1
|
Saliu JA. Machine Learning-Based Approach to Identify Inhibitors of Sterol-14-Alpha Demethylase: A Study on Chagas Disease. Bioinform Biol Insights 2024; 18:11779322241262635. [PMID: 39081668 PMCID: PMC11287730 DOI: 10.1177/11779322241262635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 05/23/2024] [Indexed: 08/02/2024] Open
Abstract
Objectives Chagas Disease, caused by the parasite Trypanosoma cruzi, remains a significant public health concern, particularly in Latin America. The current standard treatment for Chagas Disease, benznidazole, is associated with various side effects, necessitating the search for alternative therapeutic options. In this study, we aimed to identify potential therapeutics for Chagas Disease through a comprehensive computational analysis. Methods A library of compounds derived from Cananga odorata was screened using a combination of pharmacophore modeling, structure-based screening, and quantitative structure-activity relationship (QSAR) analysis. The pharmacophore model facilitated the efficient screening of the compound library, while the structure-based screening identified hit compounds with promising inhibitory potential against the target enzyme, sterol-14-alpha demethylase. Results The QSAR model predicted the bioactivity of the hit compounds, revealing one compound to exhibit superior activity compared to benznidazole. Evaluation of the physicochemical, pharmacokinetic, toxicity, and medicinal chemistry properties of the hit compounds indicated their drug-like characteristics, oral bioavailability, ease of synthesis, and reduced toxicity profiles. Conclusion Overall, our findings present a promising avenue for the discovery of novel therapeutics for Chagas Disease. The identified hit compounds possess favorable drug-like properties and demonstrate potent inhibitory effects against the target enzyme. Further in vitro and in vivo studies are warranted to validate their efficacy and safety profiles.
Collapse
Affiliation(s)
- Jamiyu A Saliu
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| |
Collapse
|
2
|
Yasmeen N, Ahmad Chaudhary A, K Niraj RR, Lakhawat SS, Sharma PK, Kumar V. Screening of phytochemicals from Clerodendrum inerme (L.) Gaertn as potential anti-breast cancer compounds targeting EGFR: an in-silico approach. J Biomol Struct Dyn 2023:1-43. [PMID: 38141177 DOI: 10.1080/07391102.2023.2294379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/04/2023] [Indexed: 12/25/2023]
Abstract
Breast cancer (BC) is the most prevalent malignancy among women around the world. The epidermal growth factor receptor (EGFR) is a tyrosine kinase receptor (RTK) of the ErbB/HER family. It is essential for triggering the cellular signaling cascades that control cell growth and survival. However, perturbations in EGFR signaling lead to cancer development and progression. Hence, EGFR is regarded as a prominent therapeutic target for breast cancer. Therefore, in the current investigation, EGFR was targeted with phytochemicals from Clerodendrum inerme (L.) Gaertn (C. inerme). A total of 121 phytochemicals identified by gas chromatography-mass spectrometry (GC-MS) analysis were screened against EGFR through molecular docking, ADMET analyses (Absorption, Distribution, Metabolism, Excretion, and Toxicity), PASS predictions, and molecular dynamics simulation, which revealed three potential hit compounds with CIDs 10586 [i.e. alpha-bisabolol (-6.4 kcal/mol)], 550281 [i.e. 2,(4,4-Trimethyl-3-hydroxymethyl-5a-(3-methyl-but-2-enyl)-cyclohexene) (-6.5 kcal/mol)], and 161271 [i.e. salvigenin (-7.4 kcal/mol)]. The FDA-approved drug gefitinib was used to compare the inhibitory effects of the phytochemicals. The top selected compounds exhibited good ADMET properties and obeyed Lipinski's rule of five (ROF). The molecular docking analysis showed that salvigenin was the best among the three compounds and formed bonds with the key residue Met 793. Furthermore, the molecular mechanics generalized born surface area (MMGBSA) calculations, molecular dynamics simulation, and normal mode analysis validated the binding affinity of the compounds and also revealed the strong stability and compactness of phytochemicals at the docked site. Additionally, DFT and DOS analyses were done to study the reactivity of the compounds and to further validate the selected phytochemicals. These results suggest that the identified phytochemicals possess high inhibitory potential against the target EGFR and can treat breast cancer. However, further in vitro and in vivo investigations are warranted towards the development of these constituents into novel anti-cancer drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nusrath Yasmeen
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | | | | | | | - Vikram Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
- Amity Institute of Pharmacy, Amity University Rajasthan, Jaipur, India
| |
Collapse
|
3
|
Wang J, Shao B, Li J, Wang Z, Zhang M, Jia L, Yu P, Ma C. Identification and In Silico Analysis of ACE-Inhibitory Peptides Derived from Milk Fermented by Lacticaseibacillus paracasei. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12462-12473. [PMID: 37578765 DOI: 10.1021/acs.jafc.2c09148] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Inhibition of angiotensin I-converting enzyme (ACE) activity is an effective way to treat hypertension. In the present study, the ability to produce ACE-inhibitory peptides during fermentation of skimmed milk by the Lacticaseibacillus paracasei M3 strain was evaluated, and the inhibitory mechanism and stability were studied by bioinformatics analysis. The results showed that the ACE inhibition activity of fermented milk was 71.94 ± 1.39%. After digestion with gastric juice and pancreatic juice, the ACE inhibitory activities of the fermented milk were 78.40 ± 1.93 and 74.96 ± 1.73%, respectively. After the fermented milk was purified using ultrafiltration and gel chromatography, 11 peptides from milk proteins were identified and sequenced by Nano LC-MS/MS. Molecular docking displayed that peptide PWIQPK had a high affinity, with ACE showing a binding energy of -6.10 kcal/mol. Hydrogen bonds were formed between PWIQPK and Glu384 in the S1 active pocket of ACE and Asp358. In addition, van der Waals forces were observed. In silico proteolysis suggested that PWIQPK could resist the digestion of pepsin and trypsin, indicating that it is relatively stable in the digestive tract. All results indicate that milk fermented by L. paracasei M3 has the potential to be used as a functional food having antihypertensive effects.
Collapse
Affiliation(s)
- Jiaxu Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Boyue Shao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiaxin Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhimin Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Mixia Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lili Jia
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Pengfei Yu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chunli Ma
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
4
|
Salubrinal Ameliorates Inflammation and Neovascularization via the Caspase 3/Enos Signaling in an Alkaline-Induced Rat Corneal Neovascularization Model. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020323. [PMID: 36837524 PMCID: PMC9961429 DOI: 10.3390/medicina59020323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Background and Objectives: Ocular alkaline burn is a clinical emergency that can cause permanent vision loss due to limbal stem cell deficiency and corneal neovascularization (CNV). Although the basic pathogenetic mechanisms are considered to be acute oxidative stress and corneal neovascularization triggered by inflammation, the underlying intracellular mechanisms have not been clearly elucidated. The aim of this study was to investigate the role of endoplasmic reticulum (ER) stress on inflammation and neovascularization, and the effect of the ER stress inhibitor salubrinal (SLB), as a novel treatment in a corneal alkaline burn model in rats. Methods: Chemical burns were created by cautery for 4 s using a rod coated with 75% silver nitrate and 25% potassium nitrate in the corneal center for the corneal neovascularization (CNV) model. Twenty-eight Wistar albino rats were divided into four groups: SHAM, CNV, CNV + SLB, and CNV + bevacizumab (BVC). After the CNV model was applied to the right eye, a single subconjunctival dose (0.05 mL) of 1 mg/kg salubrinal was injected into both eyes in the CNV + SLB group. A total of 1.25 mg/mL of subconjunctival BVC was administered to the CNV + BVC group. Fourteen days after experimental modeling and drug administration, half of the globes were placed in liquid nitrogen and stored at -20 °C until biochemical analysis. The remaining tissues were collected and fixed in 10% buffered formalin for histopathological and immunohistochemical analysis. Three qualitative agents from three different pathways were chosen: TNFR for inflammation, endothelial nitric oxide synthase (e-NOS) for vascular endothelial growth factor (VEGF)-mediated vascular permeability, and caspase-3 for cellular apoptosis. Results: Significantly lower caspase-3 and eNOS levels were detected in the CNV + SLB and CNV + BVC groups than in the CNV group. Additionally, histopathological evaluation revealed a significant decrease in neovascularization, inflammatory cell infiltration, and fibroblast activity in the CNV + SLB and CNV + BVC groups. The endoplasmic reticulum stress inhibitor, salubrinal, administered to the treatment group, attenuated apoptosis (caspase-3) and inflammation (e-NOS). In the control group (left eyes of the SLB group), salubrinal did not have a toxic effect on the healthy corneas. Conclusion: The ER stress pathway plays an important role in angiogenesis after alkaline corneal burns, and treatment with SLB modulates this pathway, reducing caspase-3 and eNOS levels. Further studies are needed to understand the molecular mechanisms altered by SLB-mediated therapy. The fact that more than one mechanism plays a role in the pathogenesis of CNV may require the use of more than one molecule in treatment. SLB has the potential to affect multiple steps in CNV pathogenesis, both in terms of reducing ER stress and regulating cellular homeostasis by inhibiting the core event of integrated stress response (ISR). Therefore, it can be used as a new treatment option and as a strengthening agent for existing treatments. Although blockade of intracellular organelle stress pathways has shown promising results in experimental studies, more in-depth research is needed before it can be used in routine practice. To the best of our knowledge, this study is the first to report the role of ER stress in corneal injury.
Collapse
|
5
|
Yalcin-Ozkat G. Molecular Modeling Strategies of Cancer Multidrug Resistance. Drug Resist Updat 2021; 59:100789. [PMID: 34973929 DOI: 10.1016/j.drup.2021.100789] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023]
Abstract
Cancer remains a leading cause of morbidity and mortality worldwide. Hence, the increase in cancer cases observed in the elderly population, as well as in children and adolescents, makes human malignancies a prime target for anticancer drug development. Although highly effective chemotherapeutic agents are continuously developed and approved for clinical treatment, the major impediment towards curative cancer therapy remains multidrug resistance (MDR). In recent years, intensive studies have been carried out on the identification of new therapeutic molecules to reverse MDR efflux transporters of the ATP-binding cassette (ABC) superfamily. Although a great deal of progress has been made in the development of specific inhibitors for certain MDR efflux pumps in experimental studies, advanced computational studies can accelerate this drug development process. In the literature, there are many experimental studies on the impact of natural products and synthetic small molecules on the reversal of cancer MDR. Molecular modeling methods provide an opportunity to explain the activity of these molecules on the ABC-transporter family with non-covalent interactions as well as it is possible to carry out studies for the discovery of new anticancer drugs specific to MDR with these methods. The coordinate file of the 3-dimensional (3D) structure of the target protein is indispensable for molecular modeling studies. In some cases where a 3D structure cannot be obtained by experimental methods, the homology modeling method can be applied to obtain the file containing the target protein's information including atomic coordinates, secondary structure assignments, and atomic connectivity. Homology modeling studies are of great importance for efflux transporter proteins that still lack 3D structures due to crystallization problems with multiple hydrophobic transmembrane domains. Quantum mechanics, molecular docking and molecular dynamics simulation applications are the most frequently used molecular modeling methods in the literature to investigate non-covalent interactions between the drug-ABC transporter superfamily. The quantitative structure-activity relationship (QSAR) model provides a relationship between the chemical properties of a compound and its biological activity. Determining the pharmacophore region for a new drug molecule by superpositioning a series of molecules according to their physicochemical properties using QSAR models is another method in which molecular modeling is used in computational drug development studies with ABC transporter proteins. There are also in silico absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox) studies conducted to make a prediction about the pharmacokinetic properties, and drug-likeness of new molecules. Drug repurposing studies, which have become a trending topic in recent years, involve identifying possible new targets for an already approved drug molecule. There are few studies in the literature in which drug repurposing performed by molecular modelling methods has been applied on ABC transporter proteins. The aim of the current paper is to create a complete review of drug development studies including aforementioned molecular modeling methods carried out between the years 2019-2021. Furthermore, an intensive investigation is also conducted on licensed applications and free web servers used in in silico studies. The current review is an up-to-date guide for researchers who plan to conduct computational studies with MDR transporter proteins.
Collapse
Affiliation(s)
- Gozde Yalcin-Ozkat
- Recep Tayyip Erdogan University, Faculty of Engineering and Architecture, Bioengineering Department, 53100, Rize, Turkey; Max Planck Institute for Dynamics of Complex Technical Systems, Molecular Simulations and Design Group, Sandtorstrasse 1, 39106, Magdeburg, Germany.
| |
Collapse
|
6
|
Creanza TM, Delre P, Ancona N, Lentini G, Saviano M, Mangiatordi GF. Structure-Based Prediction of hERG-Related Cardiotoxicity: A Benchmark Study. J Chem Inf Model 2021; 61:4758-4770. [PMID: 34506150 PMCID: PMC9282647 DOI: 10.1021/acs.jcim.1c00744] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Drug-induced blockade of the human
ether-à-go-go-related
gene (hERG) channel is today considered the main
cause of cardiotoxicity in postmarketing surveillance. Hence, several
ligand-based approaches were developed in the last years and are currently
employed in the early stages of a drug discovery process for in silico cardiac safety assessment of drug candidates.
Herein, we present the first structure-based classifiers able to discern hERG binders from nonbinders. LASSO regularized support
vector machines were applied to integrate docking scores and protein–ligand
interaction fingerprints. A total of 396 models were trained and validated
based on: (i) high-quality experimental bioactivity information returned
by 8337 curated compounds extracted from ChEMBL (version 25) and (ii)
structural predictor data. Molecular docking simulations were performed
using GLIDE and GOLD software programs and four different hERG structural models, namely, the recently published structures
obtained by cryoelectron microscopy (PDB codes: 5VA1 and 7CN1) and
two published homology models selected for comparison. Interestingly,
some classifiers return performances comparable to ligand-based models
in terms of area under the ROC curve (AUCMAX = 0.86 ±
0.01) and negative predictive values (NPVMAX = 0.81 ±
0.01), thus putting forward the herein proposed computational workflow
as a valuable tool for predicting hERG-related cardiotoxicity
without the limitations of ligand-based models, typically affected
by low interpretability and a limited applicability domain. From a
methodological point of view, our study represents the first example
of a successful integration of docking scores and protein–ligand
interaction fingerprints (IFs) through a support vector machine (SVM)
LASSO regularized strategy. Finally, the study highlights the importance
of using hERG structural models accounting for ligand-induced
fit effects and allowed us to select the best-performing protein conformation
(made available in the Supporting Information, SI) to be employed
for a reliable structure-based prediction of hERG-related cardiotoxicity.
Collapse
Affiliation(s)
- Teresa Maria Creanza
- CNR-Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, Via Amendola 122/o, 70126 Bari, Italy
| | - Pietro Delre
- Chemistry Department, University of Bari "Aldo Moro", via E. Orabona, 4, I-70125 Bari, Italy.,CNR-Institute of Crystallography, Via Amendola 122/o, 70126 Bari, Italy
| | - Nicola Ancona
- CNR-Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, Via Amendola 122/o, 70126 Bari, Italy
| | - Giovanni Lentini
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", via E. Orabona, 4, I-70125 Bari, Italy
| | - Michele Saviano
- CNR-Institute of Crystallography, Via Amendola 122/o, 70126 Bari, Italy
| | | |
Collapse
|
7
|
Wang ZJ, Chen F, Xu YQ, Huang P, Liu SS. Protein Model and Function Analysis in Quorum-Sensing Pathway of Vibrio qinghaiensis sp.-Q67. BIOLOGY 2021; 10:638. [PMID: 34356493 PMCID: PMC8301110 DOI: 10.3390/biology10070638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 01/08/2023]
Abstract
Bioluminescent bacteria are mainly found in marine habitats. Vibrio qinghaiensis sp.-Q67 (Q67), a nonpathogenic freshwater bacterium, has been a focus due to its wide use in the monitoring of environmental pollution and the assessment of toxicity. However, the lack of available crystal structures limits the elucidation of the structures of the functional proteins of the quorum-sensing (QS) system that regulates bacterial luminescence in Q67. In this study, 19 functional proteins were built through monomer and oligomer modeling based on their coding proteins in the QS system of Q67 using MODELLER. Except for the failure to construct LuxM due to the lack of a suitable template, 18 functional proteins were successfully constructed. Furthermore, the relationships between the function and predicted structures of 19 functional proteins were explored one by one according to the three functional classifications: autoinducer synthases and receptors, signal transmission proteins (phosphotransferases, an RNA chaperone, and a transcriptional regulator), and enzymes involved in bacterial bioluminescence reactions. This is the first analysis of the whole process of bioluminescence regulation from the perspective of nonpathogenic freshwater bacteria at the molecular level. It provides a theoretical basis for the explanation of applications of Q67 in which luminescent inhibition is used as the endpoint.
Collapse
Affiliation(s)
- Ze-Jun Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (Z.-J.W.); (Y.-Q.X.)
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China;
| | - Fu Chen
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, China;
| | - Ya-Qian Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (Z.-J.W.); (Y.-Q.X.)
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Peng Huang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China;
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, China;
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (Z.-J.W.); (Y.-Q.X.)
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China;
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
8
|
Wu L, Liang C, Huang X, Deng X, Jiang J, Luo Z. Salubrinal Regulates the Apoptosis of Adrenocortical Carcinoma Cells via the PERK/eIF2 α/ATF4 Signaling Pathway. Int J Endocrinol 2021; 2021:5038130. [PMID: 34567111 PMCID: PMC8461226 DOI: 10.1155/2021/5038130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 01/22/2023] Open
Abstract
The protein-kinase-R- (PKR-) like endoplasmic reticulum kinase (PERK) signaling pathway is a well-known promoter of cell apoptosis. In this study, we aimed to determine whether salubrinal (Sal), a selective activator of eukaryotic translation initiation factor 2 (eIF2α), can induce apoptosis of human adrenocortical carcinoma (ACC) cell via activating the PERK/eIF2α/ATF4 signaling pathway, and the potential mechanisms of this action were explored. The ACC cell lines, including SW-13 and NCI-H295 R, were used. 3-(4,5)-Dimethylthiazol(-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay, cell scratch experiments, flow cytometry, and JC-1 staining assays were performed to detect the cell viability, cell migration, and cell apoptosis. The expression of PERK/eIF2α/ATF4 signaling-pathway-related proteins and apoptosis-related proteins was detected by western blot (WB). Intracellular Ca2+ ion concentration was determined by a confocal laser scanning microscope. The results showed that Sal inhibited the migration and proliferation of ACC cells. Sal remarkably increased the influx of Ca2+ ion and the apoptosis rate of ACC cells in vitro. Furthermore, the expression levels of PERK/eIF2α/ATF4 signaling-related proteins and apoptosis-related proteins were upregulated in the treatment of Sal. The research demonstrated that Sal reduces the cell viability, increases the intracellular calcium concentration, and promotes the apoptosis of ACC cells in vitro through increasing the phosphorylation level of eIF2α and activating the PERK/eIF2α/ATF4 signaling. PERK/eIF2α/ATF4 is expected to act as a potential therapeutic target for the treatment of adrenocortical carcinoma.
Collapse
Affiliation(s)
- Lili Wu
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Department of Integrated Medicine, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China
| | - Chunfeng Liang
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xuemei Huang
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiujun Deng
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jiming Jiang
- Department of Analysis for Cosmetics (Dietary Supplements), Guangxi Institute for Food and Drug Control, Nanning, Guangxi 530021, China
| | - Zuojie Luo
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| |
Collapse
|