gyrase, respectively (novobiocin, IC50 = 170 nM). Compounds 4, 5, and 6 showed IC50 values (1.47, 6.80, and 8.92 µM, respectively) against E. coli topo IV in comparison to novobiocin (IC50 = 11 µM).
Collapse
|
23
|
Gökalp F. An Investigation into the Usage of Monosaccharides with GLUT1 and GLUT3 as Prognostic Indicators for Cancer. Nutr Cancer 2021; 74:515-519. [PMID: 33724114 DOI: 10.1080/01635581.2021.1895233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The monosaccharides, glucose, fructose and galactose, are the most common and simplest forms of carbohydrates. The aim of this study was to determine the uptake of glucose as a potential therapeutic target agent for cancer treatment. The stability and transportation calculations of the monosaccharides were carried out in the blood phase by using the density functional theory and docking. The reactivity of monosaccharides, disaccharides and their transportation with GLUT1 and GLUT3 as prognostic indicators for cancer were investigated. The theoretical results of this study were supported by those reported in the literature and used in the prediction of the mechanisms of monosaccharides and the interpretation of their reactivities.
Collapse
Affiliation(s)
- Faik Gökalp
- Faculty of Education, Department of Maths and Science Education, Science Education, Kırıkkale University, Yahşihan/Kırıkkale, Turkey
| |
Collapse
|
24
|
Tilekar K, Upadhyay N, Iancu CV, Pokrovsky V, Choe JY, Ramaa CS. Power of two: combination of therapeutic approaches involving glucose transporter (GLUT) inhibitors to combat cancer. Biochim Biophys Acta Rev Cancer 2020; 1874:188457. [PMID: 33096154 PMCID: PMC7704680 DOI: 10.1016/j.bbcan.2020.188457] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/20/2022]
Abstract
Cancer research of the Warburg effect, a hallmark metabolic alteration in tumors, focused attention on glucose metabolism whose targeting uncovered several agents with promising anticancer effects at the preclinical level. These agents' monotherapy points to their potential as adjuvant combination therapy to existing standard chemotherapy in human trials. Accordingly, several studies on combining glucose transporter (GLUT) inhibitors with chemotherapeutic agents, such as doxorubicin, paclitaxel, and cytarabine, showed synergistic or additive anticancer effects, reduced chemo-, radio-, and immuno-resistance, and reduced toxicity due to lowering the therapeutic doses required for desired chemotherapeutic effects, as compared with monotherapy. The combinations have been specifically effective in treating cancer glycolytic phenotypes, such as pancreatic and breast cancers. Even combining GLUT inhibitors with other glycolytic inhibitors and energy restriction mimetics seems worthwhile. Though combination clinical trials are in the early phase, initial results are intriguing. The various types of GLUTs, their role in cancer progression, GLUT inhibitors, and their anticancer mechanism of action have been reviewed several times. However, utilizing GLUT inhibitors as combination therapeutics has received little attention. We consider GLUT inhibitors agents that directly affect glucose transporters by binding to them or indirectly alter glucose transport by changing the transporters' expression level. This review mainly focuses on summarizing the effects of various combinations of GLUT inhibitors with other anticancer agents and providing a perspective on the current status.
Collapse
Affiliation(s)
- Kalpana Tilekar
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth’s College of Pharmacy, Navi Mumbai, Maharashtra, India
| | - Neha Upadhyay
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth’s College of Pharmacy, Navi Mumbai, Maharashtra, India
| | - Cristina V. Iancu
- East Carolina Diabetes and Obesity Institute, Department of Chemistry, East Carolina University, Greenville, North Carolina, USA
| | - Vadim Pokrovsky
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, Moscow, Russia
- Department of Biochemistry, People’s Friendship University, Moscow, Russia
| | - Jun-yong Choe
- East Carolina Diabetes and Obesity Institute, Department of Chemistry, East Carolina University, Greenville, North Carolina, USA
| | - C. S. Ramaa
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth’s College of Pharmacy, Navi Mumbai, Maharashtra, India
| |
Collapse
|