1
|
Thalberg K. New theory to explain the effect of lactose fines on the performance of adhesive mixtures for inhalation. Int J Pharm 2024; 663:124549. [PMID: 39128621 DOI: 10.1016/j.ijpharm.2024.124549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
A new theory for the dispersibility enhancing effect of excipient fines for adhesive mixtures for inhalation is presented in this paper, while at the same time the shortcomings of current hypotheses are discussed. The proposed mechanism, denoted the 'viscoelastic damping effect', states that the presence of fines particles acts to dampen the collisions between carrier particles during mixing. As a consequence, fewer fine particles are 'irreversibly' pressed into the carriers, which in turn entails a higher fine particle fraction. The mechanism was demonstrated experimentally at different levels of added lactose fines by studying the influence of processing on fine particle fraction. This approach furthermore enabled quantification of the effect. All fine particles present in the blend (APIs and excipient fines) act together to exert the damping effect. The proposed mechanism is able to explain the main body of published data, including the effect of added excipient fines, the effect of an increased drug load, and the effect of removal of carrier fines. The viscoelastic damping mechanism is general in nature and conveys a broader and more general understanding of the behavior of adhesive mixtures for inhalation.
Collapse
Affiliation(s)
- Kyrre Thalberg
- Food and Pharma Division, Department of Process and Life Science Engineering, Lund University, Lund, Sweden; Emmace Consulting AB, Lund, Sweden.
| |
Collapse
|
2
|
Chen J, Ye Y, Yang Q, Fan Z, Shao Y, Wei X, Shi K, Dong J, Ma Y, Zhu J. Understanding the role of swirling flow in dry powder inhalers: Implications for design considerations and pulmonary delivery. J Control Release 2024; 373:410-425. [PMID: 39038545 DOI: 10.1016/j.jconrel.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/09/2024] [Accepted: 07/13/2024] [Indexed: 07/24/2024]
Abstract
Dry powder inhalers (DPIs) are widely employed to treat respiratory diseases, offering numerous advantages such as high dose capacity and stable formulations. However, they usually face challenges in achieving sufficient pulmonary drug delivery and minimizing excessive oropharyngeal deposition. This review provides a new viewpoint to address these challenges by focusing on the role of swirling flow, a crucial yet under-researched aspect that induces strong turbulence. In the review, we comprehensively discuss both key classic designs (tangential inlet, swirling chamber, grid mesh, and mouthpiece) and innovative designs in inhalers, exploring how the induced swirling flow initiates powder dispersion and promotes delivery efficiency. Valuable design considerations to effectively coordinate inhalers with formulations and patients are also provided. It is highlighted that the delicate manipulation of swirling flow is essential to maximize benefits. By emphasizing the role of swirling flow and its potential application, this review offers promising insights for advancing DPI technology and optimizing therapeutic outcomes in inhaled therapy.
Collapse
Affiliation(s)
- Jiale Chen
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo 315100, China
| | - Yuqing Ye
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo 315100, China; Particle Technology Research Centre, Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada; Suzhou Inhal Pharma Co., Ltd, 502-Bldf A SIP, 108 Yuxin Road, Suzhou 215125, China.
| | - Qingliang Yang
- College of Pharmaceutical Science, Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ziyi Fan
- Particle Technology Research Centre, Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Yuanyuan Shao
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo 315100, China
| | - Xiaoyang Wei
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo 315100, China
| | - Kaiqi Shi
- Suzhou Inhal Pharma Co., Ltd, 502-Bldf A SIP, 108 Yuxin Road, Suzhou 215125, China
| | - Jie Dong
- Suzhou Inhal Pharma Co., Ltd, 502-Bldf A SIP, 108 Yuxin Road, Suzhou 215125, China
| | - Ying Ma
- Particle Technology Research Centre, Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada; Suzhou Inhal Pharma Co., Ltd, 502-Bldf A SIP, 108 Yuxin Road, Suzhou 215125, China
| | - Jesse Zhu
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo 315100, China; Particle Technology Research Centre, Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada; Eastern Institute of Technology, Ningbo 315200, China.
| |
Collapse
|
3
|
Thalberg K, Ivarsson L, Svensson M, Elfman P, Ohlsson A, Stuckel J, Lyberg AM. The effect of mixing on the dispersibility of adhesive mixtures for inhalation. Comparison of high shear and Turbula mixers. Eur J Pharm Sci 2024; 193:106679. [PMID: 38128841 DOI: 10.1016/j.ejps.2023.106679] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023]
Abstract
This study investigates the effect of different mixers and the applicability of the mixing energy (ME) concept to dry powder formulations for inhalation. With the aim to step-wise build and expand this concept, adhesive mixtures of 2 % budesonide and lactose carrier were investigated, both with 1 % magnesium stearate (MgSt) added in a 'coating' step, and without, the latter referred to as 'naked' formulations. For high shear mixed formulations, the fine particle fraction (FPF) was found to increase with increasing ME up to 60 % and thereafter decreased, using the Novolizer device. The data could be well fitted to the modeling equation, thus confirming the validity of the ME concept. The naked formulations displayed a linear decrease in FPF with increasing ME, again showing the validity of the ME concept. For Turbula mixed formulations, FPF increased with increased mixing time (and mixing energy) for all batches. The naked (binary) composition reached to higher FPF values than for high shear mixing and the formulation with MgSt reached to FPF values around 60 %, demonstrating that it is possible to achieve the same high drug dispersibility with the Turbula mixer as for high shear mixer. An equation for calculation of mixing energy in Turbula mixing was set up in an analogous way to the equation for high shear mixing, which enabled direct comparison between the two mixers.
Collapse
Affiliation(s)
- Kyrre Thalberg
- Department of Food Technology, Engineering and Nutrition, Lund University, Sweden; Emmace Consulting AB, Lund, Sweden.
| | - Love Ivarsson
- Department of Food Technology, Engineering and Nutrition, Lund University, Sweden
| | | | | | | | | | | |
Collapse
|
4
|
Peng S, Wang W, Zhang R, Wu C, Pan X, Huang Z. Nano-Formulations for Pulmonary Delivery: Past, Present, and Future Perspectives. Pharmaceutics 2024; 16:161. [PMID: 38399222 PMCID: PMC10893528 DOI: 10.3390/pharmaceutics16020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
With the development of nanotechnology and confronting the problems of traditional pharmaceutical formulations in treating lung diseases, inhalable nano-formulations have attracted interest. Inhalable nano-formulations for treating lung diseases allow for precise pulmonary drug delivery, overcoming physiological barriers, improving aerosol lung deposition rates, and increasing drug bioavailability. They are expected to solve the difficulties faced in treating lung diseases. However, limited success has been recorded in the industrialization translation of inhalable nano-formulations. Only one relevant product has been approved by the FDA to date, suggesting that there are still many issues to be resolved in the clinical application of inhalable nano-formulations. These systems are characterized by a dependence on inhalation devices, while the adaptability of device formulation is still inconclusive, which is the most important issue impeding translational research. In this review, we categorized various inhalable nano-formulations, summarized the advantages of inhalable nano-formulations over conventional inhalation formulations, and listed the inhalable nano-formulations undergoing clinical studies. We focused on the influence of inhalation devices on nano-formulations and analyzed their adaptability. After extensive analysis of the drug delivery mechanisms, technical processes, and limitations of different inhalation devices, we concluded that vibrating mesh nebulizers might be most suitable for delivering inhalable nano-formulations, and related examples were introduced to validate our view. Finally, we presented the challenges and outlook for future development. We anticipate providing an informative reference for the field.
Collapse
Affiliation(s)
- Siyuan Peng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenhao Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Rui Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
5
|
Ye Y, Fan Z, Ma Y, Zhu J. Investigation on the Influence of Design Features on the Performance of Dry Powder Inhalers: Spiral Channel, Mouthpiece Dimension, and Gas Inlet. Int J Pharm 2023:123116. [PMID: 37302669 DOI: 10.1016/j.ijpharm.2023.123116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/28/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
As inhaler design is rarely studied but critically important in pulmonary drug delivery, this study investigated the influence of inhaler designs, including a novel spiral channel, mouthpiece dimensions (diameter and length) as well as gas inlet. Experimental dispersion of a carrier-based formulation in conjugation with computational fluid dynamics (CFD) analysis, was performed to determine how the designs affect inhaler performance. Results reveal that inhalers with a narrow spiral channel could effectively increase drug-carrier detachment by introducing high velocity and strong turbulent flow in the mouthpiece, although the drug retention in the device is significantly high. It is also found that reducing mouthpiece diameter and gas inlet size could greatly improve the fine particle dose delivered to the lungs, whereas the mouthpiece length plays a trivial influence on the aerosolization performance. This study contributes toward a better understanding of inhaler designs as relevant to overall inhaler performance, and sheds light on how the designs affect device performance.
Collapse
Affiliation(s)
- Yuqing Ye
- University of Western Ontario, 1151 Richmond Street, London, N6A 3K7, Canada; Suzhou Inhal Pharma Co., Ltd., 108 Yuxi Road, Suzhou, 215125, China
| | - Ziyi Fan
- University of Western Ontario, 1151 Richmond Street, London, N6A 3K7, Canada
| | - Ying Ma
- University of Western Ontario, 1151 Richmond Street, London, N6A 3K7, Canada; Suzhou Inhal Pharma Co., Ltd., 108 Yuxi Road, Suzhou, 215125, China
| | - Jesse Zhu
- University of Western Ontario, 1151 Richmond Street, London, N6A 3K7, Canada.
| |
Collapse
|