1
|
Cui M, Li Y, Li J, Jia N, Cao W, Li Z, Li X, Chu X. Construction of various lipid carriers to study the transdermal penetration mechanism of sinomenine hydrochloride. J Microencapsul 2024; 41:157-169. [PMID: 38451031 DOI: 10.1080/02652048.2024.2324810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
OBJECTIVE To investigate the transdermal mechanisms and compare the differences in transdermal delivery of Sinomenine hydrochloride (SN) between solid lipid nanoparticles (SLN), liposomes (LS), and nanoemulsions (NE). METHODS SN-SLN, SN-LS and SN-NE were prepared by ultrasound, ethanol injection and spontaneous emulsification, respectively. FTIR, DSC, in vitro skin penetration, activation energy (Ea) analysis were used to explore the mechanism of drug penetration across the skin. RESULTS The particle size and encapsulation efficiency were 126.60 nm, 43.23 ± 0.48%(w/w) for SN-SLN, 224.90 nm, 78.31 ± 0.75%(w/w) for SN-LS, and 83.22 nm, 89.01 ± 2.16%(w/w) for SN-LS. FTIR and DSC showed the preparations had various levels of impacts on the stratum corneum's lipid structure which was in the order of SLN > NE > LS. Ea values of SN-SLN, SN-LS, and SN-NE crossing the skin were 2.504, 1.161, and 2.510 kcal/mol, respectively. CONCLUSION SLN had a greater degree of alteration on the skin cuticle, which allows SN to permeate skin more effectively.
Collapse
Affiliation(s)
- Mengyao Cui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yaqing Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Nini Jia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Wenxuan Cao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zhengguang Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiang Li
- Anhui Province Institute for Food and Drug Control, Hefei, China
| | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Anhui Education Department (AUCM), Engineering Technology Research Center of Modernized Pharmaceutics, Hefei, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China
| |
Collapse
|
2
|
Sahu N, Alam P, Ali A, Kumar N, Tyagi R, Madan S, Walia R, Saxena S. Optimization, In Vitro and Ex Vivo Assessment of Nanotransferosome Gels Infused with a Methanolic Extract of Solanum xanthocarpum for the Topical Treatment of Psoriasis. Gels 2024; 10:119. [PMID: 38391449 PMCID: PMC10888226 DOI: 10.3390/gels10020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
The goal of this investigation is to improve the topical delivery of medicine by preparing and maximizing the potential of a nanotransferosome gel infused with Solanum xanthocarpum methanolic extract (SXE) to provide localized and regulated distribution. Thin-film hydration was used to create SXE-infused nanotransferosomes (SXE-NTFs), and a Box-Behnken design was used to improve them. Phospholipon 90G (X1), cholesterol (X2) and sodium cholate (X3) were chosen as the independent variables, and their effects on vesicle size (Y1), polydispersity index (PDI) (Y2) and the percentage of entrapment efficiency (EE) (Y3) were observed both individually and in combination. For the SXE-NTFs, the vesicle size was 146.3 nm, the PDI was 0.2594, the EE was 82.24 ± 2.64%, the drug-loading capacity was 8.367 ± 0.07% and the drug release rate was 78.86 ± 5.24%. Comparing the antioxidant activity to conventional ascorbic acid, it was determined to be 83.51 ± 3.27%. Ex vivo permeation tests revealed that the SXE-NTF gel (82.86 ± 2.38%) considerably outperformed the SXE gel (35.28 ± 1.62%) in terms of permeation. In addition, it seemed from the confocal laser scanning microscopy (CLSM) picture of the Wistar rat's skin that the rhodamine-B-loaded SXE-NTF gel had a higher penetration capability than the control. Dermatokinetic studies showed that the SXE-NTF gel had a better retention capability than the SXE gel. According to the experimental results, the SXE-NTF gel is a promising and successful topical delivery formulation.
Collapse
Affiliation(s)
- Nilanchala Sahu
- Department of Pharmacy, Sharda School of Pharmacy, Sharda University, Greater Noida 201310, India
| | - Perwez Alam
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Asad Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, M. B. Road, New Delhi 110062, India
| | - Neeraj Kumar
- Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, M. B. Road, New Delhi 110062, India
| | - Rama Tyagi
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida 201303, India
| | - Swati Madan
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida 201303, India
| | - Ramanpreet Walia
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida 201303, India
| | - Shikha Saxena
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida 201303, India
| |
Collapse
|
3
|
Sharma S, Garg A, Agrawal R, Chopra H, Pathak D. A Comprehensive Review on Niosomes as a Tool for Advanced Drug Delivery. Pharm Nanotechnol 2024; 12:206-228. [PMID: 37496251 DOI: 10.2174/2211738511666230726154557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 07/28/2023]
Abstract
Over the past few decades, advancements in nanocarrier-based therapeutic delivery have been significant, and niosomes research has recently received much interest. The self-assembled nonionic surfactant vesicles lead to the production of niosomes. The most recent nanocarriers, niosomes, are self-assembled vesicles made of nonionic surfactants with or without the proper quantities of cholesterol or other amphiphilic molecules. Because of their durability, low cost of components, largescale production, simple maintenance, and high entrapment efficiency, niosomes are being used more frequently. Additionally, they enhance pharmacokinetics, reduce toxicity, enhance the solubility of poorly water-soluble compounds, & increase bioavailability. One of the most crucial features of niosomes is their controlled release and targeted diffusion, which is utilized for treating cancer, infectious diseases, and other problems. In this review article, we have covered all the fundamental information about niosomes, including preparation techniques, niosomes types, factors influencing their formation, niosomes evaluation, applications, and administration routes, along with recent developments.
Collapse
Affiliation(s)
- Shivani Sharma
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Mathura Delhi Road P.O, Chhatikara, Uttar Pradesh, India
| | - Akash Garg
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Mathura Delhi Road P.O, Chhatikara, Uttar Pradesh, India
| | - Rutvi Agrawal
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Mathura Delhi Road P.O, Chhatikara, Uttar Pradesh, India
| | - Himansu Chopra
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Mathura Delhi Road P.O, Chhatikara, Uttar Pradesh, India
| | - Devender Pathak
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Mathura Delhi Road P.O, Chhatikara, Uttar Pradesh, India
| |
Collapse
|
4
|
Lin CH, Lin MH, Chung YK, Alalaiwe A, Hung CF, Fang JY. Exploring the potential of the nano-based sunscreens and antioxidants for preventing and treating skin photoaging. CHEMOSPHERE 2024; 347:140702. [PMID: 37979799 DOI: 10.1016/j.chemosphere.2023.140702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/01/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
Excessive exposure to sunlight, especially UV irradiation, causes skin photodamage. Sunscreens, such as TiO2 and ZnO, can potentially prevent UV via scattering, reflection, and absorption. Topical antioxidants are another means of skin photoprotection. Developing nanoparticles for sunscreens and antioxidants is recommended for photoaging prevention and treatment as it can improve uncomfortable skin appearance, stability, penetration, and safety. This study reviewed the effects of nano-sized sunscreens and antioxidants on skin photoprevention by examining published studies and articles from PubMed, Scopus, and Google Scholar, which explore the topics of skin photoaging, skin senescence, UV radiation, keratinocyte, dermal fibroblast, sunscreen, antioxidant, and nanoparticle. The researchers of this study also summarized the nano-based UV filters and therapeutics for mitigating skin photoaging. The skin photodamage mechanisms are presented, followed by the introduction of current skin photoaging treatment. The different nanoparticle types used for topical delivery were also explored in this study. This is followed by the mechanisms of how nanoparticles improve the UV filters and antioxidant performance. Lastly, recent investigations were reviewed on nanoparticulate sunscreens and antioxidants in skin photoaging management. Sunscreens and antioxidants for topical application have different concepts. Topical antioxidants are ideal for permeating into the skin to exhibit free radical scavenging activity, while UV filters are prescribed to remain on the skin surface without absorption to exert the UV-blocking effect without causing toxicity. The nanoparticle design strategy for meeting the different needs of sunscreens and antioxidants is also explored in this study. Although the benefits of using nanoparticles for alleviating photodamage are well-established, more animal-based and clinical studies are necessary.
Collapse
Affiliation(s)
- Chih-Hung Lin
- Center for General Education, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| | - Ming-Hsien Lin
- Department of Dermatology, Chi Mei Medical Center, Tainan, Taiwan
| | - Yu-Kuo Chung
- Graduate Institute of Biomedical Sciences, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan; PhD Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei City, Taiwan; School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
5
|
Ghasemiyeh P, Moradishooli F, Daneshamouz S, Heidari R, Niroumand U, Mohammadi-Samani S. Optimization, characterization, and follicular targeting assessment of tretinoin and bicalutamide loaded niosomes. Sci Rep 2023; 13:20023. [PMID: 37973805 PMCID: PMC10654571 DOI: 10.1038/s41598-023-47302-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023] Open
Abstract
Acne vulgaris, a prevalent skin disorder among teenagers and young adults, can have numerous psychological consequences. Topical treatment of acne would be advantageous by reducing the risk of systemic adverse drug reactions. However, the major challenge would be skin penetration through the stratum corneum. Therefore, during this study, tretinoin (TRT) and bicalutamide (BCT) loaded niosomes with follicular targeting potential were fabricated through the thin film hydration technique. Formulation optimization was performed using the Design-Expert software and optimum formulation was characterized in terms of particle size, zeta potential, transmission electron microscopy, drug loading, and differential scanning calorimetry. In vivo follicular targeting was assessed using rhodamine B-loaded niosomes to follow the skin penetration pathways. The results showed that, the optimum formulation was spherical in shape and had an average diameter of 319.20 ± 18.50 nm and a zeta potential of - 29.70 ± 0.36 mV. Furthermore, entrapment efficiencies were 94.63 ± 0.50% and > 99% and loading capacities were 1.40 ± 0.01% and 1.48 ± 0.00% for BCT and TRT, respectively. According to the animal study results, the prepared niosomes with an average diameter of about 300 nm showed significant accumulation in hair follicles. It seems that the designed niosomal BCT-TRT co-delivery system would be promising in acne management with follicular targeting potential.
Collapse
Affiliation(s)
- Parisa Ghasemiyeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Moradishooli
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz-Marvdasht Hwy, Karafarin St, Shiraz, Fars Province, 71468 64685, Iran
| | - Saeid Daneshamouz
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz-Marvdasht Hwy, Karafarin St, Shiraz, Fars Province, 71468 64685, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Uranous Niroumand
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soliman Mohammadi-Samani
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz-Marvdasht Hwy, Karafarin St, Shiraz, Fars Province, 71468 64685, Iran.
| |
Collapse
|