1
|
Salamah M, Sipos B, Schelz Z, Zupkó I, Kiricsi Á, Szalenkó-Tőkés Á, Rovó L, Katona G, Balogh GT, Csóka I. Development, in vitro and ex vivo characterization of lamotrigine-loaded bovine serum albumin nanoparticles using QbD approach. Drug Deliv 2025; 32:2460693. [PMID: 39901331 PMCID: PMC11795762 DOI: 10.1080/10717544.2025.2460693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/26/2024] [Accepted: 01/24/2025] [Indexed: 02/05/2025] Open
Abstract
The present study aimed to prepare and optimize lamotrigine-loaded bovine serum albumin nanoparticles (LAM-NP) using the Quality by Design (QbD) approach and to investigate both the in vitro and ex vivo effects of different cross-linking agents glutaraldehyde (GLUT), glucose (GLUC) and 1-(3-dimethylaminutesopropyl)-3-ethylcarbodiimide hydrochloride (EDC) on intranasal applicability. Cross-linked LAM-NP from EDC (NP-EDC-1) showed the lowest Z-average value (163.7 ± 1.9 nm) and drug encapsulation efficacy (EE%) of 97.31 ± 0.17%. The drug release of GLUC cross-linked LAM-NP (NP-GLUC-9), glutaraldehyde cross-linked LAM-NP (NP-GLUT-2), and NP-EDC-1 at blood circulation conditions was higher than the initial LAM. The results of the blood-brain barrier parallel artificial membrane permeability assay (BBB-PAMPA) showed an increase in the permeability of LAM through the BBB with NP-GLUC-9 and an increase in flux with all selected formulations. The ex vivo study showed that LAM diffusion from the selected formulations through the human nasal mucosa was higher than in case of initial LAM. The cytotoxicity study indicated that BSA-NP reduced LAM toxicity, and GLUC 9 mM and EDC 1 mg could be alternative cross-linking agents to avoid GLUT 2% v/v toxicity. Furthermore, permeability through Caco-2 cells showed that nasal epithelial transport/absorption of LAM was improved by using BSA-NPs. The use of BSA-NP may be a promising approach to enhance the solubility, permeability through BBB and decrease the frequency of dosing and adverse effects of LAM.
Collapse
Affiliation(s)
- Maryana Salamah
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Bence Sipos
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Zsuzsanna Schelz
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - István Zupkó
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Ágnes Kiricsi
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, University of Szeged, Szeged, Hungary
| | - Ágnes Szalenkó-Tőkés
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, University of Szeged, Szeged, Hungary
| | - László Rovó
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, University of Szeged, Szeged, Hungary
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - György Tibor Balogh
- Department of Pharmaceutical Chemistry, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| |
Collapse
|
2
|
Adwan S, Obeidi T, Al-Akayleh F. Chitosan Nanoparticles Embedded in In Situ Gel for Nasal Delivery of Imipramine Hydrochloride: Short-Term Stage Development and Controlled Release Evaluation. Polymers (Basel) 2024; 16:3062. [PMID: 39518270 PMCID: PMC11548429 DOI: 10.3390/polym16213062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Imipramine hydrochloride (IMP), a tricyclic antidepressant used for major depression, enuresis, and neuropathic pain, is limited by gastrointestinal complications, low oral bioavailability (44%), and complex dosing requirements. This study aimed to explore a novel non-invasive nasal delivery system using chitosan nanoparticles (Cs NPs) embedded in an in situ gel to address the limitations of oral IMP administration. Cs NPs loaded with IMP were synthesized via ionic gelation and assessed for precision in drug concentration using a validated HPLC method. The particles were integrated into a thermoresponsive polymer, Pluronic F127, to form an in situ gel suitable for nasal administration. The formulation was characterized for gelation temperature, duration, viscosity, mucoadhesive strength, and overall gel robustness. Drug release kinetics and the controlled release mechanism were studied using ex vivo permeation tests with Franz diffusion cells and nasal sheep mucosa. The optimized nanoparticle formulation (F4-50) exhibited a consistent PS of 141.7 ± 2.2 nm, a zeta potential (ZP) of 16.79 ± 2.1 mV, and a high encapsulation efficiency of 67.71 ± 1.9%. The selected in situ gel formulation, F4-50-P1, demonstrated a gelation temperature of 33.6 ± 0.94 °C and a rapid gelation time of 48.1 ± 0.7 s. Transform-attenuated total reflectance infrared spectroscopy (ATR-IR) confirmed the compatibility and effective encapsulation of IMP within the formulation. The release profile of F4-50 included an initial burst release followed by a sustained release phase, with F4-50-P1 showing improved control over the burst release. The flux rates were 0.50 ± 0.01 mg/cm2/h for F4-50 and 0.33 ± 0.06 mg/cm2/h for F4-50-P1, indicating effective permeation. The developed chitosan nanoparticle-based in situ gel formulation provides a promising approach for the controlled release of IMP, enhancing therapeutic efficacy and patient compliance while mitigating the disadvantages associated with oral delivery.
Collapse
Affiliation(s)
- Samer Adwan
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan;
| | - Teiba Obeidi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan;
| | - Faisal Al-Akayleh
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutics and Medical Sciences, Petra University, Amman 11196, Jordan;
| |
Collapse
|
3
|
Ozceylan O, Sezgin-Bayindir Z. Current Overview on the Use of Nanosized Drug Delivery Systems in the Treatment of Neurodegenerative Diseases. ACS OMEGA 2024; 9:35223-35242. [PMID: 39184484 PMCID: PMC11340000 DOI: 10.1021/acsomega.4c01774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/02/2024] [Accepted: 07/16/2024] [Indexed: 08/27/2024]
Abstract
Neurodegenerative diseases, encompassing conditions such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, prion disease, and Huntington's disease, present a growing health concern as human life expectancy increases. Despite this, effective treatments to halt disease progression remain elusive due to various factors, including challenges in drug delivery across physiological barriers like the blood-brain barrier and patient compliance issues leading to treatment discontinuation. In response, innovative treatment approaches leveraging noninvasive techniques with higher patient compliance are emerging as promising alternatives. This Review aims to synthesize current treatment options and the challenges encountered in managing neurodegenerative diseases, while also exploring innovative treatment modalities. Specifically, noninvasive strategies such as intranasal administration and nanosized drug delivery systems are gaining prominence for their potential to enhance treatment efficacy and patient adherence. Nanosized drug delivery systems, including liposomes, polymeric micelles, and nanoparticles, are evaluated within the context of outstanding studies. The advantages and disadvantages of these approaches are discussed, providing insights into their therapeutic potential and limitations. Through this comprehensive examination, this Review contributes to the ongoing discourse surrounding the development of effective treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ozlem Ozceylan
- Graduate
School of Health Sciences, Ankara University, 06110 Ankara, Turkey
- Turkish
Medicines and Medical Devices Agency (TMMDA), 06520 Ankara, Turkey
| | - Zerrin Sezgin-Bayindir
- Department
of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey
| |
Collapse
|
4
|
Sipos B, Földes F, Budai-Szűcs M, Katona G, Csóka I. Comparative Study of TPGS and Soluplus Polymeric Micelles Embedded in Poloxamer 407 In Situ Gels for Intranasal Administration. Gels 2024; 10:521. [PMID: 39195050 DOI: 10.3390/gels10080521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
This study aims to highlight the importance of choosing the appropriate co-polymer or co-polymer mixed combinations in order to design value-added nasal dosage forms. Local therapy of upper respiratory tract-related infections, such as nasal rhinosinusitis is of paramount importance, thus advanced local therapeutic options are required. Dexamethasone was encapsulated into three different polymeric micelle formulations: Soluplus or TPGS-only and their mixed combinations. Dynamic light scattering measurements proved that the particles have a micelle size less than 100 nm in monodisperse distribution, with high encapsulation efficiency above 80% and an at least 7-fold water solubility increase. Tobramycin, as an antimicrobial agent, was co-formulated into the in situ gelling systems which were optimized based on gelation time and gelation temperature. The sol-gel transition takes place between 32-35 °C, which is optimally below the temperature of the nasal cavity in a quick manner below 5 min, a suitable strategic criterion against the mucociliary clearance. In vitro drug release and permeability studies confirmed a rapid kinetics in the case of the encapsulated dexamethasone accompanied with a sustained release of tobramycin, as the hydrophilic drug.
Collapse
Affiliation(s)
- Bence Sipos
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Street 6, H-6720 Szeged, Hungary
| | - Frézia Földes
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Street 6, H-6720 Szeged, Hungary
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Street 6, H-6720 Szeged, Hungary
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Street 6, H-6720 Szeged, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Street 6, H-6720 Szeged, Hungary
| |
Collapse
|
5
|
Huang Q, Chen Y, Zhang W, Xia X, Li H, Qin M, Gao H. Nanotechnology for enhanced nose-to-brain drug delivery in treating neurological diseases. J Control Release 2024; 366:519-534. [PMID: 38182059 DOI: 10.1016/j.jconrel.2023.12.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/07/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024]
Abstract
Despite the increasing global incidence of brain disorders, achieving sufficient delivery towards the central nervous system (CNS) remains a formidable challenge in terms of translating into improved clinical outcomes. The brain is highly safeguarded by physiological barriers, primarily the blood-brain barrier (BBB), which routinely excludes most therapeutics from entering the brain following systemic administration. Among various strategies investigated to circumvent this challenge, intranasal administration, a noninvasive method that bypasses the BBB to allow direct access of drugs to the CNS, has been showing promising results. Nanotechnology-based drug delivery systems, in particular, have demonstrated remarkable capacities in overcoming the challenges posed by nose-to-brain drug delivery and facilitating targeted drug accumulation within the brain while minimizing side effects of systemic distribution. This review comprehensively summarizes the barriers of nose-to-brain drug delivery, aiming to enhance our understanding of potential physiological obstacles and improve the efficacy of nasal delivery in future trials. We then highlight cutting-edge nanotechnology-based studies that enhance nose-to-brain drug delivery in three key aspects, demonstrating substantial potential for improved treatment of brain diseases. Furthermore, the attention towards clinical studies will ease the regulatory approval process for nasal administration of nanomedicines targeting brain disease.
Collapse
Affiliation(s)
- Qianqian Huang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yongke Chen
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Weiwei Zhang
- Department of Public Health, Chengdu Medical College, 783 Xindu Avenue, Xindu, Chengdu, Sichuan 610500, China
| | - Xue Xia
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Meng Qin
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610064, China.
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
6
|
Mardikasari SA, Katona G, Budai-Szűcs M, Sipos B, Orosz L, Burián K, Rovó L, Csóka I. Quality by design-based optimization of in situ ionic-sensitive gels of amoxicillin-loaded bovine serum albumin nanoparticles for enhanced local nasal delivery. Int J Pharm 2023; 645:123435. [PMID: 37741560 DOI: 10.1016/j.ijpharm.2023.123435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
A recommended first-line acute bacterial rhinosinusitis (ABR) treatment regimen includes a high dose of orally administered amoxicillin, despite its frequent systemic adverse reactions coupled with poor oral bioavailability. Therefore, to overcome these issues, nasal administration of amoxicillin might become a potential approach for treating ABR locally. The present study aimed to develop a suitable carrier system for improved local nasal delivery of amoxicillin employing the combination of albumin nanoparticles and gellan gum, an ionic-sensitive polymer, under the Quality by Design methodology framework. The application of albumin nanocarrier for local nasal antibiotic therapy means a novel approach by hindering the nasal absorption of the drug through embedding into an in situ gelling matrix, further prolonging the drug release in the nasal cavity. The developed formulations were characterized, including mucoadhesive properties, in vitro drug release and antibacterial activities. Based on the results, 0.3 % w/v gellan gum concentration was selected as the optimal in situ gelling matrix. Essentially, each formulation adequately inhibited the growth of five common nasal pathogens in ABR. In conclusion, the preparation of albumin-based nanoparticles integrated with in situ ionic-sensitive polymer provides promising ability as nanocarrier systems for delivering amoxicillin intranasally for local antibiotic therapy.
Collapse
Affiliation(s)
- Sandra Aulia Mardikasari
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, H-6720 Szeged, Hungary; Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, H-6720 Szeged, Hungary.
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, H-6720 Szeged, Hungary
| | - Bence Sipos
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, H-6720 Szeged, Hungary
| | - László Orosz
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis str. 6, H-6725 Szeged, Hungary
| | - Katalin Burián
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis str. 6, H-6725 Szeged, Hungary
| | - László Rovó
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, University of Szeged, Tisza Lajos krt. 111, H-6725 Szeged, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, H-6720 Szeged, Hungary
| |
Collapse
|
7
|
Sipos B, Katona G, Szarvas FM, Budai-Szűcs M, Ambrus R, Csóka I. Development of Vinpocetine-Loaded Nasal Polymeric Micelles via Nano-Spray-Drying. Pharmaceuticals (Basel) 2023; 16:1447. [PMID: 37895918 PMCID: PMC10610209 DOI: 10.3390/ph16101447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/23/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
In this present formulation study, vinpocetine-loaded nano-spray-dried polymeric micelles were developed via nano-spray-drying. Three different mucoadhesive excipients were applied in the studies, namely chitosan, hyaluronic acid and hydroxypropyl methylcellulose. In all cases, the formulations had a proper particle size and drug content after drying with spherical morphology and amorphous structure. After rapid dissolution in water, the polymeric micelles had a particle size around 100-130 nm, in monodisperse size distribution. The high encapsulation efficiency (>80%) and high solubilization (approx. 300-fold increase in thermodynamic solubility) contributed to rapid drug release (>80% in the first 15 min) and fast passive diffusion at simulated nasal conditions. The formulated prototype preparations fulfilled the demands of a low-viscosity, moderately mucoadhesive nasal drug delivery system, which may be capable of increasing the overall bioavailability of drugs administered via the auspicious nasal drug delivery route.
Collapse
|
8
|
Sipos B, Benei M, Katona G, Csóka I. Optimization and Characterization of Sodium Alginate Beads Providing Extended Release for Antidiabetic Drugs. Molecules 2023; 28:6980. [PMID: 37836823 PMCID: PMC10574423 DOI: 10.3390/molecules28196980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
The current research is aimed at investigating the relationship between the formulation components and conditions in the case of a binary drug delivery system, where antidiabetic drugs are co-formulated into polymeric micelles embedded in sodium alginate. Compared to chemical modifications of polymers with alginate, our development provides a simpler and scalable formulation process. Our results prove that a multi-level factorial design-based approach can ensure the development of a value-added polymeric micelle formulation with an average micelle size of 123.6 ± 3.1 nm and a monodisperse size distribution, showing a polydispersity index value of 0.215 ± 0.021. The proper nanoparticles were co-formulated with sodium alginate as a biologically decomposing and safe-to-administer biopolymer. The Box-Behnken factorial design ensured proper design space development, where the optimal sodium alginate bead formulation had a uniform, extended-release drug release mechanism similar to commercially available tablet preparations. The main conclusion is that the rapid-burst-like drug release can be hindered via the embedment of nanocarriers into biopolymeric matrices. The thermally stable formulation also holds the benefit of uniform active substance distribution after freeze-drying.
Collapse
Affiliation(s)
- Bence Sipos
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Street 6, H-6720 Szeged, Hungary; (M.B.); (G.K.); (I.C.)
| | | | | | | |
Collapse
|
9
|
Chapa-Villarreal FA, Miller M, Rodriguez-Cruz JJ, Pérez-Carlos D, Peppas NA. Self-assembled block copolymer biomaterials for oral delivery of protein therapeutics. Biomaterials 2023; 300:122191. [PMID: 37295223 DOI: 10.1016/j.biomaterials.2023.122191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/17/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Protein therapeutics have guided a transformation in disease treatment for various clinical conditions. They have been successful in numerous applications, but administration of protein therapeutics has been limited to parenteral routes which can decrease patient compliance as they are invasive and painful. In recent years, the synergistic relationship of novel biomaterials with modern protein therapeutics has been crucial in the treatment of diseases that were once thought of as incurable. This has guided the development of a variety of alternative administration routes, but the oral delivery of therapeutics remains one of the most desirable due to its ease of administration. This review addresses important aspects of micellar structures prepared by self-assembled processes with applications for oral delivery. These two characteristics have not been placed together in previous literature within the field. Therefore, we describe the barriers for delivery of protein therapeutics, and we concentrate in the oral/transmucosal pathway where drug carriers must overcome several chemical, physical, and biological barriers to achieve a successful therapeutic effect. We critically discuss recent research on biomaterials systems for delivering such therapeutics with an emphasis on self-assembled synthetic block copolymers. Polymerization methods and nanoparticle preparation techniques are similarly analyzed as well as relevant work in this area. Based on our own and others' research, we analyze the use of block copolymers as therapeutic carriers and their promise in treating a variety of diseases, with emphasis on self-assembled micelles for the next generation of oral protein therapeutic systems.
Collapse
Affiliation(s)
- Fabiola A Chapa-Villarreal
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin TX, USA
| | - Matthew Miller
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin TX, USA
| | - J Jesus Rodriguez-Cruz
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin TX, USA; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Diego Pérez-Carlos
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin TX, USA
| | - Nicholas A Peppas
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin TX, USA; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA; Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin TX, USA; Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, USA; Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
10
|
Kaushal N, Kumar M, Tiwari A, Tiwari V, Sharma K, Sharma A, Marisetti AL, Gupta MM, Kazmi I, Alzarea SI, Almalki WH, Gupta G. Polymeric micelles loaded in situ gel with prednisolone acetate for ocular inflammation: development and evaluation. Nanomedicine (Lond) 2023; 18:1383-1398. [PMID: 37702303 DOI: 10.2217/nnm-2023-0123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Aim: Our study developed a prednisolone acetate polymeric micelles (PM) system for ocular inflammation related to allergic uveitis. Methods: For PM development, a thin-film hydration procedure was used. Irritation, in vitro, ex vivo transcorneal permeation, micelle size, entrapment efficiency and histology within the eye were all calculated for PM. Results: The optimized in situ gel (A4) showed superior ex vivo transcorneal permeation with zero-order kinetics. Conclusion: The developed formulation could be a promising candidate for treating anterior uveitis via topical application to the anterior segment of the eye.
Collapse
Affiliation(s)
- Nikita Kaushal
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana
| | - Manish Kumar
- School of Pharmaceutical Sciences, CT University, Ludhiana, Punjab, 142024, India
| | - Abhishek Tiwari
- Department of Pharmacy, Pharmacy Academy, IFTM University, Lodhipur-Rajpur, Moradabad, 244102, India
| | - Varsha Tiwari
- Department of Pharmacy, Pharmacy Academy, IFTM University, Lodhipur-Rajpur, Moradabad, 244102, India
| | - Kamini Sharma
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana
| | - Ajay Sharma
- Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University, PushpVihar-3, New Delhi, 110017, India
| | - Arya Lakshmi Marisetti
- Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University, PushpVihar-3, New Delhi, 110017, India
| | - Madan Mohan Gupta
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad & Tobago
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72388, Al-Jouf, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Gaurav Gupta
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
- Center for Global Health research (CGHR), Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai 602105, India
| |
Collapse
|
11
|
Rao MR, Deshpande S, Deshpande P. Dapsone-Loaded Mixed Micellar Gel for Treatment OF Acne Vulgaris. AAPS PharmSciTech 2023; 24:109. [PMID: 37100968 DOI: 10.1208/s12249-023-02564-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
Mixed polymeric micelles are potential nanocarriers for topical drug delivery. Dapsone (DAP) is an antibacterial used as anti-acne agent, but challenged by low water solubility and poor skin permeability. In the present study, DAP-loaded mixed micellar gel was developed comprising Pluronics F-68 and F-127. Micelles were prepared by solvent evaporation method and particle size, ex vivo permeation, drug loading, and entrapment efficiency were determined. Central Composite Design was used to optimize formulation. Independent variables were concentration of Pluronics at three levels while micelle size and drug loading capacities were dependent variables. Droplet size ranged from 400 to 500 nm. Transmission electron microscopy revealed spherical morphology of micelles. Optimized micelles were incorporated into gel base using HPMC K100M, Sodium CMC, and Carbopol 980 as gelling agents. Gels were evaluated for pH, drug content, spreadability, rheology, syneresis, ex vivo permeation, and subacute dermal toxicity. Compared with solubility of free DAP (0.24+0.056 µg/ml), solubility in mixed micelles was 18.42±3.4 µg/ml in water at room temperature. Order of spreadability of gels was Na CMC < HPMC < Carbopol 980. Carbopol gels displayed thixotropy with index of 3.17. Syneresis for all gels from day 0 to day 30 was found to be in range of 4.2 to 15.6% w/w. Subacute dermal toxicity studies showed no signs of erythema and edema on rat skin until 21 days. These results suggest that mixed micelles can significantly increase solubility and permeability and sustain release of DAP and are suitable carriers for topical DAP delivery in anti-acne therapies.
Collapse
Affiliation(s)
- Monica Rp Rao
- Department of Pharmaceutics, AISSMS College of Pharmacy, Kennedy Road, Near R.T.O., Maharashtra, 411001, Pune, India.
| | - Sushant Deshpande
- Department of Pharmaceutical Quality Assurance, AISSMS College of Pharmacy, Kennedy Road, Near R.T.O., Pune, 411001, India
| | - Padmanabh Deshpande
- Department of Pharmaceutical Quality Assurance, AISSMS College of Pharmacy, Kennedy Road, Near R.T.O., Pune, 411001, India
| |
Collapse
|
12
|
Sipos B, Bella Z, Gróf I, Veszelka S, Deli MA, Szűcs KF, Sztojkov-Ivanov A, Ducza E, Gáspár R, Kecskeméti G, Janáky T, Volk B, Budai-Szűcs M, Ambrus R, Szabó-Révész P, Csóka I, Katona G. Soluplus® promotes efficient transport of meloxicam to the central nervous system via nasal administration. Int J Pharm 2023; 632:122594. [PMID: 36626972 DOI: 10.1016/j.ijpharm.2023.122594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/15/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
In our present series of experiments, we investigated the nasal applicability of the previously developed Soluplus® - meloxicam polymeric micelle formulation. Utilizing the nasal drug investigations, moderately high mucoadhesion was experienced in nasal conditions which alongside the appropriate physicochemical properties in liquid state, contributed to rapid drug absorption through human RPMI 2650 cell line. Ex vivo studies also confirmed that higher nasal mucosal permeation could be expected with the polymeric micelle nanoformulation compared to a regular MEL suspension. Also, the nanoformulation met the requirements to provide rapid drug permeation in less 1 h of our measurement. The non-toxic, non-cell barrier damaging formulation also proved to provide a successful passive transport across excides human nasal mucosa. Based on our in vivo investigations, it can be concluded that the polymeric micelle formulation provides higher meloxicam transport to the central nervous system followed by a slow and long-lasting elimination process compared to prior results where physical particle size reduction methods were applied. With these results, a promising solution and nanocarrier is proposed for the successful transport of non-steroidal anti-inflammatory drugs with acidic character to the brain.
Collapse
Affiliation(s)
- Bence Sipos
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary
| | - Zsolt Bella
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, University of Szeged, Tisza Lajos Blvd. 111, H-6725 Szeged, Hungary
| | - Ilona Gróf
- Institute of Biophysics, Biological Research Centre, Szeged, Temesvári Blvd. 62, H-6726 Szeged, Hungary
| | - Szilvia Veszelka
- Institute of Biophysics, Biological Research Centre, Szeged, Temesvári Blvd. 62, H-6726 Szeged, Hungary
| | - Mária A Deli
- Institute of Biophysics, Biological Research Centre, Szeged, Temesvári Blvd. 62, H-6726 Szeged, Hungary
| | - Kálmán F Szűcs
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, Faculty of Medicine, University of Szeged, Hungary
| | - Anita Sztojkov-Ivanov
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary
| | - Eszter Ducza
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary
| | - Róbert Gáspár
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, Faculty of Medicine, University of Szeged, Hungary
| | - Gábor Kecskeméti
- Department of Medical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm square 8, H-6720 Szeged, Hungary
| | - Tamás Janáky
- Department of Medical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm square 8, H-6720 Szeged, Hungary
| | - Balázs Volk
- Directorate of Drug Substance Development, Egis Pharmaceuticals Plc., Keresztúri Str. 30 - 38, H-1106 Budapest, Hungary
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary
| | - Piroska Szabó-Révész
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary.
| |
Collapse
|
13
|
Mardikasari SA, Sipos B, Csóka I, Katona G. Nasal route for antibiotics delivery: Advances, challenges and future opportunities applying the quality by design concepts. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
14
|
Chavda VP, Jogi G, Shah N, Athalye MN, Bamaniya N, K Vora L, Cláudia Paiva-Santos A. Advanced particulate carrier-mediated technologies for nasal drug delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
15
|
Awad R, Avital A, Sosnik A. Polymeric nanocarriers for nose-to-brain drug delivery in neurodegenerative diseases and neurodevelopmental disorders. Acta Pharm Sin B 2022; 13:1866-1886. [DOI: 10.1016/j.apsb.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/01/2022] Open
|
16
|
Sipos B, Csóka I, Szivacski N, Budai-Szűcs M, Schelcz Z, Zupkó I, Szabó-Révész P, Volk B, Katona G. Mucoadhesive meloxicam-loaded nanoemulsions: Development, characterization and nasal applicability studies. Eur J Pharm Sci 2022; 175:106229. [PMID: 35662634 DOI: 10.1016/j.ejps.2022.106229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/10/2022] [Accepted: 05/31/2022] [Indexed: 11/03/2022]
Abstract
Intranasally administered non-steroidal anti-inflammatory drugs (NSAIDs) offer an innovative opportunity in the field of pain management. Combination of the nasal physiological advantages such as the rich vascularization and large absorption area along with novel nanomedical formulations can fulfill all the necessary criteria of an advanced drug delivery system. Nanoemulsions represent a versatile formulation approach suitable for nasal drug delivery by increasing the absorption and the bioavailability of many drugs for systemic and nose-to-brain delivery due to their stability, small droplet size and optimal solubilization properties. In this study we aimed to develop meloxicam (MX)-loaded mucoadhesive nanoemulsions and to investigate the nasal applicability of the optimized formulations. Our results indicated the optimized nanoemulsion formulation (MX-NE3) had a droplet size of 158.5 nm in monodisperse droplet size distribution (polydispersity index of 0.211). The surface charge was -11.2 mV, which helped with the colloidal stability upon dilution at simulated nasal conditions and storage. The high encapsulation efficiency (79.2%) mediated a 15-fold drug release and a 3-fold permeability increase at nasal conditions compared to the initial MX. Proper wetting properties associated with high mucoadhesion prosper the increased residence time on the surface of the nasal mucosa. No cytotoxic effect of the formulations was observed on NIH/3T3 mouse embryonic fibroblast cell lines, which supports the safe nasal applicability.
Collapse
Affiliation(s)
- Bence Sipos
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös Str. 6, Szeged H-6720, Hungary
| | - Ildikó Csóka
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös Str. 6, Szeged H-6720, Hungary
| | - Nimród Szivacski
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös Str. 6, Szeged H-6720, Hungary
| | - Mária Budai-Szűcs
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös Str. 6, Szeged H-6720, Hungary
| | - Zsuzsanna Schelcz
- Faculty of Pharmacy, Institute of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös Str. 6, Szeged H-6720, Hungary
| | - István Zupkó
- Faculty of Pharmacy, Institute of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös Str. 6, Szeged H-6720, Hungary
| | - Piroska Szabó-Révész
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös Str. 6, Szeged H-6720, Hungary
| | - Balázs Volk
- Directorate of Drug Substance Development, Egis Pharmaceuticals PLC., Keresztúri Str. 30-38, Budapest H-1106, Hungary
| | - Gábor Katona
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös Str. 6, Szeged H-6720, Hungary.
| |
Collapse
|
17
|
Spray-dried indomethacin-loaded polymeric micelles for the improvement of intestinal drug release and permeability. Eur J Pharm Sci 2022; 174:106200. [DOI: 10.1016/j.ejps.2022.106200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/24/2023]
|