1
|
Lu WX, Mao JG, Xing J, Tang HY, Liao J, Quan YS, Lu ZM, Yang ZJ, Shen C. Palladium-Catalyzed Synthesis of Indanone via C-H Annulation Reaction of Aldehydes with Norbornenes. J Org Chem 2024; 89:784-792. [PMID: 38096498 DOI: 10.1021/acs.joc.3c02270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
A novel methodology for the synthesis of indanone derivates has been developed. The palladium-catalyzed annulation reaction of o-bromobenzaldehydes with norbornene derivatives is achieved through extremely concise reaction processes. The indanone skeleton was established directly via C-H activation of the aldehyde group under a mild reaction condition. This method is simple and practical, which simplified the traditional synthesis method for the rapid construction of indanone.
Collapse
Affiliation(s)
- Wen-Xiu Lu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Kejia Avenue, Ganzhou 341000, P. R. China
| | - Jian-Gang Mao
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Kejia Avenue, Ganzhou 341000, P. R. China
| | - Jian Xing
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Kejia Avenue, Ganzhou 341000, P. R. China
| | - Hong-Yu Tang
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Kejia Avenue, Ganzhou 341000, P. R. China
| | - Jinsheng Liao
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Kejia Avenue, Ganzhou 341000, P. R. China
| | - Yao-Sheng Quan
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Kejia Avenue, Ganzhou 341000, P. R. China
| | - Zhi-Ming Lu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Kejia Avenue, Ganzhou 341000, P. R. China
| | - Zhi-Jian Yang
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Kejia Avenue, Ganzhou 341000, P. R. China
| | - Chao Shen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, P. R. China
| |
Collapse
|
2
|
Huo Z, Min D, Zhang S, Tang ML, Sun X. Discovery of novel tubulin CBSI (R)-9k from the indanone scaffold for the treatment of colorectal cancer. RSC Med Chem 2023; 14:2738-2750. [PMID: 38107178 PMCID: PMC10718523 DOI: 10.1039/d3md00337j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/11/2023] [Indexed: 12/19/2023] Open
Abstract
In view of the serious adverse reactions and clinical toxicity of first line therapy 5-fluorouracil and lack of small molecule therapeutics in colorectal cancer chemotherapy, a series of natural scaffold-based 3-arylindanone derivatives (9a-q) were designed, synthesized and evaluated as tubulin polymerization inhibitors targeting the colchicine site. The most potent colchicine binding site inhibitor (CBSI), (R)-9k, exhibited 14-38 times more dominant anti-proliferative activity against three colon cancer cell lines than 5-fluorouracil. Particularly, (R)-9k showed higher selectivity against human normal cells compared with 5-fluorouracil and colchicine, and displayed negligible cardiotoxicity through hERG assessment. Furthermore, the binding of (R)-9k to the colchicine site was strongly supported by EBI competition assay and (R)-9k inhibited more tubulin polymerization than colchicine. Besides, the mechanism of action and binding modes of (R)-9k were verified by molecular dynamics simulations and docking. Therefore, (R)-9k could be regarded as a promising CBSI for colorectal cancer therapy.
Collapse
Affiliation(s)
- Zhipeng Huo
- Department of Natural Medicine, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 China
| | - Delin Min
- Department of Natural Medicine, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 China
| | - Shijie Zhang
- Department of Natural Medicine, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 China
| | - Mei-Lin Tang
- Department of Natural Medicine, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 China
| | - Xun Sun
- Department of Natural Medicine, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 China
- The Institutes of Integrative Medicine of Fudan University 12 Wulumuqi Zhong Road Shanghai 200040 China
| |
Collapse
|
3
|
Lan S, Zhang W, Gan X. Novel 1-Indanone derivatives containing oxime and oxime ether moieties as immune activator to resist plant virus. PEST MANAGEMENT SCIENCE 2023. [PMID: 36883547 DOI: 10.1002/ps.7442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Vegetable viruses are difficult to prevent and control in the field, causing massive economic losses of agricultural production in the world. A new natural product-based antiviral agent would be an effective means to control viral diseases. As a class of natural products, 1-indanones present various pharmacologically actives, while their application in agriculture remains to be found. RESULTS A series of novel 1-indanone derivatives were designed and synthesized and the antiviral activities were systematically evaluated. Bioassays showed that most compounds exhibited good protective activities against cucumber mosaic virus (CMV), tomato spotted wilt virus (TSWV), and pepper mild mottle virus (PMMoV). Notably, compound 27 exhibited the best protective effects against PMMoV with EC50 values of 140.5 mg L-1 , superior to ninanmycin (245.6 mg L-1 ). Compound 27 induced immunity responses through multilayered regulation on mitogen-activated protein kinase, plant hormone signal transduction and phenylpropanoid biosynthesis pathways. CONCLUSION These 1-indanone derivatives especially compound 27 can be considered as potential immune activators to resist plant virus. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shichao Lan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- School of Biological Sciences, Guizhou Education University, Guiyang, China
| | - Wei Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
4
|
Al-Otaibi JS, Mary YS, Mary YS, Krátký M, Vinsova J, Gamberini MC. DFT, TD-DFT and SERS analysis of a bioactive benzohydrazide’s adsorption in silver hydrosols at various concentrations. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
5
|
Er-Rajy M, El Fadili M, Mujwar S, Zarougui S, Elhallaoui M. Design of novel anti-cancer drugs targeting TRKs inhibitors based 3D QSAR, molecular docking and molecular dynamics simulation. J Biomol Struct Dyn 2023; 41:11657-11670. [PMID: 36695085 DOI: 10.1080/07391102.2023.2170471] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/22/2022] [Indexed: 01/26/2023]
Abstract
Tropomyosin receptor kinase (TRK) enzymes are responsible for different types of tumors caused by neurotrophic tyrosine receptor kinase gene fusion and have been identified as an effective target for anticancer therapy. The study of the mechanism between polo-like kinase (PLKs) and pyrazol inhibitors was performed using 3D-QSAR modeling, molecular docking, and MD simulations in order to design high-activity inhibitors. The HQSAR (Q2 = 0.793, R2 = 0.917, R2ext = 0.961), CoMFA (Q2 = 0.582, R2 = 0.722, R2ext = 0.951), CoMSIA/SE (Q2 = 0.603, R2 = 0.801, R2ext = 0.849), and Topomer CoMFA (Q2 = 0.726, R2 = 0.992, R2ext = 0.717) showed good reliability and predictability. All models have been successfully tested by external validation, so all five established models are reliable. The analysis of the different contour maps of different models gives structural information to improve the inhibitory function. Molecular docking results show that the amino acids Met 592, GLU 590, LEU 657, VAL 524, and PHE 589 are the active sites of the tropomyosin receptor TRKs. The results obtained by MD showed that compound 19i could form a more stable complex protein (PDB id: 5KVT). Based on these results, we developed new compounds and their expected inhibitory activities. The results of physicochemical and ADME-Tox properties showed that the four proposed molecules are orally bioavailable, and they are not toxic in the Ames test. Thus, these results would provide modeling information that could help experimental researchers find TRK type I inhibitors more efficiently.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammed Er-Rajy
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mohamed El Fadili
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sara Zarougui
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Menana Elhallaoui
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
6
|
Lazinski LM, Royal G, Robin M, Maresca M, Haudecoeur R. Bioactive Aurones, Indanones, and Other Hemiindigoid Scaffolds: Medicinal Chemistry and Photopharmacology Perspectives. J Med Chem 2022; 65:12594-12625. [PMID: 36126323 DOI: 10.1021/acs.jmedchem.2c01150] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hemiindigoids comprise a range of natural and synthetic scaffolds that share the same aromatic hydrocarbon backbone as well as promising biological and optical properties. The encouraging therapeutic potential of these scaffolds has been unraveled by many studies over the past years and uncovered representants with inspiring pharmacophoric features such as the acetylcholinesterase inhibitor donezepil and the tubulin polymerization inhibitor indanocine. In this review, we summarize the last advances in the medicinal potential of hemiindigoids, with a special attention to molecular design, structure-activity relationship, ligand-target interactions, and mechanistic explanations covering their effects. As their strong fluorogenic potential and photoswitch behavior recently started to be highlighted and explored in biology, giving rise to the development of novel fluorescent probes and photopharmacological agents, we also discuss these properties in a medicinal chemistry perspective.
Collapse
Affiliation(s)
- Leticia M Lazinski
- Université Grenoble Alpes, CNRS 5063, DPM, 38000 Grenoble, France.,Université Grenoble Alpes, CNRS 5250, DCM, 38000 Grenoble, France
| | - Guy Royal
- Université Grenoble Alpes, CNRS 5250, DCM, 38000 Grenoble, France
| | - Maxime Robin
- Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology (IMBE), Aix Marseille Université, 27 Boulevard Jean Moulin, 13385 Marseille, France
| | - Marc Maresca
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | | |
Collapse
|
7
|
Khodakarami A, Adibfar S, Karpisheh V, Abolhasani S, Jalali P, Mohammadi H, Gholizadeh Navashenaq J, Hojjat-Farsangi M, Jadidi-Niaragh F. The molecular biology and therapeutic potential of Nrf2 in leukemia. Cancer Cell Int 2022; 22:241. [PMID: 35906617 PMCID: PMC9336077 DOI: 10.1186/s12935-022-02660-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 07/19/2022] [Indexed: 02/07/2023] Open
Abstract
NF-E2-related factor 2 (Nrf2) transcription factor has contradictory roles in cancer, which can act as a tumor suppressor or a proto-oncogene in different cell conditions (depending on the cell type and the conditions of the cell environment). Nrf2 pathway regulates several cellular processes, including signaling, energy metabolism, autophagy, inflammation, redox homeostasis, and antioxidant regulation. As a result, it plays a crucial role in cell survival. Conversely, Nrf2 protects cancerous cells from apoptosis and increases proliferation, angiogenesis, and metastasis. It promotes resistance to chemotherapy and radiotherapy in various solid tumors and hematological malignancies, so we want to elucidate the role of Nrf2 in cancer and the positive point of its targeting. Also, in the past few years, many studies have shown that Nrf2 protects cancer cells, especially leukemic cells, from the effects of chemotherapeutic drugs. The present paper summarizes these studies to scrutinize whether targeting Nrf2 combined with chemotherapy would be a therapeutic approach for leukemia treatment. Also, we discussed how Nrf2 and NF-κB work together to control the cellular redox pathway. The role of these two factors in inflammation (antagonistic) and leukemia (synergistic) is also summarized.
Collapse
Affiliation(s)
- Atefeh Khodakarami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Adibfar
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Vahid Karpisheh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Abolhasani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pooya Jalali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Mohammad Hojjat-Farsangi
- Bioclinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden.,Department of Immunology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Kalimuthu AK, Parasuraman P, Sivakumar P, Murugesan S, Arunachalam S, Pandian SRK, Ravishankar V, Ammunje DN, Sampath M, Panneerselvam T, Kunjiappan S. In silico, in vitro screening of antioxidant and anticancer potentials of bioactive secondary metabolites from an endophytic fungus (Curvularia sp.) from Phyllanthus niruri L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:48908-48925. [PMID: 35201581 DOI: 10.1007/s11356-022-19249-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
The main objective of this research work is to discover novel and efficient phytochemical substances from endophytic fungus found in medicinal plants. Curvularia geniculata L. (C. geniculata L.), an endophytic fungus isolated from Phyllanthus niruri L. (P. niruri L.), was tested against hepatoma cell lines (HepG2) in order to screen their antioxidant and anticancer potentials. The profiling of phytochemicals from the fungal extract was characterized using gas chromatography-mass spectrometry (GC-MS), and molecular docking was done for the identified compounds against one of the potential receptors predominantly present in the hepatocellular carcinoma cell lines. Among the phytochemicals found, 2-methyl-7-phenylindole had the highest binding affinity (- 8.8 kcal mol-1) for the epidermal growth factor receptor (EGFR). The stability of 2-methyl-7-phenylindole in the EGFR-binding pockets was tested using in silico molecular dynamics simulation. The fungal extract showed the highest antioxidant activity as measured by DPPH, ABTS radical scavenging, and FRAP assays. In vitro cytotoxicity assay of fungal extract demonstrated the concentration-dependent cytotoxicity against HepG2 cells after 24 h, and the IC50 (50% cell death) value was estimated to be 62.23 μg mL-1. Typical morphological changes such as condensation of nuclei and deformed membrane structures are indicative of ongoing apoptosis. The mitochondria of HepG2 cells were also targeted by the endophytic fungal extract, which resulted in substantial generation of reactive oxygen species (ROS) leading to the destruction of mitochondrial transmembrane potential integrity. These outcomes suggest that the ethyl acetate extract of C. geniculata L. has the potential to be an antioxidant agent and further to be exploited in developing potential anticancer agents.
Collapse
Affiliation(s)
- Arjun Kumar Kalimuthu
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Srivilliputhur, 626126, Tamil Nadu, India
| | - Pavadai Parasuraman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru, 560054, Karnataka, India
| | - Pandian Sivakumar
- School of Petroleum Technology, Pandit Deendayal Energy University, Gandhinagar, 382426, Gujarat, India
| | - Sankaranarayanan Murugesan
- Department of Pharmacy, Birla Institute of Technology & Science Pilani, Pilani Campus, Pilani, 333031, Rajasthan, India
| | - Sankarganesh Arunachalam
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Srivilliputhur, 626126, Tamil Nadu, India
| | - Sureshbabu Ram Kumar Pandian
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Srivilliputhur, 626126, Tamil Nadu, India
| | - Vigneshwaran Ravishankar
- Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, 626005, Tamil Nadu, India
| | - Damodar Nayak Ammunje
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru, 560054, Karnataka, India
| | - Muthukumar Sampath
- Department of Bioengineering, Birla Institute of Technology Mesra, Ranchi-835215, Mesra, Jharkhand, India
| | - Theivendran Panneerselvam
- Department of Pharmaceutical Chemistry, Swamy Vivekanandha College of Pharmacy, Tiruchengodu, 637205, Tamil Nadu, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Srivilliputhur, 626126, Tamil Nadu, India.
| |
Collapse
|
9
|
Bakchi B, Krishna AD, Sreecharan E, Ganesh VBJ, Niharika M, Maharshi S, Puttagunta SB, Sigalapalli DK, Bhandare RR, Shaik AB. An overview on applications of SwissADME web tool in the design and development of anticancer, antitubercular and antimicrobial agents: A medicinal chemist's perspective. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Silencing of histone deacetylase 3 suppresses the development of esophageal squamous cell carcinoma through regulation of miR-494-mediated TGIF1. Cancer Cell Int 2022; 22:191. [PMID: 35578338 PMCID: PMC9109300 DOI: 10.1186/s12935-022-02581-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 04/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Deacetylation of histones by histone deacetylase 3 (HDAC3) acts importantly in modulating apoptosis, DNA damage and cellular progression. Herein, we aimed to unravel the functional role of HDAC3 in a lethal disease, esophageal squamous cell carcinoma (ESCC). METHODS The expression of HDAC3 in clinically collected ESCC tissues was determined by RT-qPCR and immunohistochemistry. As revealed from bioinformatics analysis, the putative relations between HDAC3 and microRNA-494 (miR-494) and between miR-494 and transforming growth factor beta (TGFβ)-inducing factor 1 (TGIF1) were further verified by chromatin immunoprecipitation and dual-luciferase reporter gene assay. Functional roles of shRNA-mediated depletion of HDAC3, miR-494 mimic and overexpressed TGIF1 were explored by gain- and loss-of-function assays with regard to ESCC cell biological behaviors. A nude mouse model of ESCC was developed for in vivo validation. RESULTS HDAC3 was highly expressed in ESCC tissues, suggestive of poor prognosis while TGIF1 was upregulated and miR-494 was downregulated. Mechanistic investigation revealed that HDAC3 inhibited miR-494 expression and TGIF1 was a direct target of miR-494. Furthermore, silencing HDAC3 or overexpressing miR-494 was demonstrated to suppress aggressive phenotypes of ESCC cells both in vitro through the activated TGFβ signaling pathway and in vivo, while TGIF1 overexpression induced opposite results. CONCLUSION Collectively, our findings provided demonstration regarding the oncogenic property of HDAC3 in ESCC via the miR-494/TGIF1/TGFβ axis.
Collapse
|
11
|
Alves C, Silva J, Afonso MB, Guedes RA, Guedes RC, Alvariño R, Pinteus S, Gaspar H, Goettert MI, Alfonso A, Rodrigues CMP, Alpoím MC, Botana L, Pedrosa R. Disclosing the antitumour potential of the marine bromoditerpene sphaerococcenol A on distinct cancer cellular models. Biomed Pharmacother 2022; 149:112886. [PMID: 35378501 DOI: 10.1016/j.biopha.2022.112886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022] Open
Abstract
Nature has revealed to be a key source of innovative anticancer drugs. This study evaluated the antitumour potential of the marine bromoditerpene sphaerococcenol A on different cancer cellular models. Dose-response analyses (0.1-100 µM; 24 h) were accomplished in eight different tumour cell lines (A549, CACO-2, HCT-15, MCF-7, NCI-H226, PC-3, SH-SY5Y, SK-MEL-28). Deeper studies were conducted on MFC-7 cells, namely, determination of hydrogen peroxide (H2O2) levels and evaluation of apoptosis biomarkers (phosphatidylserine membrane translocation, mitochondrial dysfunction, Caspase-9 activity, and DNA changes). The ability of the compound to induce genotoxicity was verified in L929 fibroblasts. Sphaerococcenol A capacity to impact colorectal-cancer stem cells (CSCs) tumourspheres (HT29, HCT116, SW620) was evaluated by determining tumourspheres viability, number, and area, as well as the proteasome inhibitory activity. Sphaerococcenol A hepatoxicity was studied in AML12 hepatocytes. The compound exhibited cytotoxicity in all malignant cell lines (IC50 ranging from 4.5 to 16.6 µM). MCF-7 cells viability loss was accompanied by H2O2 generation, mitochondrial dysfunction, Caspase-9 activation and DNA nuclear morphology changes. Furthermore, the compound displayed the lowest IC50 on HT29-derived tumourspheres (0.70 µM), followed by HCT116 (1.77 µM) and SW620 (2.74 µM), impacting the HT29 tumoursphere formation by reducing their number and area. Finally, the compound displayed low cytotoxicity on AML12 hepatocytes without genotoxicity. Overall, sphaerococcenol A exhibits broad cytotoxic effects on different tumour cells, increasing H2O2 production and apoptosis. It also affects colorectal CSCs-enriched tumoursphere development. These data highlight the relevance to include sphaerococcenol A in further pharmacological studies aiming cancer treatments.
Collapse
Affiliation(s)
- Celso Alves
- MARE-Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal.
| | - Joana Silva
- MARE-Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal
| | - Marta B Afonso
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Romina A Guedes
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Rita C Guedes
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Rebeca Alvariño
- Department of Pharmacology, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Susete Pinteus
- MARE-Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal
| | - Helena Gaspar
- MARE-Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal; BioISI - Biosystems and Integrative Sciences Institute Faculty of Science, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Márcia I Goettert
- Cell Culture Laboratory, Postgraduate Programme in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS 95914-014, Brazil
| | - Amparo Alfonso
- Department of Pharmacology, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Maria C Alpoím
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-517 Coimbra, Portugal
| | - Luis Botana
- Department of Pharmacology, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Rui Pedrosa
- MARE-Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-614 Peniche, Portugal.
| |
Collapse
|
12
|
Moutabian H, Majdaeen M, Ghahramani-Asl R, Yadollahi M, Gharepapagh E, Ataei G, Falahatpour Z, Bagheri H, Farhood B. A systematic review of the therapeutic effects of resveratrol in combination with 5-fluorouracil during colorectal cancer treatment: with a special focus on the oxidant, apoptotic, and anti-inflammatory activities. Cancer Cell Int 2022; 22:142. [PMID: 35366874 PMCID: PMC8976963 DOI: 10.1186/s12935-022-02561-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/27/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE 5-fluorouracil (5-FU), an effective chemotherapy drug, is commonly applied for colorectal cancer treatment. Nevertheless, its toxicity to normal tissues and the development of tumor resistance are the main obstacles to successful cancer chemotherapy and hence, its clinical application is limited. The use of resveratrol can increase 5-FU-induced cytotoxicity and mitigate the unwanted adverse effects. This study aimed to review the potential therapeutic effects of resveratrol in combination with 5-FU against colorectal cancer. METHODS According to the PRISMA guideline, a comprehensive systematic search was carried out for the identification of relevant literature in four electronic databases of PubMed, Web of Science, Embase, and Scopus up to May 2021 using a pre-defined set of keywords in their titles and abstracts. We screened 282 studies in accordance with our inclusion and exclusion criteria. Thirteen articles were finally included in this systematic review. RESULTS The in vitro findings showed that proliferation inhibition of colorectal cancer cells in the groups treated by 5-FU was remarkably higher than the untreated groups and the co-administration of resveratrol remarkably increased cytotoxicity induced by 5-FU. The in vivo results demonstrated a decrease in tumor growth of mice treated by 5-FU than the untreated group and a dramatic decrease was observed following combined treatment of resveratrol and 5-FU. It was also found that 5-FU alone and combined with resveratrol could regulate the cell cycle profile of colorectal cancer cells. Moreover, this chemotherapeutic agent induced the biochemical and histopathological changes in the cancerous cells/tissues and these alterations were synergized by resveratrol co-administration (for most of the cases), except for the inflammatory mediators. CONCLUSION The results obtained from this systematic review demonstrated that co-administration of resveratrol could sensitize the colorectal cancer cells to 5-FU treatment via various mechanisms, including regulation of cell cycle distribution, oxidant, apoptosis, anti-inflammatory effects.
Collapse
Affiliation(s)
- Hossein Moutabian
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran
| | - Mehrsa Majdaeen
- Department of Radiotherapy and Oncology, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Ruhollah Ghahramani-Asl
- Department of Medical Physics and Radiological Sciences, Faculty of Paramedicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Masoumeh Yadollahi
- Department of Allied Medical Sciences, Semnan University of Medical Sciences, Semnan, Iran
| | - Esmaeil Gharepapagh
- Medical Radiation Sciences Research Team, Tabriz University of Medical Science, Tabriz, Iran
| | - Gholamreza Ataei
- Department of Radiology Technology, Faculty of Paramedical Sciences, Babol University of Medical Sciences, Babol, Iran
| | - Zahra Falahatpour
- Department of Medical Physics, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Bagheri
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran.
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Bagher Farhood
- Trauma Research Center, Kashan University of Medical Sciences, Kashan, Iran.
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
13
|
Li P, Zeng Y, Chen Y, Huang P, Chen X, Zheng W. LRP11-AS1 promotes the proliferation and migration of triple negative breast cancer cells via the miR-149-3p/NRP2 axis. Cancer Cell Int 2022; 22:116. [PMID: 35279146 PMCID: PMC8917722 DOI: 10.1186/s12935-022-02536-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/24/2022] [Indexed: 11/21/2022] Open
Abstract
Background Breast cancer is the most commonly diagnosed cancer in women. Triple negative breast cancer (TNBC) is the most difficult subtype of breast cancer to treat due to the deficiency in drug-targetable receptors. LRP11-AS1, a newly identified oncogenic long noncoding RNA (lncRNA) was found to be significantly overexpressed in TNBC cells. The aim of this study is to investigate the malignant roles and the oncogenic mechanisms of LRP11-AS1 in TNBC. Methods CCK-8, colony formation, transwell migration and transwell invasion assays were performed to study the functions of LRP11-AS1. Quantitative PCR and western blot were used to determine the gene expression. Bioinformatics analysis and dual-luciferase reporter assay were conducted to study lncRNA and miRNA interactions. Results LRP11-AS1 was found to be significantly overexpressed in TNBC cells compared to the non-TNBC cells and normal mammary epithelial cells. Knockdown of LRP11-AS1 could inhibit the growth and metastasis of TNBC cells and regulate cell cycle. Mechanistically, LRP11-AS1 was found to act as a competing endogenous RNA (ceRNA) to sponge miR-149-3p. Silencing of LRP11-AS1 increased the expression of miR-149-3p and overexpression of miR-149-3p suppressed the expression of LRP11-AS1. Inhibition of miR-149-3p could reverse the anticancer effect of LRP11-AS1 deficiency in TNBC cells. Moreover, Neuropilin-2 (NRP2) was found to be the target of miR-149-3p. Rescue experiments revealed that NRP2 overexpression could rescue the anticancer effect of LRP11-AS1 deficiency in TNBC cells. Conclusion LRP11-AS1 overexpressed in TNBC showed the oncogenic effects possibly by sponging miR-149-3p and regulating the miR-149-3p/NRP2 axis, which indicated LRP11-AS1 as a potential diagnostic biomarker and therapeutic target in TNBC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02536-8.
Collapse
|
14
|
Liu W, Zheng L, Zhang R, Hou P, Wang J, Wu L, Li J. Circ-ZEB1 promotes PIK3CA expression by silencing miR-199a-3p and affects the proliferation and apoptosis of hepatocellular carcinoma. Mol Cancer 2022; 21:72. [PMID: 35277182 PMCID: PMC8915544 DOI: 10.1186/s12943-022-01529-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/01/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Although the prognostic outcomes of liver cancer (LC) cases have improved with the advancement in diagnostic technology and treatment methods, the transferability and recurrence of HCC and the 5-year and 10-year survival rates of patients have remained unsatisfactory. As a result, there is a need for more accurate diagnostic indicators that can detect liver cancer early, effectively improving the prognosis of patients. Whole-genome sequencing (WGS) revealed that circ-ZEB1 and PIK3CA are highly expressed in HCC tissues, whereas miR-199a-3p is significantly downregulated in HCC. Multiple databases search and biological analysis revealed that elevated expression of circ-ZEB1 and PIK3CA was related to poor prognosis of HCC. In vitro and in vivo studies revealed that upregulated levels of PIK3CA and circ-ZEB1 were closely associated with HCC proliferation and apoptosis. Based on these results, we believe that circ-ZEB1 and PIK3CA could be used as biomarkers to diagnose and treat patients with HCC. More importantly, circ-ZEB1 can promotes the expression of PIK3CA by silencing miR-199a-3p and affecting the progression of HCC. METHODS AND RESULTS Postoperative specimens from 56 patients with HCC who had not undergone chemotherapy from 2015 to 2018 were collected from the Department of Hepatobiliary Surgery, Second Affiliated Hospital of Nanchang University. WGS revealed differential expression of genes in HCC. Furthermore, RT-qPCR detected the expression of circ-ZEB1, miR-199a-3p, and PIK3CA in HCC tissues. MTT, EdU, and plate cloning experiments were conducted to detect cell proliferation, whereas flow cytometry analysis was used to detect apoptosis. FISH was used to co-localize circ-ZEB1 and miR-199a-3p, and biotin-coupled probe pull-down assay was used to detect the specific binding of circ-ZEB1 and miR-199a-3p. The dual-luciferase report assay detected the association of miR-199a-3p with PIK3CA. Western blotting was used to study the expression of PIK3CA protein. Circ-ZEB1 and PIK3CA were upregulated in HCC and predicted a poor prognosis. MiR-199a-3p showed low expression in HCC, whereas downregulation of circ-ZEB1 reduced HCC cell proliferation and promoted cell apoptosis. MiR-199a-3p blocked the effect of circ-ZEB1 on HCC. Circ-ZEB1 served as a biomarker of HCC. Circ-ZEB1 promoted the expression of PIK3CA by silencing miR-199a-3p to affect the progress of HCC. CONCLUSIONS Circ-ZEB1 promoted the expression of PIK3CA by depleting miR-199a-3p, thereby affecting HCC proliferation and apoptosis.
Collapse
Affiliation(s)
- Weiwei Liu
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Nanchang University, 1 Mindle Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Lu Zheng
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, 83 Xinqiao Main Street, Chongqing, 400000, People's Republic of China
| | - Rongguiyi Zhang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Nanchang University, 1 Mindle Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Ping Hou
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Nanchang University, 1 Mindle Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Jiakun Wang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Nanchang University, 1 Mindle Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Linquan Wu
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Nanchang University, 1 Mindle Road, Nanchang, Jiangxi, 330006, People's Republic of China.
| | - Jing Li
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, 83 Xinqiao Main Street, Chongqing, 400000, People's Republic of China.
| |
Collapse
|
15
|
Wen W, Xu D, Piao Y, Li X. Prognostic value of maximum standard uptake value, metabolic tumour volume, and total lesion glycolysis of 18F-FDG PET/CT in patients with malignant pleural mesothelioma: a systematic review and meta-analysis. Cancer Cell Int 2022; 22:60. [PMID: 35114996 PMCID: PMC8811994 DOI: 10.1186/s12935-022-02482-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/22/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Present work systematically reviewed relevant literature based on 18F-FDG PET parameters and conducted a meta-analysis to examine the prognostic value of maximal standard uptake value (SUVmax), total lesional glycolysis (TLG), and metabolic tumour volume (MTV) in the prognosis of malignant pleural mesothelioma (MPM). METHODS The relevant literature published in English were searched on PubMed, Cochrane Library, and EMBASE databases. We also evaluated the significance of SUVmax, TLG, and MTV in prognosis prediction using pooled hazard ratios (HRs). RESULTS The current study comprised 12 primary studies with a total of 1307 MPM cases. According to our results, the pooled HR (95% confidence interval [CI]) of increased SUVmax for overall survival (OS) was 1.30 (95% CI 1.13-1.49, P = 0.000), whereas the increased TLG was 1.81(95% CI 1.25-2.61, P = 0.089). The increased MTV was not significantly related to OS (1.14 [95% CI 0.87-1.50, P = 0.18]).However, study design-stratified subgroup analysis suggested that differences in OS of retrospective and prospective subgroups were statistically significant, and no significant heterogeneity among different studies was observed. CONCLUSION Based on the findings from the present work, PET/CT can significantly affect the prognosis prediction in MPM cases. Also, the increased SUVmax and TLG values predict an increased risk of mortality.
Collapse
Affiliation(s)
- Weibo Wen
- Department of Nuclear Medicine, Yanbian University Hospital, Yanji, Jilin Province, China.,Center of Morphological Experiment, Medical College of Yanbian University, Yanji, Jilin Province, China
| | - Dongyuan Xu
- Center of Morphological Experiment, Medical College of Yanbian University, Yanji, Jilin Province, China
| | - Yongnan Piao
- Department of Nuclear Medicine, Yanbian University Hospital, Yanji, Jilin Province, China
| | - Xiangdan Li
- Center of Morphological Experiment, Medical College of Yanbian University, Yanji, Jilin Province, China.
| |
Collapse
|
16
|
Pan B, Wei X, Xu X. Patient-derived xenograft models in hepatopancreatobiliary cancer. Cancer Cell Int 2022; 22:41. [PMID: 35090441 PMCID: PMC8796540 DOI: 10.1186/s12935-022-02454-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 01/04/2022] [Indexed: 12/20/2022] Open
Abstract
Animal models are crucial tools for evaluating the biological progress of human cancers and for the preclinical investigation of anticancer drugs and cancer prevention. Various animals are widely used in hepatopancreatobiliary cancer research, and mouse models are the most popular. Generally, genetic tools, graft transplantation, and chemical and physical measures are adopted to generate sundry mouse models of hepatopancreatobiliary cancer. Graft transplantation is commonly used to study tumour progression. Over the past few decades, subcutaneous or orthotopic cell-derived tumour xenograft models (CDX models) have been developed to simulate distinct tumours in patients. However, two major limitations exist in CDX models. One model poorly simulates the microenvironment of tumours in humans, such as the vascular, lymphatic and immune environments. The other model loses genetic heterogeneity compared with the corresponding primary tumour. Increased efforts have focused on developing better models for hepatopancreatobiliary cancer research. Hepatopancreatobiliary cancer is considered a tumour with high molecular heterogeneity, making precision medicine challenging in cancer treatment. Developing a new animal model that can better mimic tumour tissue and more accurately predict the efficacy of anticancer treatments is urgent. For the past several years, the patient-derived xenograft model (PDX model) has emerged as a promising tool for translational research. It can retain the genetic and histological stability of their originating tumour at limited passages and shed light on precision cancer medicine. In this review, we summarize the methodology, advantages/disadvantages and applications of PDX models in hepatopancreatobiliary cancer research.
Collapse
|
17
|
Zhou X, Wang H, Li D, Song N, Yang F, Xu W. MST1/2 inhibitor XMU-MP-1 alleviates the injury induced by ionizing radiation in haematopoietic and intestinal system. J Cell Mol Med 2022; 26:1621-1628. [PMID: 35088536 PMCID: PMC8899195 DOI: 10.1111/jcmm.17203] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 02/02/2023] Open
Abstract
The Hippo signalling pathway has been considered as potential therapeutic target in self‐renewal and differentiation of stem and progenitor cells. Thus, mammalian Ste20‐like kinase 1/2 (MST1/2) as the core serine‐threonine kinases in the Hippo signalling pathway has been investigated for its role in immunological disease. However, little information of MST1/2 function in bone marrow suppression induced by ionizing radiation was fully investigated. Here, we reported that MST1/2 inhibitor XMU‐MP‐1 could rescue the impaired haematopoietic stem cells (HSCs) and progenitor cells (HPCs) function under oxidative stress condition. Also, XMU‐MP‐1 pretreatment markedly alleviated the small intestinal system injury caused by the total body irradiation 9 Gy and extended the average survival days of the mice exposed to the lethal dose radiation. Therefore, irradiation exposure causes the serious pathological changes of haematopoietic and intestinal system, and XMU‐MP‐1 could prevent the ROS production, the haematopoietic cells impairment and the intestinal injury. These detrimental effects may be associated with regulating NOX/ROS/P38MARK pathway by MST1/2.
Collapse
Affiliation(s)
- Xiaoliang Zhou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Hao Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Deguan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Naling Song
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Fujun Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Wenqing Xu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| |
Collapse
|
18
|
Zhou J, Wang J, Zhang X, Tang Q. New Insights Into Cancer Chronotherapies. Front Pharmacol 2021; 12:741295. [PMID: 34966277 PMCID: PMC8710512 DOI: 10.3389/fphar.2021.741295] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/25/2021] [Indexed: 02/01/2023] Open
Abstract
Circadian clocks participate in the coordination of various metabolic and biological activities to maintain homeostasis. Disturbances in the circadian rhythm and cancers are closely related. Circadian clock genes are differentially expressed in many tumors, and accelerate the development and progression of tumors. In addition, tumor tissues exert varying biological activities compared to normal tissues due to resetting of altered rhythms. Thus, chronotherapeutics used for cancer treatment should exploit the timing of circadian rhythms to achieve higher efficacy and mild toxicity. Due to interpatient differences in circadian functions, our findings advocate an individualized precision approach to chronotherapy. Herein, we review the specific association between circadian clocks and cancers. In addition, we focus on chronotherapies in cancers and personalized biomarkers for the development of precision chronotherapy. The understanding of circadian clocks in cancer will provide a rationale for more effective clinical treatment of tumors.
Collapse
Affiliation(s)
- Jingxuan Zhou
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jiechen Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xiaozhao Zhang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
19
|
Yang P, Chen W, Xu H, Yang J, Jiang J, Jiang Y, Xu G. Correlation of CCL8 expression with immune cell infiltration of skin cutaneous melanoma: potential as a prognostic indicator and therapeutic pathway. Cancer Cell Int 2021; 21:635. [PMID: 34844613 PMCID: PMC8628426 DOI: 10.1186/s12935-021-02350-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/17/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The tumor microenvironment (TME) is critical in the progression and metastasis of skin cutaneous melanoma (SKCM). Differences in tumor-infiltrating immune cells (TICs) and their gene expression have been linked to cancer prognosis. Given that immunotherapy can be effective against SKCM, we aimed to identify key genes that regulate the immunological state of the TME in SKCM. METHODS Data from 471 SKCM patients in the The Cancer Genome Atlas were analyzed using ESTIMATE algorithms to generate an ImmuneScore, StromalScore, and EstimateScore for each patient. Patients were classified into low- or high-score groups based on median values, then compared in order to identify differentially expressed genes (DEGs). Then a protein-protein interaction (PPI) network was developed, and a prognostic model was created using uni- and multivariate Cox regression as well as the least absolute shrinkage and selection operator (LASSO). Key DEGs were identified using the web-based tool GEPIA. Profiles of TIC subpopulations in each patient were analyzed using CIBORSORT, and possible correlations between key DEG expression and TICs were explored. Levels of CCL8 were determined in SKCM and normal skin tissue using immunohistochemistry. RESULTS Two scores correlated positively with the prognosis of SKCM patients. Comparison of the low- and high-score groups revealed 1684 up-regulated and 18 down-regulated DEGs, all of which were enriched in immune-related functions. The prognostic model identified CCL8 as a key gene, which CIBERSORT found to correlate with M1 macrophages. Immunohistochemistry revealed strong expression in SKCM tissue, but failed to detect the protein in normal skin tissue. CONCLUSIONS CCL8 is a potential prognostic marker for SKCM, and it may become an effective target for melanoma in which M1 macrophages play an important role.
Collapse
Affiliation(s)
- Peipei Yang
- Department of Dermatology, Jingmen No. 2 People's Hospital, No. 39 Xiangshan Road Dongbao Zone, Jingmen, 448000, Hubei, China
| | - Wanrong Chen
- Graduate School, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Hua Xu
- Department of Pathology, Jingmen No. 2 People's Hospital, No. 39 Xiangshan Road Dongbao Zone, Jingmen, 448000, Hubei, China
| | - Junhan Yang
- Department of Dermatology, Jingmen No. 2 People's Hospital, No. 39 Xiangshan Road Dongbao Zone, Jingmen, 448000, Hubei, China
| | - Jinghang Jiang
- Graduate School, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- The Reproductive Medicine Center, Jingmen No. 2 People's Hospital, Jingmen, Hubei, China
| | - Yunhui Jiang
- Department of Pathology, Jingmen No. 2 People's Hospital, No. 39 Xiangshan Road Dongbao Zone, Jingmen, 448000, Hubei, China.
| | - Ganglin Xu
- Department of Dermatology, Jingmen No. 2 People's Hospital, No. 39 Xiangshan Road Dongbao Zone, Jingmen, 448000, Hubei, China.
| |
Collapse
|
20
|
He Y, Chen J, Peng X, Xia Y, Su Y. Clinicopathological and prognostic significance of speckle-type POZ protein in cancers: a systematic review and meta-analysis. Cancer Cell Int 2021; 21:626. [PMID: 34838022 PMCID: PMC8627083 DOI: 10.1186/s12935-021-02329-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Controversial findings have been reported in the impact of speckle-type POZ protein (SPOP) on clinicopathological features and prognosis in diverse cancers. We conducted this meta-analysis to confirm whether SPOP was an effective biomarker to predict clinical stage, cancer differentiation and survival. METHODS We searched studies published before June 2021 through Medline, Embase, the Cochrane library register of controlled trials and Wanfang databases. The corrections of SPOP expression with expression disparity, tumor differentiation, clinical stage and survival were analyzed. RESULTS Our meta-analysis found that higher expression of SPOP was significantly associated with earlier clinical stage, well differentiation and better overall survival. Subgroup analysis showed that the SPOP expression of adjacent tissue was significantly higher than that in cancer tissues of prostate and liver. However, renal cancer presented improved expression of SPOP in cancer tissue. CONCLUSIONS SPOP has the potential function to act as a novel and effective biomarker for cancer diagnosis and prognostic stratification.
Collapse
Affiliation(s)
- Yan He
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jun Chen
- Department of Ophalmology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xingchen Peng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yanli Xia
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Yonglin Su
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
21
|
Liu R, Wan Q, Zhao R, Xiao H, Cen Y, Xu X. Risk of non-melanoma skin cancer with biological therapy in common inflammatory diseases: a systemic review and meta-analysis. Cancer Cell Int 2021; 21:614. [PMID: 34809619 PMCID: PMC8607648 DOI: 10.1186/s12935-021-02325-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Most previous studies compared the risk for non-melanoma skin cancer (NMSC) in biologic-treated common inflammatory diseases with the general population. Whether the increased NMSC risk is caused by the disease itself, the biologics, or both remains unknown. METHODS We systematically searched PubMed, Embase, Medline, Web of Science, and Cochrane Library from inception to May 2021. Studies were included if they assessed the risk of NMSC for rheumatoid arthritis (RA), inflammatory bowel disease (IBD), or psoriasis patients treated with biologics compared with patients not receiving biologics. Pooled relative risks (RRs) and 95% confidence intervals (CIs) were calculated using the fixed- or random-effects model. RESULTS The current meta-analysis included 12 studies. Compared with patients with the inflammatory disease without biologics, patients receiving biological therapy were associated with an increased risk for NMSC (RR 1.25, 95% CI 1.14 to 1.37), especially in patients with RA (RR 1.24, 95% CI 1.13 to 1.36) and psoriasis (RR 1.28, 95% CI 1.07 to 1.52), but not in patients with IBD (RR 1.49, 95% CI 0.46 to 4.91). The risks for squamous cell skin cancer and basal cell skin cancer were both increased for patients receiving biologics. However, the risk of NMSC did not increase in patients treated with biologics less than 2 years. CONCLUSIONS Current evidence suggests that increased risk of NMSC was identified in RA and psoriasis treated with biologics compared with patients not receiving biologics, but not in patients with IBD. The inner cause for the increased risk of NMSC in IBD patients should be further discussed.
Collapse
Affiliation(s)
- Ruolin Liu
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, No 37 Wainan Guoxue Road, Chengdu, 610041, China
| | - Qianyi Wan
- Department of Gastrointestinal Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Rui Zhao
- Department of Gastrointestinal Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Haitao Xiao
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, No 37 Wainan Guoxue Road, Chengdu, 610041, China
| | - Ying Cen
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, No 37 Wainan Guoxue Road, Chengdu, 610041, China.
| | - Xuewen Xu
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, No 37 Wainan Guoxue Road, Chengdu, 610041, China.
| |
Collapse
|
22
|
Guo J, Zheng J, Zhang H, Tong J. RNA m6A methylation regulators in ovarian cancer. Cancer Cell Int 2021; 21:609. [PMID: 34794452 PMCID: PMC8600856 DOI: 10.1186/s12935-021-02318-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/05/2021] [Indexed: 12/19/2022] Open
Abstract
N6-methyladenosine (m6A) is the most abundant RNA modification of mammalian mRNAs and plays a vital role in many diseases, especially tumours. In recent years, m6A has become the topic of intense discussion in epigenetics. M6A modification is dynamically regulated by methyltransferases, demethylases and RNA-binding proteins. Ovarian cancer (OC) is a common but highly fatal malignancy in female. Increasing evidence shows that changes in m6A levels and the dysregulation of m6A regulators are associated with the occurrence, development or prognosis of OC. In this review, the latest studies on m6A and its regulators in OC have been summarized, and we focus on the key role of m6A modification in the development and progression of OC. Additionally, we also discuss the potential use of m6A modification and its regulators in the diagnosis and treatment of OC.
Collapse
Affiliation(s)
- Jialu Guo
- Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang Province, People's Republic of China.,Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), 310008, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jianfeng Zheng
- Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), 310008, Hangzhou, Zhejiang Province, People's Republic of China.,Department of Obstetrics and Gynecology, Affiliated Hangzhou Hospital, Nanjing Medical University, 310008, Hangzhou, Zhejiang Province, People's Republic of China
| | - Huizhi Zhang
- Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jinyi Tong
- Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang Province, People's Republic of China. .,Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), 310008, Hangzhou, Zhejiang Province, People's Republic of China.
| |
Collapse
|