1
|
Auel T, Mentrup AFC, Oldfield LR, Seidlitz A. 3D printing of pharmaceutical dosage forms: Recent advances and applications. Adv Drug Deliv Rev 2024; 217:115504. [PMID: 39706526 DOI: 10.1016/j.addr.2024.115504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/13/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Three-dimensional (3D) printing, also referred to as additive manufacturing, is considered to be a game-changing technology in many industries and is also considered to have potential use cases in pharmaceutical manufacturing, especially if individualization is desired. In this review article the authors systematically researched literature published during the last 5 years (2019 - spring 2024) on the topic of 3D printed dosage forms. Besides all kinds of oral dosage forms ranging from tablets and capsules to films, pellets, etc., numerous reports were also identified on parenteral and cutaneous dosage forms and also rectal, vaginal, dental, intravesical, and ophthalmic preparations. In total, more than 500 publications were identified and grouped according to the site of administration, and an overview of the manuscripts is presented here. Furthermore, selected publications are described and discussed in more detail. The review highlights the very different approaches that are currently used in order to develop 3D printed dosage forms but also addresses remaining challenges.
Collapse
Affiliation(s)
- Tobias Auel
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Aaron Felix Christofer Mentrup
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany; INVITE GmbH, Formulation Technology, Otto-Bayer-Straße 32, 51061 Köln, Germany
| | - Lee Roy Oldfield
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Anne Seidlitz
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany; Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical Technology, Kelchstraße 31, 12169 Berlin, Germany.
| |
Collapse
|
2
|
Chitnis K, Narala N, Vemula SK, Narala S, Munnangi S, Repka MA. Formulation, Development, and Characterization of AMB-Based Subcutaneous Implants using PCL and PLGA via Hot-Melt Extrusion. AAPS PharmSciTech 2024; 26:16. [PMID: 39690379 DOI: 10.1208/s12249-024-03004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/20/2024] [Indexed: 12/19/2024] Open
Abstract
The hot-melt extrusion process is currently considered a prominent manufacturing technique in the pharmaceutical industry. The present study is intended to develop amlodipine besylate (AMB)-loaded subcutaneous implants to reduce the frequency of administration, thus improving patient compliance during hypertension management. AMB subcutaneous implants were prepared using continuous hot-melt extrusion technology using poly(caprolactone) and poly(lactic-co-glycolic acid) with dimensions of 3.70 cm (length) by 2.00 mm (diameter). The implants were characterized for thermal characteristics, drug-excipient incompatibilities, surface morphology, fracturability, in vitro drug release, and stability studies. Differential scanning calorimetry study confirmed the drug's crystalline state within the fabricated implants, while textural analysis demonstrated good fracturability in the lead formulation. Scanning electron microscopy revealed the smooth surface morphology of the lead subcutaneous implant. The lead formulation showed an extended drug release profile over 30 days (~ 2.25 mg per day) and followed zero-order release kinetics (R2 value to 0.9999) with a mean dissolution time of 14.96 days. The lead formulation remained stable for 30 days at accelerated stability conditions of 40°C and 75% relative humidity. In conclusion, developing hot-melt extruded implants could be an alternative to the conventional amlodipine besylate (AMB) formulation.
Collapse
Affiliation(s)
- Kshitij Chitnis
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Nagarjuna Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Sateesh Kumar Vemula
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Sagar Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Sivaram Munnangi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA.
- Pii Center for Pharmaceutical Technology, The University of Mississippi, University, Mississippi, 38677, USA.
| |
Collapse
|
3
|
Peng H, Han B, Tong T, Jin X, Peng Y, Guo M, Li B, Ding J, Kong Q, Wang Q. 3D printing processes in precise drug delivery for personalized medicine. Biofabrication 2024; 16:10.1088/1758-5090/ad3a14. [PMID: 38569493 PMCID: PMC11164598 DOI: 10.1088/1758-5090/ad3a14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
With the advent of personalized medicine, the drug delivery system will be changed significantly. The development of personalized medicine needs the support of many technologies, among which three-dimensional printing (3DP) technology is a novel formulation-preparing process that creates 3D objects by depositing printing materials layer-by-layer based on the computer-aided design method. Compared with traditional pharmaceutical processes, 3DP produces complex drug combinations, personalized dosage, and flexible shape and structure of dosage forms (DFs) on demand. In the future, personalized 3DP drugs may supplement and even replace their traditional counterpart. We systematically introduce the applications of 3DP technologies in the pharmaceutical industry and summarize the virtues and shortcomings of each technique. The release behaviors and control mechanisms of the pharmaceutical DFs with desired structures are also analyzed. Finally, the benefits, challenges, and prospects of 3DP technology to the pharmaceutical industry are discussed.
Collapse
Affiliation(s)
- Haisheng Peng
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
- These authors contributed equally
| | - Bo Han
- Department of Pharmacy, Daqing Branch, Harbin Medical University, Daqing, People’s Republic of China
- These authors contributed equally
| | - Tianjian Tong
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States of America
| | - Xin Jin
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Yanbo Peng
- Department of Pharmaceutical Engineering, China Pharmaceutical University, 639 Longmian Rd, Nanjing 211198, People’s Republic of China
| | - Meitong Guo
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Bian Li
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Jiaxin Ding
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Qingfei Kong
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, People’s Republic of China
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States of America
| |
Collapse
|
4
|
Jennotte O, Koch N, Lechanteur A, Rosoux F, Emmerechts C, Beeckman E, Evrard B. Feasibility study of the use of a homemade direct powder extrusion printer to manufacture printed tablets with an immediate release of a BCS II molecule. Int J Pharm 2023; 646:123506. [PMID: 37832701 DOI: 10.1016/j.ijpharm.2023.123506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Among the various 3D printing techniques, FDM is the most studied in pharmaceutical research. However, it requires the fabrication of filaments with suitable mechanical properties using HME, which can be laborious and time-consuming. DPE has emerged as a single-step printing technique that can overcome FDM limits as it enables the direct printing of powder blends without the need of filaments. This study demonstrated the manufacturing of cylindrical-shaped printed tablets containing CBD, a BCS II molecule, with an immediate release. Different blends of PEO/E100 and PEO/SOL, each with 10 % of CBD, were printed and tested according to the Eur. Ph. for uncoated tablets. Each printed cylinder met the Eur. Ph. specifications for friability, mass variation and mass uniformity. However, only the E100-based formulations enabled a CBD immediate release, as formulations containing SOL formed a gel once in contact with the dissolution medium, reducing the drug dissolution rate.
Collapse
Affiliation(s)
- O Jennotte
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, 4000 Liege, Belgium.
| | - N Koch
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, 4000 Liege, Belgium
| | - A Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, 4000 Liege, Belgium
| | - F Rosoux
- SIRRIS, Collective Centre of the Belgian Technology Industry, 4102 Liege Science Park, Belgium
| | - C Emmerechts
- SIRRIS, Collective Centre of the Belgian Technology Industry, 4102 Liege Science Park, Belgium
| | - E Beeckman
- SIRRIS, Collective Centre of the Belgian Technology Industry, 4102 Liege Science Park, Belgium
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, 4000 Liege, Belgium
| |
Collapse
|
5
|
Bogdan C, Hales D, Cornilă A, Casian T, Iovanov R, Tomuță I, Iurian S. Texture analysis – a versatile tool for pharmaceutical evaluation of solid oral dosage forms. Int J Pharm 2023; 638:122916. [PMID: 37019322 DOI: 10.1016/j.ijpharm.2023.122916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
In the past few decades, texture analysis (TA) has gained importance as a valuable method for the characterization of solid oral dosage forms. As a result, an increasing number of scientific publications describe the textural methods that evaluate the extremely diverse category of solid pharmaceutical products. Within the current work, the use of texture analysis in the characterization of solid oral dosage forms is summarised with a focus on the evaluation of intermediate and finished oral pharmaceutical products. Several texture methods are reviewed regarding the applications in mechanical characterization, and mucoadhesion testing, but also in estimating the disintegration time and in vivo specific features of oral dosage forms. As there are no pharmacopoeial standards for pharmaceutical products tested through texture analysis, and there are important differences between reported results due to different experimental conditions, the choice of testing protocol and parameters is challenging. Thereby, this work aims to guide the research scientists and quality assurance professionals involved in different stages of drug development into the selection of optimal texture methodologies depending on the product characteristics and quality control needs.
Collapse
Affiliation(s)
- Cătălina Bogdan
- Department of Dermopharmacy and Cosmetics, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 12 I. Creangă Street, 400010 Cluj-Napoca, Romania
| | - Dana Hales
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania.
| | - Andreea Cornilă
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania
| | - Tibor Casian
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania
| | - Rareș Iovanov
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania
| | - Ioan Tomuță
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania
| | - Sonia Iurian
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Almotairy A, Alyahya M, Althobaiti A, Almutairi M, Bandari S, Ashour EA, Repka MA. Disulfiram 3D printed film produced via hot-melt extrusion techniques as a potential anticervical cancer candidate. Int J Pharm 2023; 635:122709. [PMID: 36801364 PMCID: PMC10023499 DOI: 10.1016/j.ijpharm.2023.122709] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/26/2023] [Accepted: 02/05/2023] [Indexed: 02/18/2023]
Abstract
Cervical cancer is known globally as one of the most common health problems in women. Indeed, one of the most convenient approaches for its treatment is an appropriate bioadhesive vaginal film. This approach provides a local treatment modality, which inevitably decreases dosing frequency and improves patient compliance. Recently, disulfiram (DSF) has been investigated and demonstrated to possess anticervical cancer activity; therefore, it is employed in this work. The current study aimed to produce a novel, personalized three-dimensional (3D) printed DSF extended-release film using the hot-melt extrusion (HME) and 3D printing technologies. The optimization of the formulation composition and the HME and 3D printing processing temperatures was an important factor for overcoming the DSF heat-sensitivity issue. In addition, the 3D printing speed was specifically the most crucial parameter for alleviating heat-sensitivity concerns, which led to the production of films (F1 and F2) with an acceptable DSF content and good mechanical properties. The bioadhesion film study using sheep cervical tissue indicated a reasonable adhesive peak force (N) of 0.24 ± 0.08 for F1 and 0.40 ± 0.09 for F2, while the work of adhesion (N.mm) for F1 and F2 was 0.28 ± 0.14 and 0.54 ± 0.14, respectively. Moreover, the cumulative in vitro release data indicated that the printed films released DSF for up to 24 h. HME-coupled 3D printing successfully produced a patient-centric and personalized DSF extended-release vaginal film with a reduced dose and longer dosing interval.
Collapse
Affiliation(s)
- Ahmed Almotairy
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy Taibah University, Al Madinah AlMunawarah 30001, Saudi Arabia
| | - Mohammed Alyahya
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulmajeed Althobaiti
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Mashan Almutairi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | - Suresh Bandari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Eman A Ashour
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
7
|
Cakir Yigit N, Karagoz I. A review of recent advances in bio-based polymer composite filaments for 3D printing. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2023.2190799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Nese Cakir Yigit
- Polymer Materials Engineering Department, Yalova University, Yalova, Türkiye
| | - Idris Karagoz
- Polymer Materials Engineering Department, Yalova University, Yalova, Türkiye
| |
Collapse
|
8
|
Brewer K, McWhorter TJ, Moseby K, Read JL, Peacock D, Blencowe A. pH-responsive subcutaneous implants prepared via hot-melt extrusion and fluidised-bed spray coating for targeted invasive predator control. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
9
|
The Quest for Child-Friendly Carrier Materials Used in the 3D Semi-Solid Extrusion Printing of Medicines. Pharmaceutics 2022; 15:pharmaceutics15010028. [PMID: 36678657 PMCID: PMC9865971 DOI: 10.3390/pharmaceutics15010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
This work gives a brief overview of carrier materials currently used in pharmaceutical studies on the three-dimensional (3D) semi-solid extrusion (SSE) printing of medicines for pediatrics. The suitability of using these carrier materials in pediatric formulations, concerning safety and toxicity, was reviewed by consulting the 'Safety & Toxicity of Excipients for Pediatrics' (STEP) database and the Food and Drug Administration (FDA) regulations. In the second part of this work, carrier materials were tested on their ability to form a semi-solid mixture with lactose by dual asymmetric centrifugation (DAC) and printing by SSE. With the combination of theoretical and experimental studies, this work will guide research toward grounded decision-making when it comes to carrier material selection for pharmaceutical pediatric 3D SSE printing formulations.
Collapse
|
10
|
Mandati P, Dumpa N, Alzahrani A, Nyavanandi D, Narala S, Wang H, Bandari S, Repka MA, Tiwari S, Langley N. Hot-Melt Extrusion-Based Fused Deposition Modeling 3D Printing of Atorvastatin Calcium Tablets: Impact of Shape and Infill Density on Printability and Performance. AAPS PharmSciTech 2022; 24:13. [PMID: 36477554 DOI: 10.1208/s12249-022-02470-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
The main objective of the current research was to investigate the effect of tablet shapes (heart-shaped and round tablets) and infill densities (50% and 100%) on the drug release profiles of 3D printed tablets prepared by hot-melt extrusion paired with fused deposition modeling techniques. Drug-loaded filaments of 1.5 mm and 2.5 mm diameters were extruded using a Process 11 mm hot-melt extruder employing atorvastatin calcium as a model drug and Kollicoat® IR, Kollidon® VA64, Kollidon® 12PF, and Kolliphor® P407 as hydrophilic polymers. Filaments of Kollicoat® IR in combination with Kollidon® VA64/Kollidon® 12PF has resulted in successful printing of immediate release tablets. The mechanical properties of drug-loaded filaments were evaluated using a 3-point bend test and stiffness test. The transformation of a crystalline drug to an amorphous form and the absence of drug-polymer interactions were confirmed by differential scanning calorimetry and Fourier transform infrared spectroscopy, respectively. The effect of infill density on drug release profiles was greater than that of tablet shape. The stability of 3D printed tablets was preserved even after storage under accelerated conditions (40 ± 2°C and 75 ± 5% RH) for 6 months. Thus, the 3D printing process of hot-melt extrusion paired with fused deposition modeling serves as an alternative manufacturing approach for developing patient-focused doses.
Collapse
Affiliation(s)
- Preethi Mandati
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Mississippi, 38677, University, USA
| | - Nagireddy Dumpa
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Mississippi, 38677, University, USA
| | - Abdullah Alzahrani
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Mississippi, 38677, University, USA
| | - Dinesh Nyavanandi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Mississippi, 38677, University, USA
| | - Sagar Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Mississippi, 38677, University, USA
| | - Honghe Wang
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Mississippi, 38677, University, USA
| | - Suresh Bandari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Mississippi, 38677, University, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Mississippi, 38677, University, USA. .,Pii Center for Pharmaceutical Technology, The University of Mississippi, Mississippi, 38677, University, USA.
| | - Sandip Tiwari
- BASF Corporation, 500 White Plains Road, New York, Tarrytown, USA
| | - Nigel Langley
- BASF Corporation, 500 White Plains Road, New York, Tarrytown, USA
| |
Collapse
|
11
|
Kukkonen J, Ervasti T, Laitinen R. Production and characterization of glibenclamide incorporated PLA filaments for 3D printing by fused deposition modeling. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Krueger L, Miles JA, Popat A. 3D printing hybrid materials using fused deposition modelling for solid oral dosage forms. J Control Release 2022; 351:444-455. [PMID: 36184971 DOI: 10.1016/j.jconrel.2022.09.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022]
Abstract
3D printing in the pharmaceutical and healthcare settings is expanding rapidly, such as the rapid prototyping of orthotics, dental retainers, drug-loaded implants, and pharmaceutical solid oral dosage forms. Through 3D printing, we have the capability to precisely control dose, release kinetics, and several aesthetic features of dosage forms such as colour, shape, and texture. Additionally, polypills can be created with combinations of medications in one solid dosage form at completely customisable strengths that would be extremely difficult to obtain commercially. As the technology and formulations developed through 3D printing are expanding, the development of new hybrid materials to obtain superior formulations are also gaining momentum. In this review we collate data on the importance of developing hybrid formulations of polymers, drugs and excipients necessary to produce reliable and high-quality 3D printed dosage forms with a special emphasis on fused deposition modelling (FDM). FDM technology is one of the most widely used forms of 3D printing and has demonstrated compatibility with unique polymer-based hybrids to allow for enhanced drug delivery, protection of thermolabile drugs, modifiable release kinetics, and more. The data collated covers different categories of hybrids as well as the methods used to fabricate them, and their respective effects on the properties of 3D printed solid oral dosage forms. Therefore, this review will provide an overview of upcoming and emerging trends in pharmaceutical 3D printing formulation compositions.
Collapse
Affiliation(s)
- Liam Krueger
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Australia
| | - Jared A Miles
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Australia.
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Australia.
| |
Collapse
|
13
|
Feng S, Bandari S, Repka MA. Investigation of poly(2-ethyl-2-oxazoline) as a novel extended release polymer for hot-melt extrusion paired with fused deposition modeling 3D printing. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Bácskay I, Ujhelyi Z, Fehér P, Arany P. The Evolution of the 3D-Printed Drug Delivery Systems: A Review. Pharmaceutics 2022; 14:pharmaceutics14071312. [PMID: 35890208 PMCID: PMC9318419 DOI: 10.3390/pharmaceutics14071312] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022] Open
Abstract
Since the appearance of the 3D printing in the 1980s it has revolutionized many research fields including the pharmaceutical industry. The main goal is to manufacture complex, personalized products in a low-cost manufacturing process on-demand. In the last few decades, 3D printing has attracted the attention of numerous research groups for the manufacturing of different drug delivery systems. Since the 2015 approval of the first 3D-printed drug product, the number of publications has multiplied. In our review, we focused on summarizing the evolution of the produced drug delivery systems in the last 20 years and especially in the last 5 years. The drug delivery systems are sub-grouped into tablets, capsules, orodispersible films, implants, transdermal delivery systems, microneedles, vaginal drug delivery systems, and micro- and nanoscale dosage forms. Our classification may provide guidance for researchers to more easily examine the publications and to find further research directions.
Collapse
Affiliation(s)
- Ildikó Bácskay
- Healthcare Industry Institute, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Petra Arany
- Healthcare Industry Institute, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| |
Collapse
|
15
|
Additive Manufacturing Strategies for Personalized Drug Delivery Systems and Medical Devices: Fused Filament Fabrication and Semi Solid Extrusion. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092784. [PMID: 35566146 PMCID: PMC9100145 DOI: 10.3390/molecules27092784] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 12/26/2022]
Abstract
Novel additive manufacturing (AM) techniques and particularly 3D printing (3DP) have achieved a decade of success in pharmaceutical and biomedical fields. Highly innovative personalized therapeutical solutions may be designed and manufactured through a layer-by-layer approach starting from a digital model realized according to the needs of a specific patient or a patient group. The combination of patient-tailored drug dose, dosage, or diagnostic form (shape and size) and drug release adjustment has the potential to ensure the optimal patient therapy. Among the different 3D printing techniques, extrusion-based technologies, such as fused filament fabrication (FFF) and semi solid extrusion (SSE), are the most investigated for their high versatility, precision, feasibility, and cheapness. This review provides an overview on different 3DP techniques to produce personalized drug delivery systems and medical devices, highlighting, for each method, the critical printing process parameters, the main starting materials, as well as advantages and limitations. Furthermore, the recent developments of fused filament fabrication and semi solid extrusion 3DP are discussed. In this regard, the current state of the art, based on a detailed literature survey of the different 3D products printed via extrusion-based techniques, envisioning future directions in the clinical applications and diffusion of such systems, is summarized.
Collapse
|
16
|
Assessment of the Extrusion Process and Printability of Suspension-Type Drug-Loaded Affinisol TM Filaments for 3D Printing. Pharmaceutics 2022; 14:pharmaceutics14040871. [PMID: 35456703 PMCID: PMC9027497 DOI: 10.3390/pharmaceutics14040871] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/03/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023] Open
Abstract
Three-dimensional (3D) printing technology enables the design of new drug delivery systems for personalised medicine. Polymers that can be molten are needed to obtain extruded filaments for Fused Deposition Modelling (FDM), one of the most frequently employed techniques for 3D printing. The aim of this work was to evaluate the extrusion process and the physical appearance of filaments made of a hydrophilic polymer and a non-molten model drug. Metformin was used as model drug and Affinisol™ 15LV as the main carrier. Drug-loaded filaments were obtained by using a single-screw extruder and, subsequently, their printability was tested. Blends containing up to a 60% and 50% drug load with 5% and 7.5% of auxiliary excipients, respectively, were successfully extruded. Between the obtained filaments, those containing up to 50% of the drug were suitable for use in FDM 3D printing. The studied parameters, including residence time, flow speed, brittleness, and fractal dimension, reflect a critical point in the extrusion process at between 30-40% drug load. This finding could be essential for understanding the behaviour of filaments containing a non-molten component.
Collapse
|
17
|
Pistone M, Racaniello GF, Arduino I, Laquintana V, Lopalco A, Cutrignelli A, Rizzi R, Franco M, Lopedota A, Denora N. Direct cyclodextrin-based powder extrusion 3D printing for one-step production of the BCS class II model drug niclosamide. Drug Deliv Transl Res 2022; 12:1895-1910. [PMID: 35138629 PMCID: PMC9242976 DOI: 10.1007/s13346-022-01124-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 01/02/2023]
Abstract
Niclosamide (NCS) is a drug that has been used as an anthelmintic and anti-parasitic drug for about 40 years. Recently, some studies have highlighted its potential in treating various tumors, allowing a repositioning of this drug. Despite its potential, NCS is a Biopharmaceutical Classification System (BCS) Class II drug and is consequently characterized by low aqueous solubility, poor dissolution rate and reduced bioavailability, which limits its applicability. In this work, we utilize a very novel technique, direct powder extrusion (DPE) 3D printing, which overcomes the limitations of previously used techniques (fused deposition modelling, FDM) to achieve direct extrusion of powder mixtures consisting of NCS, hydroxypropyl methylcellulose (HPMC, Affinisol 15 LV), hydroxypropyl-β-cyclodextrin (HP-β-CD) and polyethylene glycol (PEG) 6000. For the first time, direct printing of powder blends containing HP-β-CD was conducted. For all tablets, in vitro dissolution studies showed sustained drug release over 48 h, but for tablets containing HP-β-CD, the release was faster. Solid-state characterization studies showed that during extrusion, the drug lost its crystal structure and was evenly distributed within the polymer matrix. All printed tablets have exhibited good mechanical and physical features and a stability of the drug content for up to 3 months. This innovative printing technique has demonstrated the possibility to produce personalized pharmaceutical forms directly from powders, avoiding the use of filament used by FDM.
Collapse
Affiliation(s)
- Monica Pistone
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Orabona St. 4, 70125, Bari, Italy
| | | | - Ilaria Arduino
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Orabona St. 4, 70125, Bari, Italy
| | - Valentino Laquintana
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Orabona St. 4, 70125, Bari, Italy
| | - Antonio Lopalco
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Orabona St. 4, 70125, Bari, Italy
| | - Annalisa Cutrignelli
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Orabona St. 4, 70125, Bari, Italy
| | - Rosanna Rizzi
- Institute of Crystallography-CNR, Amendola St. 122/o, 70126, Bari, Italy
| | - Massimo Franco
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Orabona St. 4, 70125, Bari, Italy
| | - Angela Lopedota
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Orabona St. 4, 70125, Bari, Italy.
| | - Nunzio Denora
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Orabona St. 4, 70125, Bari, Italy.
| |
Collapse
|
18
|
Mohapatra S, Kar RK, Biswal PK, Bindhani S. Approaches of 3D printing in current drug delivery. SENSORS INTERNATIONAL 2022. [DOI: 10.1016/j.sintl.2021.100146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
19
|
Salave S, Prayag K, Rana D, Amate P, Pardhe R, Jadhav A, Jindal AB, Benival D. Recent Progress in Hot Melt Extrusion Technology in Pharmaceutical Dosage Form Design. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2022; 16:170-191. [PMID: 35986528 DOI: 10.2174/2667387816666220819124605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The Hot Melt Extrusion (HME) technique has shown tremendous potential in transforming highly hydrophobic crystalline drug substances into amorphous solids without using solvents. This review explores in detail the general considerations involved in the process of HME, its applications and advances. OBJECTIVE The present review examines the physicochemical properties of polymers pertinent to the HME process. Theoretical approaches for the screening of polymers are highlighted as a part of successful HME processed drug products. The critical quality attributes associated with the process of HME are also discussed in this review. HME plays a significant role in the dosage form design, and the same has been mentioned with suitable examples. The role of HME in developing several sustained release formulations, films, and implants is described along with the research carried out in a similar domain. METHODS The method includes the collection of data from different search engines like PubMed, ScienceDirect, and SciFinder to get coverage of relevant literature for accumulating appropriate information regarding HME, its importance in pharmaceutical product development, and advanced applications. RESULTS HME is known to have advanced pharmaceutical applications in the domains related to 3D printing, nanotechnology, and PAT technology. HME-based technologies explored using Design-of- Experiments also lead to the systematic development of pharmaceutical formulations. CONCLUSION HME remains an adaptable and differentiated technique for overall formulation development.
Collapse
Affiliation(s)
- Sagar Salave
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Kedar Prayag
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS PILANI), Pilani, Rajasthan, India
| | - Dhwani Rana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Prakash Amate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Rupali Pardhe
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Ajinkya Jadhav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Anil B Jindal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS PILANI), Pilani, Rajasthan, India
| | - Derajram Benival
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| |
Collapse
|
20
|
Pinho LAG, Lima AL, Sa-Barreto LL, Gratieri T, Gelfuso GM, Marreto RN, Cunha-Filho M. Preformulation Studies to Guide the Production of Medicines by Fused Deposition Modeling 3D Printing. AAPS PharmSciTech 2021; 22:263. [PMID: 34729662 DOI: 10.1208/s12249-021-02114-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Fused deposition modeling (FDM) 3D printing has demonstrated high potential for the production of personalized medicines. However, the heating at high temperatures inherent to this process causes unknown risks to the drug product's stability. The present study aimed to assess the use of a tailored preformulation protocol involving physicochemical assessments, including the rheological profiles of the samples, to guide the development of medicines by FDM 3D printing. For this, polymers commonly used in FDM printing, i.e., high impact polystyrene (HIPS), polylactic acid (PLA), and polyvinyl alcohol (PVA), and their common plasticizers (mineral oil, triethyl citrate, and glycerol, respectively) were evaluated using the thermolabile model drug isoniazid (INH). Samples were analyzed by chemical and physical assays. The results showed that although the drug could produce polymorphs under thermal processing, the polymeric matrix can be a protective element, and no polymorphic transformation was observed. However, incompatibilities between materials might impact their chemical, thermal, and rheological performances. In fact, ternary mixtures of INH, PLA, and TEC showed a major alteration in their viscoelastic behavior besides the chemical changes. On the other hand, the use of plasticizers for HIPS and PVA exhibited positive consequences in drug solubility and rheologic behavior, probably improving sample printability. Thus, the optimization of the FDM 3D printing based on preformulation studies can assist the choice of compatible components and seek suitable processing conditions to obtain pharmaceutical products.
Collapse
|
21
|
Ragelle H, Rahimian S, Guzzi EA, Westenskow PD, Tibbitt MW, Schwach G, Langer R. Additive manufacturing in drug delivery: Innovative drug product design and opportunities for industrial application. Adv Drug Deliv Rev 2021; 178:113990. [PMID: 34600963 DOI: 10.1016/j.addr.2021.113990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/21/2021] [Accepted: 09/21/2021] [Indexed: 02/06/2023]
Abstract
Additive manufacturing (AM) or 3D printing is enabling new directions in product design. The adoption of AM in various industrial sectors has led to major transformations. Similarly, AM presents new opportunities in the field of drug delivery, opening new avenues for improved patient care. In this review, we discuss AM as an innovative tool for drug product design. We provide a brief overview of the different AM processes and their respective impact on the design of drug delivery systems. We highlight several enabling features of AM, including unconventional release, customization, and miniaturization, and discuss several applications of AM for the fabrication of drug products. This includes products that have been approved or are in development. As the field matures, there are also several new challenges to broad implementation in the pharmaceutical landscape. We discuss several of these from the regulatory and industrial perspectives and provide an outlook for how these issues may be addressed. The introduction of AM into the field of drug delivery is an enabling technology and many new drug products can be created through productive collaboration of engineers, materials scientists, pharmaceutical scientists, and industrial partners.
Collapse
|
22
|
Mei Y, He C, Gao C, Zhu P, Lu G, Li H. 3D-Printed Degradable Anti-Tumor Scaffolds for Controllable Drug Delivery. Int J Bioprint 2021; 7:418. [PMID: 34805597 PMCID: PMC8600306 DOI: 10.18063/ijb.v7i4.418] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/01/2021] [Indexed: 01/15/2023] Open
Abstract
In this study, porous polylactic acid/methotrexate (PLA/MTX) scaffolds were successfully fabricated by three-dimensional (3D) printing technology as controllable drug delivery devices to suppress tumor growth. Scanning electron microscopy and energy-dispersive spectrometer confirmed that MTX drug was successfully incorporated into the PLA filament. 3D-printed PLA/MTX scaffolds allow sustained release of drug molecules in vitro for more than 30 days, reducing systemic toxic side effects caused by injection or oral administration. In vitro cytotoxicity assay revealed that PLA/MTX scaffolds have a relatively high inhibitory effect on the tumor cells (MG-63, A549, MCF-7, and 4T1) and relatively low toxic effect on the normal MC3T3-E1 cells. Furthermore, results of in vivo experiments confirmed that PLA/MTX scaffolds highly suppressed tumor growth and no obvious side effects on the organs. All these results suggested that 3D-printed PLA/MTX scaffolds could be used as controllable drug delivery systems for tumor suppression.
Collapse
Affiliation(s)
- Yucheng Mei
- Institute of Biomedical Research and Tissue Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Chengzu He
- Department of Oncology, the People’s Hospital of Binyang County, Binyang 530405, Guangxi, China
| | - Chunxia Gao
- Institute of Biomedical Research and Tissue Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Peizhi Zhu
- Institute of Biomedical Research and Tissue Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Guanming Lu
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Hongmian Li
- Research Center of Medical Sciences, The People’s Hospital of Guangxi Zhuang Autonomous Region and Guangxi Academy of Medical Sciences, Nanning 530021, China
| |
Collapse
|
23
|
Polymers in pharmaceutical additive manufacturing: A balancing act between printability and product performance. Adv Drug Deliv Rev 2021; 177:113923. [PMID: 34390775 DOI: 10.1016/j.addr.2021.113923] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/08/2021] [Accepted: 08/09/2021] [Indexed: 12/19/2022]
Abstract
Materials and manufacturing processes share a common purpose of enabling the pharmaceutical product to perform as intended. This review on the role of polymeric materials in additive manufacturing of oral dosage forms, focuses on the interface between the polymer and key stages of the additive manufacturing process, which determine printability. By systematically clarifying and comparing polymer functional roles and properties for a variety of AM technologies, together with current and emerging techniques to characterize these properties, suggestions are provided to stimulate the use of readily available and sometimes underutilized pharmaceutical polymers in additive manufacturing. We point to emerging characterization techniques and digital tools, which can be harnessed to manage existing trade-offs between the role of polymers in printer compatibility versus product performance. In a rapidly evolving technological space, this serves to trigger the continued development of 3D printers to suit a broader variety of polymers for widespread applications of pharmaceutical additive manufacturing.
Collapse
|