1
|
Jeyarajan S, Ranjith S, Veerapandian R, Natarajaseenivasan K, Chidambaram P, Kumarasamy A. Antibiofilm Activity of Epinecidin-1 and Its Variants Against Drug-Resistant Candida krusei and Candida tropicalis Isolates from Vaginal Candidiasis Patients. Infect Dis Rep 2024; 16:1214-1229. [PMID: 39728018 DOI: 10.3390/idr16060096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
Background/Objective: Indwelling intrauterine contraceptive devices (IUDs) have surfaces that facilitate the attachment of Candida spp., creating a suitable environment for biofilm formation. Due to this, vulvovaginal candidiasis (VVC) is frequently linked to IUD usage, necessitating the prompt removal of these devices for effective treatment. In this study, we evaluated the susceptibility of antimicrobial peptides in vitro against biofilm forming, Amphotericin B (MIC50 > 2 mg L-1) resistant Candida krusei and Candida tropicalis isolated from IUD users who had signs of vaginal candidiasis (hemorrhage, pelvic pain, inflammation, itching, and vaginal discharge). Three antimicrobial peptides, namely, epinecidin-1 (epi-1) and its two variants, namely, variant-1 (Var-1) and variant-2 (Var-2), which were reported to have enhanced antibacterial activity were tested against IUD isolates (C. krusei and C. tropicalis) with pathogenic form of Candida albicans as control. Variants of epi-1, namely, Var-1 and Var-2 were created by substituting lysine in the place of histidine and alanine. Methods: The antimicrobial activity was measured using the microbroth dilution method to determine the minimum inhibitory concentration (MIC) of peptides against C. albicans, C. krusei and C. tropicalis. The MIC of each peptide was used for biofilm assay by Crystal violet staining, Scanning Electron Microscopy, and Reactive Oxygen Species (ROS) assay. To find the possible mechanism of anti-biofilm activity by the peptides, their ability to interact with Candida spp. cell membrane proteins such as Exo-β-(1,3)-Glucanase, Secreted Aspartic Proteinase (Sap) 1, and N-terminal Domain Adhesin: Als 9-2 were determined through PatchDock. Results: The MIC values of peptides: epi-1, var-1 and var-2 against C. albicans are 128 μg mL-1, 64 μg mL-1 and 32 μg mL-1, C. tropicalis are 256 μg mL-1, 64 μg mL-1, and 32 μg mL-1 and C. krusei are 128 µg mL-1, 128 µg mL-1 and 64 µg mL-1, respectively. Both the variants outperformed epi-1. Specifically for tested Candida spp., var-1 showed two- to four-fold enhancements and var-2 showed two- to eight-fold enhancements compared to epi-1. Electron microscopy confirmed that the mechanism of action involves pore formation thus inducing reactive oxygen species in Candida spp. cell membrane. Computational analysis showed that the peptides have a high tendency to interact with Candida spp. cell membrane proteins such as Exo-β-(1,3)-Glucanase, Secreted Aspartic Proteinase (Sap) 1, and N-terminal Domain Adhesin: Als 9-2, thereby preventing biofilm formation. Conclusions: The in vitro evidence supports the potential use of epi-1 and its variants to be used as an anti-biofilm agent to coat IUDs in the future for therapeutic purposes.
Collapse
Affiliation(s)
- Sivakumar Jeyarajan
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli 620024, India
- Transgenic Animal Model Core, Biomedical Research Core Facilities, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sukumar Ranjith
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli 620024, India
| | - Raja Veerapandian
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Department of Microbiology, Bharathidasan University, Tiruchirappalli 620024, India
| | - Kalimuthusamy Natarajaseenivasan
- Department of Microbiology, Bharathidasan University, Tiruchirappalli 620024, India
- ICMR-Regional Medical Research Centre, Lahowal, Dibrugarh 786010, India
| | | | - Anbarasu Kumarasamy
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli 620024, India
| |
Collapse
|
2
|
Jeyarajan S, Peter AS, Ranjith S, Sathyan A, Duraisamy S, Kandasamy I, Chidambaram P, Kumarasamy A. Glycine-replaced epinecidin-1 variant bestows better stability and stronger antimicrobial activity against a range of nosocomial pathogenic bacteria. Biotechnol Appl Biochem 2024; 71:1384-1404. [PMID: 39034467 DOI: 10.1002/bab.2637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/29/2024] [Indexed: 07/23/2024]
Abstract
Epinecidin-1 (epi-1), an antimicrobial peptide first identified in marine grouper fish, has multifunctional bioactivities. The present study aims to improve its therapeutic potential via structural modifications that could enhance its antimicrobial activity and stability. To achieve it, we replaced glycine and the first histidine in the parent epi-1 with lysine, which resulted in a peptide with a repeating KXXK motif and improved physiochemical properties related to antimicrobial activity. This modified peptide, referred to as glycine-to-lysine replaced-epi-1, also gained stability and a twofold increase in helical propensity. To produce the active peptide, overlap extension PCR was employed to generate the gene of GK-epi-1 via site-directed mutagenesis, which was then cloned into the pET-32a vector and expressed as a recombinant fusion protein in Escherichia coli C43 (DE3) strain. The recombinant protein was purified and digested with enterokinase to release the active peptide fragment, which was then evaluated for antimicrobial activity and stability. The lysine substitution led to an enhancement in broad-spectrum antimicrobial activity against a wide range of nosocomial pathogenic bacteria.
Collapse
Affiliation(s)
- Sivakumar Jeyarajan
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
- Transgeinc Animal Model Core, Biomedical Research Core Facilities, University of Michigan, Ann Arbor, Michigan, USA
| | - Ansu Susan Peter
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Sukumar Ranjith
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Aswathy Sathyan
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Senbagam Duraisamy
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Indira Kandasamy
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | | | - Anbarasu Kumarasamy
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
3
|
Wu X, Tian Y, Ran K, Yao J, Wang Y, Ouyang X, Mao W, Zhang J, Li B, Yang P, Ba Z, Liu H, Gou S, Zhong C, Zhang Y, Ni J. Rational design of a new short anticancer peptide with good potential for cancer treatment. Eur J Med Chem 2024; 273:116519. [PMID: 38795519 DOI: 10.1016/j.ejmech.2024.116519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/19/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024]
Abstract
Anticancer peptides (ACPs) have regarded as a new generation of promising antitumor drugs due to the unique mode of action. The main challenge is to develop potential anticancer peptides with satisfied antitumor activity and low toxicity. Here, a series of new α-helical anticancer peptides were designed and synthesized based on the regular repeat motif KLLK. The optimal peptides 14E and 14Aad were successfully derived from the new short α-helical peptide KL-8. Our results demonstrated that 14E and 14Aad had good antitumor activity and low toxicity, exhibiting excellent selectivity index. This result highlighted that the desirable modification position and appropriate hydrophobic side-chain structure of acidic amino acids played critical roles in regulating the antitumor activity/toxicity of new peptides. Further studies indicated that they could induce tumor cell death via the multiple actions of efficient membrane disruption and intracellular mechanisms, displaying apparent superiority in combination with PTX. In addition, the new peptides 14E and 14Aad showed excellent antitumor efficacy in vivo and low toxicity in mice compared to KL-8 and PTX. Particularly, 14Aad with the longer side chain at the 14th site exhibited the best therapeutic performance. In conclusion, our work provided a new avenue to develop promising anticancer peptides with good selectivity for tumor therapy.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Yali Tian
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Kaixin Ran
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Jia Yao
- The First Hospital, Lanzhou University, Lanzhou, 730000, PR China
| | - Yuxia Wang
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Xu Ouyang
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Wenbo Mao
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Jingying Zhang
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Beibei Li
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Ping Yang
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Zufang Ba
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Hui Liu
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Sanhu Gou
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Chao Zhong
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Yun Zhang
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China.
| | - Jingman Ni
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
4
|
Wang K, Nguyen T, Gao Y, Guo R, Fan C, Liao H, Li J, Chai J, Xu X, Gong Y, Chen X. Androcin 18-1, a novel scorpion-venom peptide, shows a potent antitumor activity against human U87 cells via inducing mitochondrial dysfunction. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 170:104137. [PMID: 38759703 DOI: 10.1016/j.ibmb.2024.104137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/04/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Scorpion venom is a potent natural source for antitumor drug development due to the multiple action modes of anticancer components. Although the sequence of Androcin 18-1 has been identified from the transcriptome profile of the scorpion venom Androctonus bicolor, its bioactivity remains unclear. In this study, we described the antitumor mechanism whereby Androcin 18-1 inhibits the proliferation and induces apoptosis by inducing cell membrane disruption, ROS accumulation, and mitochondrial dysfunction in human U87 glioblastoma cells. Moreover, Androcin 18-1 could suppress cell migration via the mechanisms associated with cytoskeleton disorganization and MMPs/TIMPs expression regulation. The discovery of this work highlights the potential application of Androcin 18-1 in drug development for glioblastoma treatment.
Collapse
Affiliation(s)
- Kai Wang
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
| | - Tienthanh Nguyen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Yihan Gao
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
| | - Ruiyin Guo
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Chaofan Fan
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
| | - Hang Liao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Jiali Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Jinwei Chai
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
| | - Xueqing Xu
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515, Guangzhou, China.
| | - Yuxin Gong
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China.
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China.
| |
Collapse
|
5
|
Bagewadi ZK, Illanad GH, Shaikh IA, Mahnashi MH, Shettar SS, H KP, Alhazmi AYM, Hakami MA, Mahanta N, Singh SP, Karlo J, Khan A. Molecular expression, purification and structural characterization of recombinant L-Glutaminase from Streptomyces roseolus. Int J Biol Macromol 2024; 273:133142. [PMID: 38889830 DOI: 10.1016/j.ijbiomac.2024.133142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/20/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
The present research reports the anti-cancer potential of recombinant L-Glutaminase from Streptomyces roseolus. L-Glutaminase gene was synthesized by codon-optimization, cloned and successfully expressed in E. coli BL21 (DE3). Affinity purified recombinant L-Glutaminase revealed a molecular mass of 32 kDa. Purified recombinant L-Glutaminase revealed stability at pH 7.0-8.0 with optimum activity at 70 °C further indicating its thermostable nature based on thermodynamic characterization. Recombinant L-Glutaminase exhibited profound stability in the presence of several biochemical parameters and demonstrated its metalloenzyme nature and was also found to be highly specific towards favorable substrate (l-Glutamine) based on kinetics. It demonstrated antioxidant property and pronounced cytotoxic effect against breast cancer (MCF-7 cell lines) in a dose dependent behavior with IC50 of 40.68 μg/mL. Matrix-assisted laser desorption ionization-time of flight-mass spectroscopy (MALDI-TOF-MS) analysis of desired mass peaks ascertained the recombinant L-Glutaminase identity. N-terminal amino acid sequence characterization through Edman degradation revealed highest resemblance for L-glutaminase within the Streptomyces sp. family. The purified protein was characterized structurally and functionally by employing spectroscopic methods like Raman, circular dichroism and nuclear magnetic resonance. The thermostability was assessed by thermogravimetric analysis. The outcomes of the study, suggests the promising application of recombinant L-Glutaminase as targeted therapeutic candidate for breast cancer.
Collapse
Affiliation(s)
- Zabin K Bagewadi
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India.
| | - Gouri H Illanad
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Ibrahim Ahmed Shaikh
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Shreya S Shettar
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Krushnamurthy P H
- Department of Chemistry, Indian Institute of Technology, Dharwad, Karnataka 580011, India
| | | | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Nilkamal Mahanta
- Department of Chemistry, Indian Institute of Technology, Dharwad, Karnataka 580011, India.
| | - Surya P Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Karnataka 580011, India
| | - Jiro Karlo
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Karnataka 580011, India
| | - Aejaz Khan
- Department of General Science, Ibn Sina National College for Medical Studies, Jeddah 21418, Saudi Arabia
| |
Collapse
|
6
|
Çapan İ, Hawash M, Qaoud MT, Gülüm L, Tunoglu ENY, Çifci KU, Çevrimli BS, Sert Y, Servi S, Koca İ, Tutar Y. Synthesis of novel carbazole hydrazine-carbothioamide scaffold as potent antioxidant, anticancer and antimicrobial agents. BMC Chem 2024; 18:102. [PMID: 38773663 PMCID: PMC11110238 DOI: 10.1186/s13065-024-01207-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/13/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Carbazole-based molecules containing thiosemicarbazide functional groups are recognized for their diverse biological activities, particularly in enhancing therapeutic anticancer effects through inhibiting crucial pathways. These derivatives also exhibit noteworthy antioxidant properties. OBJECTIVES This study aims to synthesize, characterize, and evaluate the antioxidant and anticancer activities of 18 novel carbazole derivatives. METHODS The radical scavenging capabilities of the compounds were assessed using the 2,2-diphenyl-1-picrylhydrazyl assay. Antiproliferative activities were evaluated on MCF-7 cancer cell lines through viability assays. Additionally, the modulation of the PI3K/Akt/mTOR pathway, apoptosis/necrosis induction, and cell cycle analysis were conducted for the most promising anticancer agents. RESULTS nine compounds showed potent antioxidant activities with IC50 values lower than the positive control acarbose, with compounds 4 h and 4y exhibiting the highest potency (IC50 values of 0.73 and 0.38 µM, respectively). Furthermore, compounds 4o and 4r displayed significant anticancer effects, with IC50 values of 2.02 and 4.99 µM, respectively. Compound 4o, in particular, exhibited promising activity by targeting the PI3K/Akt/mTOR signaling pathway, inhibiting tumor survival, inducing apoptosis, and causing cell cycle arrest in MCF-7 cell lines. Furthermore, compound 4o was showed significant antimicrobial activities against S. aureus and E. coli, and antifungal effect against C. albicans. Its potential to overcome drug resistance through this pathway inhibition highlights its promise as an anticancer agent. Molecular docking simulations supported these findings, revealing favorable binding profiles and interactions within the active sites of the enzymes PI3K, AKT1, and mTOR. Moreover, assessing the druggability of the newly synthesized thiosemicarbazide derivatives demonstrated optimal physicochemical properties, further endorsing their potential as drug candidates.
Collapse
Affiliation(s)
- İrfan Çapan
- Department of Pharmaceutical Basic Sciences, Faculty of Pharmacy, Gazi University, 06330, Ankara, Türkiye.
- Sente Kimya Research and Development Inc., 06200, Ankara, Türkiye.
| | - Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Mohammed T Qaoud
- Department of Pharmacy, Faculty of Pharmacy, Cyprus International University, Northern Cyprus, Mersin 10, 99258, Nicosia, Türkiye
| | - Levent Gülüm
- Department of Plant and Animal Production, Mudurnu Süreyya Astarcı Vocational College, Bolu Abant İzzet Baysal University, Bolu, Türkiye
| | - Ezgi Nurdan Yenilmez Tunoglu
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Demiroğlu Bilim University, Istanbul, Türkiye
| | - Kezban Uçar Çifci
- Department of Molecular Medicine, Faculty of Health Sciences, University of Health Sciences, Istanbul, Türkiye
- Division of Basic Sciences and Health, Hemp Research Institute, Yozgat Bozok University, Yozgat, Türkiye
| | - Bekir Sıtkı Çevrimli
- Department of Chemistry and Chemical Processing Technologies, Technical Sciences Vocational College, Gazi University, Ankara, Türkiye
| | - Yusuf Sert
- Sorgun Vocational College, Yozgat Bozok University, Yozgat, Türkiye
| | - Süleyman Servi
- Department of Chemistry, Faculty of Science, Fırat University, Elazığ, Türkiye
| | - İrfan Koca
- Department of Chemistry, Faculty of Art & Sciences, Yozgat Bozok University, Yozgat, Türkiye
| | - Yusuf Tutar
- Medical School, Division of Biochemistry, Recep Tayyip Erdogan University, Rize, Türkiye
- Faculty of Pharmacy, Division of Biochemistry, University of Health Sciences, Istanbul, Türkiye
| |
Collapse
|
7
|
Chang J, Chang X, Yue X, Cao S, Zhao W, Li J. Beta-defensin1 derived from Ctenopharyngodon idella exerts anti-Vibrio mimics effects in vitro and in vivo via a multi-target mechanism of action. AQUACULTURE INTERNATIONAL 2024; 32:2019-2038. [DOI: 10.1007/s10499-023-01256-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/15/2023] [Indexed: 01/03/2025]
|
8
|
Jeyarajan S, Peter AS, Sathyan A, Ranjith S, Kandasamy I, Duraisamy S, Chidambaram P, Kumarasamy A. Expression and purification of epinecidin-1 variant (Ac-Var-1) by acid cleavage. Appl Microbiol Biotechnol 2024; 108:176. [PMID: 38277014 PMCID: PMC10817847 DOI: 10.1007/s00253-024-13017-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
The demand for massive quantities of therapeutic active antimicrobial peptides (AMPs) is high due to their potential as alternatives to antibiotics. However, each antimicrobial peptide has unique properties, necessitating distinct synthesis and purification strategies for their large-scale production. In this study, we bio-synthesized and purified a functional enhanced variant of the AMP epinecidin-1, known as Ac-Var-1 (acid-cleavable variant-1). To generate the active peptide, we cloned the gene for Ac-Var-1 with acid-cleavable site (aspartic acid-proline) into the pET-32a expression vector, purified the fusion protein by His tag enrichment chromatography, and performed acid cleavage to release the active Ac-Var-1 peptide. After acid cleavage, the active Ac-Var-1 was purified and characterized by SDS-PAGE and mass spectrometry. The results from both techniques provided confirmation of the intactness of the purified Ac-Var-1. The Ac-Var-1 inhibited the growth of pathogenic Escherichia coli and Staphylococcus aureus. KEY POINTS : • Epinecidin-1 is a well-known antimicrobial peptide having multipotential bioactivities. • Epinecidin-1 variant is developed via the site-directed mutagenesis method to improve its structural stability and bioactivity. • AC-Var-1 development is an economical and easy method to remove peptide from tag protein.
Collapse
Affiliation(s)
- Sivakumar Jeyarajan
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Ansu Susan Peter
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Aswathy Sathyan
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Sukumar Ranjith
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Indira Kandasamy
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Senbagam Duraisamy
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
- Department of Biotechnology, SRM University, Chennai, India
| | | | - Anbarasu Kumarasamy
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
| |
Collapse
|
9
|
Mahendran R, Selvaraj SP, Dhanapal AR, Sarasa SB, Mathias BM, Thankappan B, Femil Selta DR, Naveen P, Poorani R, Sundhar N, Pillai MM, Selvakumar R, Huang CY, Eswaran R, Angayarkanni J. Tetrahydrobiopterin from cyanide-degrading bacterium Bacillus pumilus strain SVD06 induces apoptosis in human lung adenocarcinoma cell (A549). Biotechnol Appl Biochem 2023; 70:2052-2068. [PMID: 37731306 DOI: 10.1002/bab.2509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023]
Abstract
Tetrahydrobiopterin (BH4) is an essential biological cofactor and a derivative of pterin which is considered potent anticancer agents. In continuation of our previous study on the identification of BH4 from cyanide-degrading Bacillus pumilus, the present study focuses on evaluating the anticancer properties of BH4 on A549, a human lung adenocarcinoma. Anticancer activity analysis shows that BH4 inhibited A549 cell growth after 24 h of incubation with 0.02 mg/mL. In acridine orange/ethidium bromide staining, BH4-treated A549 cells showed apoptotic morphology. BH4 treatment caused cell cycle arrest at G0/G1 phase compared to control cells. BH4 augmented p53 expression in alveolar cancer cells by downregulating MDM2 levels. There was downregulation of casp-3 and upregulation of iNOS gene in BH4-treated A549 cells. Further, docking studies indicated that BH4 had significant interactions with the above proteins affirming the apoptosis mechanism. Thus, BH4 could be considered a potential anticancer drug.
Collapse
Affiliation(s)
- Ramasamy Mahendran
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Sanjay Prasad Selvaraj
- Molecular and Biological Agricultural Science Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Anand Raj Dhanapal
- Institute of Forest Genetics and Tree Breeding (IFGTB), Forest Campus, Coimbatore, Tamil Nadu, India
| | - Sabna Bhaskaran Sarasa
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Beutline Malgija Mathias
- Computational Science Laboratory, MCC-MRF Innovation Park, Madras Christian College, Chennai, Tamil Nadu, India
| | - Bency Thankappan
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Daniel Raja Femil Selta
- Department of Biochemistry and Cancer Research Center, FASCM, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Palanivel Naveen
- Department of Chemistry, Sona College of Arts and Science, Salem, Tamil Nadu, India
| | - Rhenghachar Poorani
- Gayatri Vidya parishad Institute of Health Care and Medical Technology, Visakhapatnam, India
| | - Navaneethan Sundhar
- Graduate Institute of Biomedical Sciences, School of Medicine, China Medical University, Taichung, Taiwan
| | - Mamatha M Pillai
- Tissue Engineering Laboratory, PSG Institute of Advanced Studies, Coimbatore, Tamil Nadu, India
| | - Rajendran Selvakumar
- Tissue Engineering Laboratory, PSG Institute of Advanced Studies, Coimbatore, Tamil Nadu, India
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- PhD Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Raju Eswaran
- Department of Zoology, The Madura College, Madurai, Tamil Nadu, India
| | - Jayaraman Angayarkanni
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
10
|
Shettar SS, Bagewadi ZK, Kolvekar HN, Yunus Khan T, Shamsudeen SM. Optimization of subtilisin production from Bacillus subtilis strain ZK3 and biological and molecular characterization of synthesized subtilisin capped nanoparticles. Saudi J Biol Sci 2023; 30:103807. [PMID: 37744003 PMCID: PMC10514557 DOI: 10.1016/j.sjbs.2023.103807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/22/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023] Open
Abstract
The increase and dissemination of multi-drug resistant bacteria have presented a major healthcare challenge, making bacterial infections a significant concern. The present research contributes towards the production of bioactive subtilisin from a marine soil isolate Bacillus subtilis strain ZK3. Custard apple seed powder (raw carbon) and mustard oil cake (raw nitrogen) sources showed a pronounced effect on subtilisin production. A 7.67-fold enhancement in the production was evidenced after optimization with central composite design-response surface methodology. Subtilisin capped silver (AgNP) and zinc oxide (ZnONP) nanoparticles were synthesized and characterized by UV-Visible spectroscopy. Subtilisin and its respective nanoparticles revealed significant biological properties such as, antibacterial activity against all tested pathogenic strains with potential against Escherichia coli and Pseudomonas aeruginosa. Prospective antioxidant behavior of subtilisin, AgNP and ZnONP was evidenced through radical scavenging assays with ABTS and DPPH. Subtilisin, AgNP and ZnONP revealed cytotoxic effect against cancerous breast cell lines MCF-7 with IC50of 83.48, 3.62 and 7.57 µg/mL respectively. Characterizations of nanoparticles were carried out by Fourier transform infrared spectroscopy, scanning electron microscopy with energy dispersive X-ray, X-ray diffraction, thermogravimetric analysis and atomic force microscopy analysis to elucidate the structure, surface and thermostability properties. The study proposes the potential therapeutic applications of subtilisin and its nanoparticles, a way forward for further exploration in the field of healthcare.
Collapse
Affiliation(s)
- Shreya S. Shettar
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Zabin K. Bagewadi
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Harsh N. Kolvekar
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - T.M. Yunus Khan
- Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Shaik Mohamed Shamsudeen
- Department of Diagnostic Dental Science and Oral Biology, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
11
|
Shettar SS, Bagewadi ZK, Yaraguppi DA, Das S, Mahanta N, Singh SP, Katti A, Saikia D. Gene expression and molecular characterization of recombinant subtilisin from Bacillus subtilis with antibacterial, antioxidant and anticancer properties. Int J Biol Macromol 2023; 249:125960. [PMID: 37517759 DOI: 10.1016/j.ijbiomac.2023.125960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 06/12/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
This study investigated the multifunctional attributes such as, antibacterial, antioxidant and anticancer potential of recombinant subtilisin. A codon-optimized subtilisin gene was synthesized from Bacillus subtilis and was successfully transformed into E. coli DH5α cells which was further induced for high level expression in E. coli BL21 (DE3). An affinity purified ~40 kDa recombinant subtilisin was obtained that revealed to be highly alkali-thermostable based on the thermodynamic parameters. The kinetic parameters were deduced that indicated higher affinity of N-Suc-F-A-A-F-pNA substrate towards subtilisin. Recombinant subtilisin demonstrated strong antibacterial activity against several pathogens and showed minimum inhibitory concentration of 0.06 μg/mL against B. licheniformis and also revealed high stability under the influence of several biochemical factors. It also displayed antioxidant potential in a dose dependent manner and exhibited cell cytotoxicity against A549 and MCF-7 cancerous cell lines with IC50 of 5 μM and 12 μM respectively. The identity of recombinant subtilisin was established by MALDI-TOF mass spectrum depicting desired mass peaks and N-terminal sequence as MRSK by MALDI-TOF-MS. The deduced N- terminal amino acid sequence by Edman degradation revealed high sequence similarity with subtilisins from Bacillus strains. The structural and functional analysis of recombinant antibacterial subtilisin was elucidated by Raman, circular dichroism and nuclear magnetic resonance spectroscopy and thermogravimetric analysis. The results contribute to the development of highly efficient subtilisin with enhanced catalytic properties making it a promising candidate for therapeutic applications in healthcare industries.
Collapse
Affiliation(s)
- Shreya S Shettar
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Zabin K Bagewadi
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India.
| | - Deepak A Yaraguppi
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Simita Das
- Department of Chemistry, Indian Institute of Technology, Dharwad, Karnataka 580011, India
| | - Nilkamal Mahanta
- Department of Chemistry, Indian Institute of Technology, Dharwad, Karnataka 580011, India
| | - Surya P Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Karnataka 580011, India
| | - Aditi Katti
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Dimple Saikia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Karnataka 580011, India
| |
Collapse
|
12
|
Gu Y, Wu L, Hameed Y, Nabi-Afjadi M. Overcoming the challenge: cell-penetrating peptides and membrane permeability. BIOMATERIALS AND BIOSENSORS 2023; 2. [DOI: 10.58567/bab02010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
<p>Cell-penetrating peptides (CPPs) have emerged as a promising strategy for enhancing the membrane permeability of bioactive molecules, particularly in the treatment of central nervous system diseases. CPPs possess the ability to deliver a diverse array of bioactive molecules into cells using either covalent or non-covalent approaches, with a preference for non-covalent methods to preserve the biological activity of the transported molecules. By effectively traversing various physiological barriers, CPPs have exhibited significant potential in preclinical and clinical drug development. The discovery of CPPs represents a valuable solution to the challenge of limited membrane permeability of bioactive molecules and will continue to exert a crucial influence on the field of biomedical science.</p>
Collapse
Affiliation(s)
- Yuan Gu
- The Statistics Department, The George Washington University, Washington, United States
| | - Long Wu
- Department of Surgery, University of Maryland, Baltimore, United States
| | - Yasir Hameed
- Department of Applied Biological Sciences, Tokyo University of Science, Tokyo, Japan
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
13
|
Mao C, Wang Y, Yang Y, Li L, Yuan K, Cao H, Qiu Z, Guo G, Wu J, Peng J. Cec4-Derived Peptide Inhibits Planktonic and Biofilm-Associated Methicillin Resistant Staphylococcus epidermidis. Microbiol Spectr 2022; 10:e0240922. [PMID: 36453944 PMCID: PMC9769716 DOI: 10.1128/spectrum.02409-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
Staphylococcus epidermidis is part of the normal microbiota that colonizes the skin and mucosal surfaces of human beings. Previous studies suggested that S. epidermidis possessed low virulence, but recent studies confirmed that it can acquire high virulence from Staphylococcus aureus and with the increasing detection of methicillin-resistant S. epidermidis. It has become a major pathogen of graft-associated and hospital-acquired infections. In previous studies, we modified the antimicrobial peptide Cec4 (41 amino acids) and obtained the derived peptide C9 (16 amino acids) showing better antimicrobial activity against S. epidermidis with an MIC value of 8 μg/mL. The peptide has rapid bactericidal activity without detectable high-level resistance, showing certain inhibition and eradication ability on S. epidermidis biofilms. The damage of cell membrane structures by C9 was observed by scanning emission microscopy (SEM) and transmission electron microscopy (TEM). In addition, C9 altered the S. epidermidis cell membrane permeability, depolarization levels, fluidity, and reactive oxygen species (ROS) accumulation and possessed the ability to bind genomic DNA. Analysis of the transcriptional profiles of C9-treated cells revealed changes in genes involved in cell wall and ribosome biosynthesis, membrane protein transport, oxidative stress, and DNA transcription regulation. At the same time, the median lethal dose of C9 in mice was more than 128 mg/kg, and the intraperitoneal administration of 64 mg/kg was less toxic to the liver and kidneys of mice. Furthermore, C9 also showed a certain therapeutic effect on the mouse bacteremia model. In conclusion, C9 may be a candidate drug against S. epidermidis, which has the potential to be further developed as an antibacterial therapeutic agent. IMPORTANCE S. epidermidis is one of the most important pathogens of graft-related infection and hospital-acquired infection. The growing problem of antibiotic resistance, as well as the emergence of bacterial pathogenicity, highlights the need for antimicrobials with new modes of action. Antimicrobial peptides have been extensively studied over the past 30 years as ideal alternatives to antibiotics, and we report here that the derived peptide C9 is characterized by rapid bactericidal and antibiofilm activity, avoiding the development of resistance by acting on multiple nonspecific targets of the cell membrane or cell components. In addition, it has therapeutic potential against S. epidermidis infection in vivo. This study provides a rationale for the further development and application of C9 as an effective candidate antibiotic.
Collapse
Affiliation(s)
- Chengju Mao
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- The Key and Characteristic Laboratory of Modern Pathogen Biology, Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Yue Wang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- The Key and Characteristic Laboratory of Modern Pathogen Biology, Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Yifan Yang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- The Key and Characteristic Laboratory of Modern Pathogen Biology, Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Lu Li
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kexin Yuan
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Huijun Cao
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhilang Qiu
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
- The Key and Characteristic Laboratory of Modern Pathogen Biology, Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Guo Guo
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
- The Key and Characteristic Laboratory of Modern Pathogen Biology, Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Jianwei Wu
- The Key and Characteristic Laboratory of Modern Pathogen Biology, Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Jian Peng
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
- The Key and Characteristic Laboratory of Modern Pathogen Biology, Basic Medical College, Guizhou Medical University, Guiyang, China
| |
Collapse
|
14
|
V. Sunil S, Santosh Kumar HS, N. Pramod S, T. Prabhakar B, B.N. Naika M, G. Thippeswamy T, Niranjana P. Characterization and biochemical activities of novel functional antimicrobial peptide (AMP) from Trichogramma chilonis. Biomedicine (Taipei) 2022. [DOI: 10.51248/.v42i5.1946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction and Aim: The antimicrobial peptides (AMPs) are generally found in invertebrates, mammals, birds, plants and insects. AMPs produced by insect parasitoids contribute to innate immunity to resist infection due to lack of adaptive immunity. T. chilonis is one of the most effective endoparasitoid wasps for controlling lepidopterous insects. Several attempts have been made to isolate, characterize and develop a commercially viable product of AMPs from various insect sources. The present study aimed to characterize AMP from T. chilonis for potential antimicrobial and anti-cancer properties.
Methods: AMP was identified through T. chilonis transcriptome sequence and designed in silico and synthesized. Its purity was quantified using RP-HPLC, and the mass identified by mass spectrophotometry. LC/MS-MS was employed to predict the sequence and the BLAST program used to compare the sequence. AMP was tested for haemolytic activity and antimicrobial activity. Two pathogenic bacteria and fungal strains were used and IC50 values and MIC values were predicted against microbial strains.
Results: Synthetic peptide was found to be 95% homogenous with molecular weight of 3.48 kD. The peptide was identified to be a novel antimicrobial peptide consisting of 33 amino acid residues, and has a low computed instability index of -0.1.55 with high hydrophobic ratio of 27.27%. The antimicrobial activity revealed that T. chilonis antimicrobial peptide (TC-AMP) strongly inhibits the growth of selected human bacterial and fungal pathogens. While the haemolytic assay showed that the peptide did not obliterate human RBC in vitro. TC-AMP also showed an efficient inhibition of angiogenesis by in vivo model as evident by inhibition of vascularization.
Conclusions: AMP derived from the parasitoid has a potent antibiotic and anti-angiogenesis property. The peptide can be used as a potential antimicrobial and anticancer drug in near future with more detailed studies on its targeted applications.
Collapse
|
15
|
In Silico Discovery of Anticancer Peptides from Sanghuang. Int J Mol Sci 2022; 23:ijms232213682. [PMID: 36430160 PMCID: PMC9693127 DOI: 10.3390/ijms232213682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
Anticancer peptide (ACP) is a short peptide with less than 50 amino acids that has been discovered in a variety of foods. It has been demonstrated that traditional Chinese medicine or food can help treat cancer in some cases, which suggests that ACP may be one of the therapeutic ingredients. Studies on the anti-cancer properties of Sanghuangporus sanghuang have concentrated on polysaccharides, flavonoids, triterpenoids, etc. The function of peptides has not received much attention. The purpose of this study is to use computer mining techniques to search for potential anticancer peptides from 62 proteins of Sanghuang. We used mACPpred to perform sequence scans after theoretical trypsin hydrolysis and discovered nine fragments with an anticancer probability of over 0.60. The study used AlphaFold 2 to perform structural modeling of the first three ACPs discovered, which had blast results from the Cancer PPD database. Using reverse docking technology, we found the target proteins and interacting residues of two ACPs with an unknown mechanism. Reverse docking results predicted the binding modes of the ACPs and their target protein. In addition, we determined the active part of ACPs by quantum chemical calculation. Our study provides a framework for the future discovery of functional peptides from foods. The ACPs discovered have the potential to be used as drugs in oncology clinical treatment after further research.
Collapse
|
16
|
Pindjakova D, Pilarova E, Pauk K, Michnova H, Hosek J, Magar P, Cizek A, Imramovsky A, Jampilek J. Study of Biological Activities and ADMET-Related Properties of Salicylanilide-Based Peptidomimetics. Int J Mol Sci 2022; 23:ijms231911648. [PMID: 36232947 PMCID: PMC9569995 DOI: 10.3390/ijms231911648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
A series of eleven benzylated intermediates and eleven target compounds derived from salicylanilide were tested against Staphylococcus aureus ATCC 29213 and Enterococcus faecalis ATCC 29212 as reference strains and against three clinical isolates of methicillin-resistant S. aureus (MRSA) and three isolates of vancomycin-resistant E. faecalis. In addition, the compounds were evaluated against Mycobacterium tuberculosis H37Ra and M. smegmatis ATCC 700084. The in vitro cytotoxicity of the compounds was assessed using the human monocytic leukemia cell line THP-1. The lipophilicity of the prepared compounds was experimentally determined and correlated with biological activity. The benzylated intermediates were found to be completely biologically inactive. Of the final eleven compounds, according to the number of amide groups in the molecule, eight are diamides, and three are triamides that were inactive. 5-Chloro-2-hydroxy-N-[(2S)- 4-(methylsulfanyl)-1-oxo-1-{[4-(trifluoromethyl)phenyl]amino}butan-2-yl]benzamide (3e) and 5-chloro-2-hydroxy-N-[(2S)-(4-methyl-1-oxo-1-{[4-(trifluoromethyl)phenyl]amino)pentan-2-yl)benzamide (3f) showed the broadest spectrum of activity against all tested species/isolates comparable to the used standards (ampicillin and isoniazid). Six diamides showed high antistaphylococcal activity with MICs ranging from 0.070 to 8.95 μM. Three diamides showed anti-enterococcal activity with MICs ranging from 4.66 to 35.8 μM, and the activities of 3f and 3e against M. tuberculosis and M. smegmatis were MICs of 18.7 and 35.8 μM, respectively. All the active compounds were microbicidal. It was observed that the connecting linker between the chlorsalicylic and 4-CF3-anilide cores must be substituted with a bulky and/or lipophilic chain such as isopropyl, isobutyl, or thiabutyl chain. Anticancer activity on THP-1 cells IC50 ranged from 1.4 to >10 µM and increased with increasing lipophilicity.
Collapse
Affiliation(s)
- Dominika Pindjakova
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Eliska Pilarova
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentska 95, 530 09 Pardubice, Czech Republic
| | - Karel Pauk
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentska 95, 530 09 Pardubice, Czech Republic
| | - Hana Michnova
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic
| | - Jan Hosek
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Pratibha Magar
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentska 95, 530 09 Pardubice, Czech Republic
| | - Alois Cizek
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic
| | - Ales Imramovsky
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentska 95, 530 09 Pardubice, Czech Republic
- Correspondence:
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
17
|
Lima LS, Ramalho SR, Sandim GC, Parisotto EB, Orlandi Sardi JDC, Rodrigues Macedo ML. Prevention of hospital pathogen biofilm formation by antimicrobial peptide KWI18. Microb Pathog 2022; 172:105791. [PMID: 36150557 DOI: 10.1016/j.micpath.2022.105791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 10/31/2022]
Abstract
This study investigated the antimicrobial and antibiofilm activity of KWI18, a new synthetic peptide. KWI18 was tested against planktonic cells and Pseudomonas aeruginosa and Candida parapsilosis biofilms. Time-kill and synergism assays were performed. Sorbitol, ergosterol, lipid peroxidation, and protein oxidation assays were used to gain insight into the mechanism of action of the peptide. Toxicity was evaluated against erythrocytes and Galleria mellonella. KWI18 showed antimicrobial activity, with minimum inhibitory concentration (MIC) values ranging from 0.5 to 10 μM. KWI18 at 10 × MIC reduced P. aeruginosa and C. parapsilosis biofilm formation and cell viability. Time-kill assays revealed that KWI18 inhibited the growth of P. aeruginosa in 4 h and that of C. parapsilosis in 6 h. The mechanism of action was related to ergosterol as well as induction of oxidative damage in cells and biofilms. Furthermore, KWI18 demonstrated low toxicity to erythrocytes and G. mellonella. KWI18 proved to be an effective antibiofilm agent, opening opportunities for the development of new antimicrobials.
Collapse
Affiliation(s)
- Letícia Souza Lima
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil
| | - Suellen Rodrigues Ramalho
- Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Faculdade de Medicina (FAMED), Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Graziele Custódia Sandim
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil
| | - Eduardo Benedetti Parisotto
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil
| | - Janaina de Cássia Orlandi Sardi
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil; Programa de Pós-Graduação em Ciências Odontológicas Integradas, Universidade de Cuiabá, Cuiabá, Mato Grosso, Brazil
| | - Maria Lígia Rodrigues Macedo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil.
| |
Collapse
|
18
|
Khoshnood S, Fathizadeh H, Neamati F, Negahdari B, Baindara P, Abdullah MA, Haddadi MH. Bacteria-derived chimeric toxins as potential anticancer agents. Front Oncol 2022; 12:953678. [PMID: 36158673 PMCID: PMC9491211 DOI: 10.3389/fonc.2022.953678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022] Open
Abstract
Cancer is one of the major causes of death globally, requiring everlasting efforts to develop novel, specific, effective, and safe treatment strategies. Despite advances in recent years, chemotherapy, as the primary treatment for cancer, still faces limitations such as the lack of specificity, drug resistance, and treatment failure. Bacterial toxins have great potential to be used as anticancer agents and can boost the effectiveness of cancer chemotherapeutics. Bacterial toxins exert anticancer effects by affecting the cell cycle and apoptotic pathways and regulating tumorigenesis. Chimeric toxins, which are recombinant derivatives of bacterial toxins, have been developed to address the low specificity of their conventional peers. Through their targeting moieties, chimeric toxins can specifically and effectively detect and kill cancer cells. This review takes a comprehensive look at the anticancer properties of bacteria-derived toxins and discusses their potential applications as therapeutic options for integrative cancer treatment.
Collapse
Affiliation(s)
- Saeed Khoshnood
- Clinical Microbiology Research Centre, Ilam University of Medical Sciences, Ilam, Iran
| | - Hadis Fathizadeh
- Student Research Committee, Sirjan School of Medical Sciences, Sirjan, Iran
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Foroogh Neamati
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Piyush Baindara
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Mohd Azmuddin Abdullah
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam Campus, Kepala Batas, Pulau Pinang, Malaysia
| | - Mohammad Hossein Haddadi
- Clinical Microbiology Research Centre, Ilam University of Medical Sciences, Ilam, Iran
- *Correspondence: Mohammad Hossein Haddadi,
| |
Collapse
|
19
|
Li X, Zuo S, Wang B, Zhang K, Wang Y. Antimicrobial Mechanisms and Clinical Application Prospects of Antimicrobial Peptides. Molecules 2022; 27:2675. [PMID: 35566025 PMCID: PMC9104849 DOI: 10.3390/molecules27092675] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Abstract
Antimicrobial peptides are a type of small-molecule peptide that widely exist in nature and are components of the innate immunity of almost all living things. They play an important role in resisting foreign invading microorganisms. Antimicrobial peptides have a wide range of antibacterial activities against bacteria, fungi, viruses and other microorganisms. They are active against traditional antibiotic-resistant strains and do not easily induce the development of drug resistance. Therefore, they have become a hot spot of medical research and are expected to become a new substitute for fighting microbial infection and represent a new method for treating drug-resistant bacteria. This review briefly introduces the source and structural characteristics of antimicrobial peptides and describes those that have been used against common clinical microorganisms (bacteria, fungi, viruses, and especially coronaviruses), focusing on their antimicrobial mechanism of action and clinical application prospects.
Collapse
Affiliation(s)
- Xin Li
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun 130021, China; (X.L.); (B.W.)
| | - Siyao Zuo
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun 130021, China;
| | - Bin Wang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun 130021, China; (X.L.); (B.W.)
| | - Kaiyu Zhang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun 130021, China; (X.L.); (B.W.)
| | - Yang Wang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun 130021, China; (X.L.); (B.W.)
| |
Collapse
|
20
|
Structural and functional studies of LaIT2, an antimicrobial and insecticidal peptide from Liocheles australasiae. Toxicon 2022; 214:8-17. [DOI: 10.1016/j.toxicon.2022.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022]
|
21
|
Wang T, Tian L, Cheng Q, Feng S, Zhang H, Zheng Z, Liu Y, Cheng M, Meng Z, Meng Q. Pep5-based antitumor peptides containing multifunctional fragments with enhanced activity and synergistic effect. Eur J Med Chem 2022; 237:114320. [DOI: 10.1016/j.ejmech.2022.114320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 12/27/2022]
|