1
|
Yuan Y, Li J, Chen M, Zhao Y, Zhang B, Chen X, Zhao J, Liang H, Chen Q. Nano-encapsulation of drugs to target hepatic stellate cells: Toward precision treatments of liver fibrosis. J Control Release 2024; 376:318-336. [PMID: 39413846 DOI: 10.1016/j.jconrel.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Liver fibrosis is characterized by excessive extracellular matrix (ECM) deposition triggered by hepatic stellate cells (HSCs). As central players in fibrosis progression, HSCs are the most important therapeutic targets for antifibrotic therapy. However, owing to the limitations of systemic drug administration, there is still no suitable and effective clinical treatment. In recent years, nanosystems have demonstrated expansive therapeutic potential and evolved into a clinical modality. In liver fibrosis, nanosystems have undergone a paradigm shift from targeting the whole liver to locally targeted modifying processes. Nanomedicine delivered to HSCs has significant potential in managing liver fibrosis, where optimal management would benefit from targeted delivery, personalized therapy based on the specific site of interest, and minor side effects. In this review, we present a brief overview of the role of HSCs in the pathogenesis of liver fibrosis, summarize the different types of nanocarriers and their specific delivery applications in liver fibrosis, and highlight the biological barriers associated with the use of nanosystems to target HSCs and approaches available to solve this issue. We further discuss in-depth all the molecular target receptors overexpressed during HSC activation in liver fibrosis and their corresponding ligands that have been used for drug or gene delivery targeting HSCs.
Collapse
Affiliation(s)
- Yue Yuan
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Jiaxuan Li
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Min Chen
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Ying Zhao
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Jianping Zhao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China.
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China.
| | - Qian Chen
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China.
| |
Collapse
|
2
|
Jaroszewski B, Jelonek K, Kasperczyk J. Drug Delivery Systems of Betulin and Its Derivatives: An Overview. Biomedicines 2024; 12:1168. [PMID: 38927375 PMCID: PMC11200571 DOI: 10.3390/biomedicines12061168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Natural origin products are regarded as promising for the development of new therapeutic therapies with improved effectiveness, biocompatibility, reduced side effects, and low cost of production. Betulin (BE) is very promising due to its wide range of pharmacological activities, including its anticancer, antioxidant, and antimicrobial properties. However, despite advancements in the use of triterpenes for clinical purposes, there are still some obstacles that hinder their full potential, such as their hydrophobicity, low solubility, and poor bioavailability. To address these concerns, new BE derivatives have been synthesized. Moreover, drug delivery systems have emerged as a promising solution to overcome the barriers faced in the clinical application of natural products. The aim of this manuscript is to summarize the recent achievements in the field of delivery systems of BE and its derivatives. This review also presents the BE derivatives mostly considered for medical applications. The electronic databases of scientific publications were searched for the most interesting achievements in the last ten years. Thus far, it is mostly nanoparticles (NPs) that have been considered for the delivery of betulin and its derivatives, including organic NPs (e.g., micelles, conjugates, liposomes, cyclodextrins, protein NPs), inorganic NPs (carbon nanotubes, gold NPs, silver), and complex/hybrid and miscellaneous nanoparticulate systems. However, there are also examples of microparticles, gel-based systems, suspensions, emulsions, and scaffolds, which seem promising for the delivery of BE and its derivatives.
Collapse
Affiliation(s)
- Bartosz Jaroszewski
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-200 Sosnowiec, Poland;
| | - Katarzyna Jelonek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Skłodowska 34 St., 41-819 Zabrze, Poland
| | - Janusz Kasperczyk
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-200 Sosnowiec, Poland;
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Skłodowska 34 St., 41-819 Zabrze, Poland
| |
Collapse
|
3
|
Niu X, Meng Y, Cui J, Li R, Ding X, Niu B, Chang G, Xu N, Li G, Wang Y, Wang L. Hepatic Stellate Cell- and Liver Microbiome-Specific Delivery System for Dihydrotanshinone I to Ameliorate Liver Fibrosis. ACS NANO 2023; 17:23608-23625. [PMID: 37995097 DOI: 10.1021/acsnano.3c06626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Liver fibrosis is a major contributor to the morbidity and mortality associated with liver diseases, yet effective treatment options remain limited. Hepatic stellate cells (HSCs) are a promising target for hepatic fibrogenesis due to their pivotal role in disease progression. Our previous research has demonstrated the potential of Dihydrotanshinone I (DHI), a lipophilic component derived from the natural herb Salvia miltiorrhiza Bunge, in treating liver fibrosis by inhibiting the YAP/TEAD2 interaction in HSCs. However, the clinical application of DHI faces challenges due to its poor aqueous solubility and lack of specificity for HSCs. Additionally, recent studies have implicated the impact of liver microbiota, distinct from gut microbiota, on the pathogenesis of liver diseases. In this study, we have developed an HSC- and microbiome-specific delivery system for DHI by conjugating prebiotic-like cyclodextrin (CD) with vitamin A, utilizing PEG2000 as a linker (VAP2000@CD). Our results demonstrate that VAP2000@CD markedly enhances the cellular uptake in human HSC line LX-2 and enhances the deposition of DHI in the fibrotic liver in vivo. Subsequently, intervention with DHI-VAP2000@CD has shown a notable reduction in bile duct-like structure proliferation, collagen accumulation, and the expression of fibrogenesis-associated genes in rats subjected to bile duct ligation. These effects may be attributed to the regulation of the YAP/TEAD2 interaction. Importantly, the DHI-VAP2000@CD intervention has also restored microbial homeostasis in the liver, promoting the amelioration of liver inflammation. Overall, our findings indicate that DHI-VAP2000@CD represents a promising therapeutic approach for liver fibrosis by specifically targeting HSCs and restoring the liver microbial balance.
Collapse
Affiliation(s)
- Xia Niu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yanan Meng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jinjin Cui
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Rui Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xiao Ding
- State Key Laboratory of Phytochemistry and Plant Resource in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Bingyu Niu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Ge Chang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Ning Xu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Guiling Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yucheng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Lulu Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
4
|
Lehman-Chong A, Cox CL, Kinaci E, Burkert SE, Dodge ML, Rosmarin DM, Newell JA, Soh L, Gordon MB, Stanzione JF. Itaconic Acid as a Comonomer in Betulin-Based Thermosets via Sequential and Bulk Preparation. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:14216-14225. [PMID: 37771764 PMCID: PMC10526528 DOI: 10.1021/acssuschemeng.3c04178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/18/2023] [Indexed: 09/30/2023]
Abstract
The inherent chemical functionalities of biobased monomers enable the production of renewably sourced polymers that further advance sustainable manufacturing. Itaconic acid (IA) is a nontoxic, commercially produced biobased monomer that can undergo both UV and thermal curing. Betulin is a biocompatible, structurally complex diol derived from birch tree bark that has been recently studied for materials with diverse applications. Here, betulin, IA, and biobased linear diacids, 1,12-dodecanedioic acid (C12) and 1,18-octadecanedioic acid (C18), were used to prepare thermosets using sequential and bulk curing methods. Thermoplastic polyester precursors were synthesized and formulated into polyester-methacrylate (PM) resins to produce sequential UV-curable thermosets. Bulk-cured polyester thermosets were prepared using a one-pot, solventless melt polycondensation using glycerol as a cross-linker. The structure-property relationships of the thermoplastic polyester precursors, sequentially prepared PM thermosets, and bulk-cured polyester thermosets were evaluated with varying IA content. Both types of thermosets exhibited higher storage moduli, Tgs, and thermal stabilities with greater IA comonomer content. These results demonstrate the viability of using IA as a comonomer to produce betulin-based thermosets each with tunable properties, expanding the scope of their applications and use in polymeric materials.
Collapse
Affiliation(s)
- Alexandra
M. Lehman-Chong
- Department
of Chemical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
- Advanced
Materials & Manufacturing Institute (AMMI), Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Casey L. Cox
- Department
of Chemical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
- Advanced
Materials & Manufacturing Institute (AMMI), Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Emre Kinaci
- Advanced
Materials & Manufacturing Institute (AMMI), Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Sarah E. Burkert
- Department
of Chemical and Biomolecular Engineering, Lafayette College, 740 High Street, Easton, Pennsylvania 18042, United States
| | - Megan L. Dodge
- Department
of Chemical and Biomolecular Engineering, Lafayette College, 740 High Street, Easton, Pennsylvania 18042, United States
| | - Devin M. Rosmarin
- Department
of Chemical and Biomolecular Engineering, Lafayette College, 740 High Street, Easton, Pennsylvania 18042, United States
| | - James A. Newell
- Department
of Chemical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
- Advanced
Materials & Manufacturing Institute (AMMI), Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Lindsay Soh
- Department
of Chemical and Biomolecular Engineering, Lafayette College, 740 High Street, Easton, Pennsylvania 18042, United States
| | - Melissa B. Gordon
- Department
of Chemical and Biomolecular Engineering, Lafayette College, 740 High Street, Easton, Pennsylvania 18042, United States
| | - Joseph F. Stanzione
- Department
of Chemical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
- Advanced
Materials & Manufacturing Institute (AMMI), Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| |
Collapse
|
5
|
Xiang L, Wang X, Jiao Q, Shao Y, Luo R, Zhang J, Zheng X, Zhou S, Chen Y. Selective inhibition of glycolysis in hepatic stellate cells and suppression of liver fibrogenesis with vitamin A-derivative decorated camptothecin micelles. Acta Biomater 2023; 168:497-514. [PMID: 37507035 DOI: 10.1016/j.actbio.2023.07.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/14/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023]
Abstract
The persistent transformation of quiescent hepatic stellate cells (HSCs) into myofibroblasts (MFs) and the excessive proliferation of MF-HSCs in the liver contribute to the pathogenesis of liver fibrosis, cirrhosis, and liver cancer. Glycolysis inhibition of MF-HSCs can reverse their MF phenotype and suppress their abnormal expansion. Here, we have developed vitamin A-derivative (VA) decorated PEG-PCL polymeric micelles to encapsulate the labile and hydrophobic camptothecin (CPT) and direct its active attack on HSCs, selectively inhibiting of HIF-1α and cellular glycolysis, ultimately repressing hepatic fibrogenesis. The obtained micelles exhibited a good stability, biocompatibility, pH sensitivity, and exceptional HSC-targetability, allowing an efficient accumulation of their carried CPT in acutely and chronically injured livers. On their intracellular release of CPT specifically in MF-HSCs, these CPT micelles nicely inhibited the HIF-1α and a series of glycolytic players in MF-HSCs and prominently suppressed their proliferation and MF phenotypic characteristics. Accordingly, on in vitro administration to the mice challenged by CCl4 or subjected to bile duct ligation, these VA-decorated CPT micelles ameliorated the pathological symptoms of the livers, as evidenced by the significant reduction in serum levels of ALT and AST, infiltration of inflammatory cells, and collagen accumulation, the drastic down-regulation of multiple fibrotic genes, and the good recovery of attenuated hepatocyte CYP2E1 and lipogenesis regulator PPARγ. Overall, the CPT carried by VA-decorated PEG-PCL polymeric micelles can selectively inhibit the glycolysis and expansion of HSCs and thus suppress fibrogenesis, providing an original and effective approach for anti-fibrotic therapy. STATEMENT OF SIGNIFICANCE: Our work introduces an innovative antifibrotic drug system that is developed upon the active targeting of CPT and aims for the fate reversal of HSCs. Through HSC-targeted delivery achieved by PEG-PCL polymeric micelles decorated with vitamin A-derivatives, CPT significantly suppressed the expressions of HIF-1α and glycolytic enzymes in MF-HSCs, as well as their pathologic expansion in mouse livers. It effectively ameliorated chronic liver fibrosis in mice induced by CCl4 injection or BDL and restored the damaged liver structure and function. These compelling findings demonstrate the therapeutic potential of glycolytic HSC-targeting in combating fibrosis and related disorders and thus provide new promise for future clinical management of such prevalent and life-threatening conditions.
Collapse
Affiliation(s)
- Li Xiang
- Hengyang Medical School, University of South China, Hengyang, Hunan, 410001, China
| | - Xin Wang
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Qiangqiang Jiao
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
| | - Yaru Shao
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
| | - Rui Luo
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
| | - Jie Zhang
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
| | - Xiaotong Zheng
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Shaobing Zhou
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yuping Chen
- Hengyang Medical School, University of South China, Hengyang, Hunan, 410001, China; School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China.
| |
Collapse
|
6
|
Wu ZC, Liu XY, Liu JY, Piao JS, Piao MG. Preparation of Betulinic Acid Galactosylated Chitosan Nanoparticles and Their Effect on Liver Fibrosis. Int J Nanomedicine 2022; 17:4195-4210. [PMID: 36134203 PMCID: PMC9484277 DOI: 10.2147/ijn.s373430] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
Aim Liver fibrosis is mainly characterized by the formation of fibrous scars. Galactosylated chitosan (GC) has gained increasing attention as a liver-targeted drug carrier in recent years. The present study aimed to investigate the availability of betulinic acid-loaded GC nanoparticles (BA-GC-NPs) for liver protection. Covalently-conjugated galactose, recognized by asialoglycoprotein receptors exclusively expressed in hepatocytes, was employed to target the liver. Materials and Methods Galactose was coupled to chitosan by chemical covalent binding. BA-GC-NPs were synthesized by wrapping BA into NPs via ion-crosslinking method. The potential advantage of BA-GC-NP as a liver-targeting agent in the treatment of liver fibrosis has been demonstrated in vivo and in vitro. Results BA-GC-NPs with diameters <200 nm were manufactured in a virtually spherical core-shell arrangement, and BA was released consistently and continuously for 96 h, as assessed by an in vitro release assay. According to the safety evaluation, BA-GC-NPs demonstrated good biocompatibility at the cellular level and did not generate any inflammatory reaction in mice. Importantly, BA-GC-NPs showed an inherent liver-targeting potential in the uptake behavioral studies in cells and bioimaging tests in vivo. Efficacy tests revealed that administering BA-GC-NPs in a mouse model of liver fibrosis reduced the degree of liver injury in mice. Conclusion The findings showed that BA-GC-NPs form a safe and effective anti-hepatic fibrosis medication delivery strategy.
Collapse
Affiliation(s)
- Zi Chao Wu
- School of Pharmacy, Yanbian University, Yanji, 133002, People's Republic of China.,Research Institute, Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, 050035, People's Republic of China
| | - Xin Yu Liu
- School of Pharmacy, Yanbian University, Yanji, 133002, People's Republic of China
| | - Jia Yan Liu
- School of Pharmacy, Yanbian University, Yanji, 133002, People's Republic of China
| | - Jing Shu Piao
- School of Pharmacy, Yanbian University, Yanji, 133002, People's Republic of China
| | - Ming Guan Piao
- School of Pharmacy, Yanbian University, Yanji, 133002, People's Republic of China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, People's Republic of China
| |
Collapse
|