1
|
Reddy VRK, Kummari S, Burra KG, Das S. Accuracy of Proton Magnetic Resonance Spectroscopy in Distinguishing Neoplastic From Non-neoplastic Brain Lesions. Cureus 2023; 15:e49824. [PMID: 38164300 PMCID: PMC10758168 DOI: 10.7759/cureus.49824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024] Open
Abstract
OBJECTIVE To evaluate the advantage of a combination of magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) over MRI in the diagnosis of intracranial mass lesions to differentiate between neoplastic and non-neoplastic lesions and compare them with histopathology and clinical data as gold standard. METHODOLOGY This was a descriptive cross-sectional study conducted at the Department of Radiology, Apollo Hospital located in Jubilee Hills, Hyderabad. In the present study, a total of 60 patients of all ages with brain masses found through MRI with positive clinical symptoms, regardless of gender, were included. We also involved patients with non-brain cancers suspected of spreading to the brain. RESULT MRI identified 63% of lesions as neoplastic and 37% as non-neoplastic. Combining MRI and MRS increased accuracy, with 65% of the lesions diagnosed as neoplastic and 35% as non-neoplastic, demonstrating that MRS significantly enhances diagnostic precision compared to MRI alone. CONCLUSION This study aimed to see how combining MRI and MRS helps diagnose brain masses, comparing with histopathology as the gold standard. MRI alone identified 63% as neoplastic, but MRI with MRS improved accuracy (65%). MRI sensitivity was 87.80%, but combined with MRS, it increased to 92.68%. Thus, the study concluded that the combination of MRI and MRS is more accurate than MRI alone.
Collapse
Affiliation(s)
| | | | - Kiran Goud Burra
- Department of Radiology, Government District Hospital Medak, Medak, IND
| | - Saraswata Das
- Department of Radiodiagnosis, College of Medicine and JNM Hospital, Kalyani, IND
| |
Collapse
|
2
|
Reitlo LS, Mihailovic JM, Stensvold D, Wisløff U, Hyder F, Håberg AK. Hippocampal neurochemicals are associated with exercise group and intensity, psychological health, and general cognition in older adults. GeroScience 2023; 45:1667-1685. [PMID: 36626020 PMCID: PMC10400748 DOI: 10.1007/s11357-022-00719-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/24/2022] [Indexed: 01/11/2023] Open
Abstract
Based on the premise that physical activity/exercise impacts hippocampal structure and function, we investigated if hippocampal metabolites for neuronal viability and cell membrane density (i.e., N-acetyl aspartate (NAA), choline (Cho), creatine (Cr)) were higher in older adults performing supervised exercise compared to following national physical activity guidelines. Sixty-three participants (75.3 ± 1.9 years after 3 years of intervention) recruited from the Generation 100 study (NCT01666340_date:08.16.2012) were randomized into a supervised exercise group (SEG) performing twice weekly moderate- to high-intensity training, and a control group (CG) following national physical activity guidelines of ≥ 30-min moderate physical activity ≥ 5 days/week. Hippocampal body and head volumes and NAA, Cho, and Cr levels were acquired at 3T with magnetic resonance imaging and spectroscopic imaging. Sociodemographic data, peak oxygen uptake (VO2peak), exercise characteristics, psychological health, and cognition were recorded. General linear models were used to assess group differences and associations corrected for age, sex, education, and hippocampal volume. Both groups adhered to their training, where SEG trained at higher intensity. SEG had significantly lower NAA/Cr in hippocampal body than CG (p = 0.04). Across participants, higher training intensity was associated with lower Cho/Cr in hippocampal body (p < 0.001). Change in VO2peak, increasing VO2peak from baseline to 3 years, or VO2peak at 3 years were not associated with hippocampal neurochemicals. Lower NAA/Cr in hippocampal body was associated with poorer psychological health and slightly higher cognitive scores. Thus, following the national physical activity guidelines and not training at the highest intensity level were associated with the best neurochemical profile in the hippocampus at 3 years.
Collapse
Affiliation(s)
- Line S Reitlo
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jelena M Mihailovic
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Dorthe Stensvold
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ulrik Wisløff
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- School of Human Movement and Nutrition Science, University of Queensland, Brisbane, Australia
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Asta Kristine Håberg
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.
| |
Collapse
|
3
|
Baek HM. Experimental Basis Sets of Quantification of Brain 1H-Magnetic Resonance Spectroscopy at 3.0 T. Metabolites 2023; 13:metabo13030368. [PMID: 36984808 PMCID: PMC10056301 DOI: 10.3390/metabo13030368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
In vivo short echo time (TE) proton magnetic resonance spectroscopy (1H-MRS) is a useful method for the quantification of human brain metabolites. The purpose of this study was to evaluate the performance of an in-house, experimentally measured basis set and compare it with the performance of a vendor-provided basis set. A 3T clinical scanner with 32-channel receive-only phased array head coil was used to generate 16 brain metabolites for the metabolite basis set. For voxel localization, point-resolved spin-echo sequence (PRESS) was used with volume of interest (VOI) positioned at the center of the phantoms. Two different basis sets were subjected to linear combination of model spectra of metabolite solutions in vitro (LCModel) analysis to evaluate the in-house acquired in vivo 1H-MR spectra from the left prefrontal cortex of 22 healthy subjects. To evaluate the performance of the two basis sets, the Cramer-Rao lower bounds (CRLBs) of each basis set were compared. The LCModel quantified the following metabolites and macromolecules: alanine (Ala), aspartate (Asp), γ-amino butyric acid (GABA), glucose (Glc), glutamine (Gln), glutamate (Glu), glutathione (GHS), Ins (myo-Inositol), lactate (Lac), N-acetylaspartate (NAA), N-acetylaspartylglutamate (NAAG), taurine (Tau), phosphoryl-choline + glycerol-phosphoryl-choline (tCho), N-acetylaspartate + N-acetylaspartylglutamate (tNA), creatine + phosphocreatine (tCr), Glu + Gln (Glx) and Lip13a, Lip13b, Lip09, MM09, Lip20, MM20, MM12, MM14, MM17, Lip13a + Lip13b, MM14 + Lip13a + Lip13b + MM12, MM09 + Lip09, MM20 + Lip20. Statistical analysis showed significantly different CRLBs: Asp, GABA, Gln, GSH, Ins, Lac, NAA, NAAG, Tau, tCho, tNA, Glx, MM20, MM20 + Lip20 (p < 0.001), tCr, MM12, MM17 (p < 0.01), and Lip20 (p < 0.05). The estimated ratio of cerebrospinal fluid (CSF) in the region of interest was calculated to be about 5%. Fitting performances are better, for the most part, with the in-house basis set, which is more precise than the vendor-provided basis set. In particular, Asp is expected to have reliable CRLB (<30%) at high field (e.g., 3T) in the left prefrontal cortex of human brain. The quantification of Asp was difficult, due to the inaccuracy of Asp fitting with the vendor-provided basis set.
Collapse
Affiliation(s)
- Hyeon-Man Baek
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea; ; Tel.: +82-32-899-6678
- Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
4
|
Vega G, Ricaurte G, Estrada-Castrillón M, Reyngoudt H, Cardona OM, Gallo-Villegas JA, Narvaez-Sanchez R, Calderón JC. In vivo absolute quantification of carnosine in the vastus lateralis muscle with 1H MRS using a surface coil and water as internal reference. Skeletal Radiol 2023; 52:157-165. [PMID: 35978163 DOI: 10.1007/s00256-022-04149-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To standardize a method for 1H MRS intramuscular absolute quantification of carnosine in the thigh, using a surface coil and water as internal reference. MATERIALS AND METHODS Carnosine spectra were acquired in phantoms (5, 10, and 15 mM) as well as in the right gastrocnemius medialis (GM) and right vastus lateralis (VLM) muscles of young team sports athletes, using volume (VC) and surface (SC) coils on a 3 T scanner, with the same receiver gain. Water spectra were used as internal reference for the absolute quantification of carnosine. RESULTS Phantom's experiments showed a maximum error of 7%, highlighting the validity of the measurements in the study setup. The carnosine concentrations (mmol/kg ww, mean ± SD) measured in the GM were 6.8 ± 2.2 with the VC (CcarVC) and 10.2 ± 3.0 with the SC (CcarSC) (P = 0.013; n = 9). Therefore, a correction was applied to these measurements (CcarVC = 0.6582*CcarSC), to make coils performance comparable (6.8 ± 2.2 for VC and 6.7 ± 2.0 for SC, P = 0.97). After that, only the SC was used to quantify carnosine in the VLM, where a concentration of 5.4 ± 1.5 (n = 30) was found, with significant differences between men (6.2 ± 1.3; n = 15) and women (4.6 ± 1.2; n = 15). The error in quantitation was 5.3-5.5% with both coils. CONCLUSION The method using the SC and water as internal reference can be used to quantify carnosine in voluminous muscles and regions of the body in humans, where the VC is not suitable, such as the VLM.
Collapse
Affiliation(s)
- Gloria Vega
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia
| | - Germán Ricaurte
- Group of Biophysics, University of Antioquia, Medellín, Colombia
| | - Mauricio Estrada-Castrillón
- Pablo Tobón Uribe Hospital, Medellín, Colombia.,Group of Sports Medicine GRINMADE, Faculty of Medicine, University of Antioquia, Medellín, Colombia
| | - Harmen Reyngoudt
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France
| | | | - Jaime A Gallo-Villegas
- Group of Sports Medicine GRINMADE, Faculty of Medicine, University of Antioquia, Medellín, Colombia
| | - Raul Narvaez-Sanchez
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia
| | - Juan C Calderón
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia.
| |
Collapse
|
5
|
Chen W, Liu H, Liu S, Kang Y, Nie Z, Lei H. Altered prefrontal neurochemistry in the DJ-1 knockout mouse model of Parkinson's disease: complementary semi-quantitative analyses with in vivo magnetic resonance spectroscopy and MALDI-MSI. Anal Bioanal Chem 2022; 414:7977-7987. [PMID: 36208327 DOI: 10.1007/s00216-022-04341-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022]
Abstract
In vivo proton magnetic resonance spectroscopy (1H-MRS) and matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) are two semi-quantitative analytical methods commonly used in neurochemical research. In this study, the two methods were used complementarily, in parallel, to investigate neurochemical perturbations in the medial prefrontal cortex (mPFC) of 9-month-old DJ-1 knockout mice, a well-established transgenic model for Parkinson's diseases. Convergingly, the results obtained with the two methods demonstrated that, compared with the wild-type (WT) mice, the DJ-1 knockout mice had significantly increased glutathione (GSH) level and GSH/glutamate (Glu) ratio in the mPFC, which likely presented an astrocytic compensatory mechanism in response to elevated regional oxidative stress induced by the loss of DJ-1 function. The results from this study also highlighted (1) the need to be cautious when interpreting the in vivo 1H-MRS results obtained from aged transgenic animals, in which the concentration of internal reference, being whether water or total creatine, could no longer be assumed to be the same as that in the age-matched WT animals, and (2) the necessity and importance of complementary analyses with more than one method under such circumstances.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 30# Xiaohongshan West, Wuhan, 430071, Hubei, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Huihui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First, Street 2, Beijing, 100190, China
| | - Sijie Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 30# Xiaohongshan West, Wuhan, 430071, Hubei, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yan Kang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 30# Xiaohongshan West, Wuhan, 430071, Hubei, People's Republic of China
| | - Zongxiu Nie
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China. .,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First, Street 2, Beijing, 100190, China.
| | - Hao Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 30# Xiaohongshan West, Wuhan, 430071, Hubei, People's Republic of China. .,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
6
|
Larsen RJ, Gagoski B, Morton SU, Ou Y, Vyas R, Litt J, Grant PE, Sutton BP. Quantification of magnetic resonance spectroscopy data using a combined reference: Application in typically developing infants. NMR IN BIOMEDICINE 2021; 34:e4520. [PMID: 33913194 DOI: 10.1002/nbm.4520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Quantification of proton magnetic resonance spectroscopy (1 H-MRS) data is commonly performed by referencing the ratio of the signal from one metabolite, or metabolite group, to that of another, or to the water signal. Both approaches have drawbacks: ratios of two metabolites can be difficult to interpret because study effects may be driven by either metabolite, and water-referenced data must be corrected for partial volume and relaxation effects in the water signal. Here, we introduce combined reference (CRef) analysis, which compensates for both limitations. In this approach, metabolites are referenced to the combined signal of several reference metabolites or metabolite groups. The approach does not require the corrections necessary for water scaling and produces results that are less sensitive to the variation of any single reference signal, thereby aiding the interpretation of results. We demonstrate CRef analysis using 202 1 H-MRS acquisitions from the brains of 140 infants, scanned at approximately 1 and 3 months of age. We show that the combined signal of seven reference metabolites or metabolite groups is highly correlated with the water signal, corrected for partial volume and relaxation effects associated with cerebral spinal fluid. We also show that the combined reference signal is equally or more uniform across subjects than the reference signals from single metabolites or metabolite groups. We use CRef analysis to quantify metabolite concentration changes during the first several months of life in typically developing infants.
Collapse
Affiliation(s)
- Ryan J Larsen
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Borjan Gagoski
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah U Morton
- Harvard Medical School, Boston, Massachusetts, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Yangming Ou
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Rutvi Vyas
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Jonathan Litt
- Harvard Medical School, Boston, Massachusetts, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Neonatology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - P Ellen Grant
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Bradley P Sutton
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
7
|
Gajdošík M, Landheer K, Swanberg KM, Juchem C. INSPECTOR: free software for magnetic resonance spectroscopy data inspection, processing, simulation and analysis. Sci Rep 2021; 11:2094. [PMID: 33483543 PMCID: PMC7822873 DOI: 10.1038/s41598-021-81193-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 12/28/2020] [Indexed: 12/03/2022] Open
Abstract
In vivo magnetic resonance spectroscopy (MRS) is a powerful tool for biomedical research and clinical diagnostics, allowing for non-invasive measurement and analysis of small molecules from living tissues. However, currently available MRS processing and analytical software tools are limited in their potential for in-depth quality management, access to details of the processing stream, and user friendliness. Moreover, available MRS software focuses on selected aspects of MRS such as simulation, signal processing or analysis, necessitating the use of multiple packages and interfacing among them for biomedical applications. The freeware INSPECTOR comprises enhanced MRS data processing, simulation and analytical capabilities in a one-stop-shop solution for a wide range of biomedical research and diagnostic applications. Extensive data handling, quality management and visualization options are built in, enabling the assessment of every step of the processing chain with maximum transparency. The parameters of the processing can be flexibly chosen and tailored for the specific research problem, and extended confidence information is provided with the analysis. The INSPECTOR software stands out in its user-friendly workflow and potential for automation. In addition to convenience, the functionalities of INSPECTOR ensure rigorous and consistent data processing throughout multi-experiment and multi-center studies.
Collapse
Affiliation(s)
- Martin Gajdošík
- Department of Biomedical Engineering, Columbia University Fu Foundation School of Engineering and Applied Science, 3227 Broadway, New York, NY, 10027, USA.
| | - Karl Landheer
- Department of Biomedical Engineering, Columbia University Fu Foundation School of Engineering and Applied Science, 3227 Broadway, New York, NY, 10027, USA
| | - Kelley M Swanberg
- Department of Biomedical Engineering, Columbia University Fu Foundation School of Engineering and Applied Science, 3227 Broadway, New York, NY, 10027, USA
| | - Christoph Juchem
- Department of Biomedical Engineering, Columbia University Fu Foundation School of Engineering and Applied Science, 3227 Broadway, New York, NY, 10027, USA
- Department of Radiology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
8
|
MRS suggests multi-regional inflammation and white matter axonal damage at 11 years following perinatal HIV infection. NEUROIMAGE-CLINICAL 2020; 28:102505. [PMID: 33395994 PMCID: PMC7721646 DOI: 10.1016/j.nicl.2020.102505] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/30/2022]
Abstract
The neurological changes in children living with perinatal HIV (PHIV) on antiretroviral therapy (ART) can be studied at a metabolic level through proton magnetic resonance spectroscopy. While previous studies in children have largely focused on individual metabolite changes, investigating patterns within and across regions of interest can aid in identifying metabolic markers of HIV infection. In this study 76 children with PHIV from the Children with HIV Early AntiRetroviral (CHER) trial, 30 children who were HIV-exposed-uninfected (HEU) and 30 children who were HIV-unexposed (HU), were scanned at the age of 11.6 (sd = 0.3) years using a 3 T Skyra scanner. Metabolite concentrations were quantified within the basal ganglia (BG), midfrontal gray matter (MFGM) and peritrigonal white matter (PWM), comparing levels between HIV status groups using linear regression. Factor analysis and logistic regression were performed to identify metabolic patterns characteristic of HIV infection within and across the regions of interest. In the BG region we observed restored metabolic activity in children with PHIV and children who were HEU, despite differences being previously observed at younger ages, suggesting that treatment may effectively reduce the effects of HIV infection and exposure. Elevated MFGM choline levels in children with PHIV are indicative of inflammation. Further, we observed reduced N-acetyl-aspartate (NAA) in the PWM of children with PHIV and children who were HEU, indicating possible axonal damage. Lower levels of PWM creatine in children with PHIV suggest that this may not be a valid reference metabolite in HIV studies. Finally, factor scores for a cross-regional inflammatory factor and a PWM axonal factor, driven by PWM NAA and creatine levels, distinguished children with PHIV from children without HIV (HEU and HU) at 11 years. Therefore, the effects of perinatal HIV infection and exposure continue to be seen at 11 years despite early treatment.
Collapse
|
9
|
Maier S, Tebartz van Elst L, Philipsen A, Lange T, Feige B, Glauche V, Nickel K, Matthies S, Alm B, Sobanski E, Domschke K, Perlov E, Endres D. Effects of 12-Week Methylphenidate Treatment on Neurometabolism in Adult Patients with ADHD: The First Double-Blind Placebo-Controlled MR Spectroscopy Study. J Clin Med 2020; 9:jcm9082601. [PMID: 32796630 PMCID: PMC7464267 DOI: 10.3390/jcm9082601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 11/27/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a frequent neurodevelopmental disorder that often persists into adulthood. Methylphenidate (MPH) is the first-line treatment for ADHD; however, despite its wide usage, little is known about its neurometabolic effects. Until now, no randomized and blinded clinical trials have been conducted addressing the neurometabolic signals of MPH administration in adults with ADHD. In the current study, the authors investigated how MPH intake and group psychotherapy (GPT) influence brain neurometabolism over the course of three months. The authors hypothesized a decrease in the anterior cingulate cortex (ACC) glutamate concentration following MPH administration. This study was part of a double-blind multicenter trial (Comparison of Methylphenidate and Psychotherapy in Adult ADHD Study (COMPAS)) investigating the effects of MPH and GPT in patients with adult ADHD. Using single-voxel magnetic resonance spectroscopy (MRS) of the pregenual ACC and the left cerebellar hemisphere (CHL), we investigated the concentration of glutamate plus glutamine (Glx), N-acetyl-aspartate, creatine, total choline containing compounds, and myo-inositol in patients before and after 12 weeks of treatment. Neither MPH nor GPT significantly influenced the Glx concentration or any of the other metabolite concentrations in the ACC and CHL after 12 weeks. Therefore, contrary to the hypothesis, no change in the prefrontal Glx signal was detected after MPH treatment. Given that MRS does not differentiate between glutamate in the synaptic cleft and in neuronal tissue, MPH-induced down-regulation of glutamatergic neurotransmission in the ACC might only affect the concentration of glutamate in the synaptic cleft, while the general availability of glutamate in the respective neuronal tissue might be unaffected by MPH intake. The observed lack of any MPH-induced normalization in metabolite concentrations is less surprising, considering that the baseline sample did not significantly differ from a healthy control group. Future studies of other regions, such as the basal ganglia, and the use of novel methods, such as whole brain MRS and multimodal imaging approaches, are necessary.
Collapse
Affiliation(s)
- Simon Maier
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (S.M.); (B.F.); (K.N.); (E.P.); (D.E.)
- Department of Psychiatry and Psychotherapy, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (S.M.); (K.D.)
| | - Ludger Tebartz van Elst
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (S.M.); (B.F.); (K.N.); (E.P.); (D.E.)
- Department of Psychiatry and Psychotherapy, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (S.M.); (K.D.)
- Correspondence:
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53105 Bonn, Germany;
| | - Thomas Lange
- Department of Radiology, Medical Physics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Bernd Feige
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (S.M.); (B.F.); (K.N.); (E.P.); (D.E.)
- Department of Psychiatry and Psychotherapy, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (S.M.); (K.D.)
| | - Volkmar Glauche
- Department of Neurology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Kathrin Nickel
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (S.M.); (B.F.); (K.N.); (E.P.); (D.E.)
- Department of Psychiatry and Psychotherapy, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (S.M.); (K.D.)
| | - Swantje Matthies
- Department of Psychiatry and Psychotherapy, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (S.M.); (K.D.)
| | - Barbara Alm
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty of Mannheim, University of Heidelberg, 68159 Mannheim, Germany; (B.A.); (E.S.)
| | - Esther Sobanski
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty of Mannheim, University of Heidelberg, 68159 Mannheim, Germany; (B.A.); (E.S.)
- Department of Child and Adolescent Psychiatry, University Medical Center Mainz, 55131 Mainz, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (S.M.); (K.D.)
- Center for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Evgeniy Perlov
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (S.M.); (B.F.); (K.N.); (E.P.); (D.E.)
- Department of Psychiatry and Psychotherapy, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (S.M.); (K.D.)
- Clinic for Psychiatry Luzern, St. Urban, 4915 Luzern, Switzerland
| | - Dominique Endres
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (S.M.); (B.F.); (K.N.); (E.P.); (D.E.)
- Department of Psychiatry and Psychotherapy, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (S.M.); (K.D.)
| |
Collapse
|
10
|
Disturbances in brain energy metabolism in insulin resistance and diabetes and Alzheimer's disease - Learnings from brain imaging biomarkers. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:111-130. [PMID: 32739001 DOI: 10.1016/bs.irn.2020.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Medical imaging techniques, such as structural and functional magnetic resonance imaging and positron emission tomography, have been used to gain a better understanding of the alterations of the metabolic processes in the brain relating to type 2 diabetes melltius, insulin resistance and Alzheimer's disease. These studies have shown that there are several similarities in the effects that these seemingly disparate diseases have on the brain, and that some of the abnormalities are reversed by metabolic interventions. This review provides an overview of the overlap between these diseases using medical imaging, focusing on glucose metabolism, mitochondrial function and lipid metabolism.
Collapse
|
11
|
Li JN, Liu XL, Li L. Prefrontal GABA and glutamate levels correlate with impulsivity and cognitive function of prescription opioid addicts: A 1 H-magnetic resonance spectroscopy study. Psychiatry Clin Neurosci 2020; 74:77-83. [PMID: 31599080 DOI: 10.1111/pcn.12940] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 11/30/2022]
Abstract
AIM Prescription opioids are psychoactive substances that can elicit many neuropsychological effects. There are no studies that directly demonstrate the effects of prescription opioid addiction (POA) on the human brain. This study aimed to quantify γ-aminobutyric acid (GABA) and glutamate (Glu) levels in the prefrontal cortex (PFC) of POA patients using proton magnetic resonance spectroscopy (1 H-MRS), and to explore their association with impulsive behavior and cognitive impairment. METHODS Thirty-five patients with a definitive clinical diagnosis of codeine-containing cough syrup dependence and 35 matched healthy controls underwent neuropsychological assessments, namely the Barratt Impulsiveness Scale (BIS-11) and the Montreal Cognitive Assessment Scale (MoCA). Point-resolved spectroscopy was performed to detect GABA and glutamate within the medial PFC, and the corresponding levels were estimated using jMRUI and corrected for fraction of cerebrospinal fluid in the 1 H-MRS voxel. The difference in metabolite levels between groups and the correlation between metabolite levels and psychometric scores in patients were analyzed statistically. RESULTS The peak level predominantly consisting of GABA with a relatively small influence of other chemicals (GABA+) was lower and that of glutamate was higher in the PFC of POA patients than in healthy controls. GABA+ levels correlated negatively with BIS-11 scores but correlated positively with MoCA scores. In contrast, glutamate levels showed a positive correlation with BIS-11 scores but no significant correlation with MoCA scores. CONCLUSION The quantitative in vivo measurement of GABA and glutamate levels in the PFC by 1 H-MRS could be a reliable way to evaluate impulsivity and cognitive function of POA.
Collapse
Affiliation(s)
- Jian-Neng Li
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xi-Long Liu
- Department of Diagnostic Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Long Li
- Department of Radiology, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
12
|
Endres D, Tebartz van Elst L, Maier SJ, Feige B, Goll P, Meyer SA, Matthies S, Domschke K, Lange T, Sobanski E, Philipsen A, Nickel K, Perlov E. Neurochemical sex differences in adult ADHD patients: an MRS study. Biol Sex Differ 2019; 10:50. [PMID: 31665071 PMCID: PMC6821019 DOI: 10.1186/s13293-019-0264-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 08/30/2019] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder. Relevant sex differences in symptomatology are discussed. This study compared brain neurometabolism in the anterior cingulate cortex (ACC) and left cerebellar hemisphere in age- and IQ-matched adult male (mADHD) and female (fADHD) ADHD patients. METHODS We studied 48 (ACC) and 42 (cerebellum) male/female pairs of stimulant-free patients with adult ADHD. Single voxel magnetic resonance spectroscopy (MRS) was used to investigate creatine (Cre), total choline (t-Cho), glutamate + glutamine (Glx), N-acetylaspartate, and myo-inositol. The mADHD and fADHD groups were compared using robust linear regression. The level of significance was corrected for multiple tests using the Benjamini-Hochberg approach. RESULTS For the ACC, the signals of Cre (p = 0.008) and t-Cho (p = 0.004) showed significant effects of the age covariate as well as an interaction of sex and age (Cre: p = 0.033; t-Cho: p = 0.040). For the Glx signal, an interaction of sex and age could also be observed (p = 0.033). For cerebellar neurometabolites, the signals of t-Cho (p = 0.049) and Glx (p = 0.049) showed significant effects of the factor sex. CONCLUSION This is the largest study yet to analyze sex differences in brain neurochemistry in adult patients with ADHD. Different age-dependent t-Cho signals in the ACC might be associated with delayed myelinization in mADHD. Further MRS studies in adult ADHD, accounting for possible sex effects, are warranted to validate the present findings.
Collapse
Affiliation(s)
- Dominique Endres
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Psychiatry and Psychotherapy, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ludger Tebartz van Elst
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Psychiatry and Psychotherapy, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Simon J. Maier
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Psychiatry and Psychotherapy, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernd Feige
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Psychiatry and Psychotherapy, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Goll
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Psychiatry and Psychotherapy, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Simon A. Meyer
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Psychiatry and Psychotherapy, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Swantje Matthies
- Department of Psychiatry and Psychotherapy, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Lange
- Department of Radiology, Medical Physics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Esther Sobanski
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Clinical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medicine Mainz, Mainz, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Kathrin Nickel
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Psychiatry and Psychotherapy, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Evgeniy Perlov
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Psychiatry and Psychotherapy, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Clinic for Psychiatry Luzern, St. Urban, Switzerland
| |
Collapse
|
13
|
General technical remarks on 1HMRS translational research in 7T. Pol J Radiol 2019; 84:e190-e197. [PMID: 31481990 PMCID: PMC6717948 DOI: 10.5114/pjr.2019.85147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/10/2019] [Indexed: 12/11/2022] Open
Abstract
Purpose The aim of the work was to share the practical experience of preclinical and clinical proton magnetic resonance spectroscopy (1HMRS) studies conducted using a 7-Tesla magnetic field strength scanner, taking into account the specificity of both settings in the context of translational research. Material and methods 1HMRS volunteer studies conducted using a Discovery 950 GE 7T scanner, were carried out with PRESS sequence, and a VOI measuring 2.0 × 2.0 × 2.0 cm3 placed in the white matter at the parietal occipital lobe. Rodent spectra obtained using a 7T Bruker were measured with PRESS, with a VOI 2.0 × 2.0 × 5.5 mm3 placed over the hippocampus. Results 1HMRS data from humans and rats show that the brain spectra obtained in the same field are characterised by a similar neurochemical structure and spectral resolution. Spectra obtained from rats demonstrate the following metabolites: NAA, Glu, Gln, Ins, Cho, Cr, PCr, Tau, GABA, Lac, NAAG, and Asp. In turn, spectra from humans allowed estimation of the following metabolites: Ala, NAA, Glu, Gln, Ins, Cho, Cr, PCr, Tau, GABA, Lac, NAAG, and Asp. Signals from Gln, Glu with chemical shift around 2.4 ppm, from Cr, PCr, and GABA at 3 ppm, and signals from Cho and Tau at approximately 3.2 ppm, can be properly separated and estimated both in humans and in rats. Conclusions These results are promising in terms of broadening the knowledge of many neurological diseases by inducing them on animal models and then transferring this knowledge to clinical practice. In spite of this, important distinctions in the technical aspects and methodological differences of high-field 1HMRS in both preclinical and clinical conditions should be taken into account.
Collapse
|
14
|
Purvis LAB, Valkovič L, Robson MD, Rodgers CT. Feasibility of absolute quantification for 31 P MRS at 7 T. Magn Reson Med 2019; 82:49-61. [PMID: 30892732 PMCID: PMC6492160 DOI: 10.1002/mrm.27729] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 12/24/2022]
Abstract
Purpose Phosphorus spectroscopy can differentiate among liver disease stages and types. To quantify absolute concentrations of phosphorus metabolites, sensitivity calibration and transmit field (B1+) correction are required. The trend toward ultrahigh fields (7 T) and the use of multichannel RF coils makes this ever more challenging. We investigated the constraints on reference phantoms, and implemented techniques for the absolute quantification of human liver phosphorus spectra acquired using a 10‐cm loop and a 16‐channel array at 7 T. Methods The effect of phantom conductivity was assessed at 25.8 MHz (1.5 T), 49.9 MHz (3 T), and 120.3 MHz (7 T) by electromagnetic modeling. Radiofrequency field maps (B1±) were measured in phosphate phantoms (18 mM and 40 mM) at 7 T. These maps were used to assess the correction of 4 phantom 3D‐CSI data sets using 3 techniques: phantom replacement, explicit normalization, and simplified normalization. In vivo liver spectra acquired with a 10‐cm loop were corrected with all 3 methods. Simplified normalization was applied to in vivo 16‐channel array data sets. Results Simulations show that quantification errors of less than 3% are achievable using a uniform electrolyte phantom with a conductivity of 0.23‐0.86 S.m−1 at 1.5 T, 0.39‐0.58 S.m−1 at 3 T, and 0.34‐0.42 S.m−1 (16‐19 mM KH2PO4(aq)) at 7 T. The mean γ‐ATP concentration quantified in vivo at 7 T was 1.39 ± 0.30 mmol.L−1 to 1.71 ± 0.35 mmol.L−1 wet tissue for the 10‐cm loop and 1.88 ± 0.25 mmol.L−1 wet tissue for the array. Conclusion It is essential to select a calibration phantom with appropriate conductivity for quantitative phosphorus spectroscopy at 7 T. Using an 18‐mM phosphate phantom and simplified normalization, human liver phosphate metabolite concentrations were successfully quantified at 7 T.
Collapse
Affiliation(s)
- Lucian A B Purvis
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Ladislav Valkovič
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.,Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Matthew D Robson
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Christopher T Rodgers
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.,Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
15
|
Bonny J, Pagès G. Uncertainties of calculated Cramér‐Rao lower bounds: implications for quantitative MRS. Magn Reson Med 2018; 81:759-764. [DOI: 10.1002/mrm.27415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/18/2018] [Accepted: 06/01/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Jean‐Marie Bonny
- INRA UR370 Qualité des Produits AnimauxSaint‐Genès‐Champanelle France
| | - Guilhem Pagès
- INRA UR370 Qualité des Produits AnimauxSaint‐Genès‐Champanelle France
| |
Collapse
|
16
|
Quality Control Procedure Based on Partitioning of NMR Time Series. SENSORS 2018; 18:s18030792. [PMID: 29509681 PMCID: PMC5877107 DOI: 10.3390/s18030792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/01/2018] [Accepted: 03/03/2018] [Indexed: 11/16/2022]
Abstract
The quality of the magnetic resonance spectroscopy (MRS) depends on the stability of magnetic resonance (MR) system performance and optimal hardware functioning, which ensure adequate levels of signal-to-noise ratios (SNR) as well as good spectral resolution and minimal artifacts in the spectral data. MRS quality control (QC) protocols and methodologies are based on phantom measurements that are repeated regularly. In this work, a signal partitioning algorithm based on a dynamic programming (DP) method for QC assessment of the spectral data is described. The proposed algorithm allows detection of the change points—the abrupt variations in the time series data. The proposed QC method was tested using the simulated and real phantom data. Simulated data were randomly generated time series distorted by white noise. The real data were taken from the phantom quality control studies of the MRS scanner collected for four and a half years and analyzed by LCModel software. Along with the proposed algorithm, performance of various literature methods was evaluated for the predefined number of change points based on the error values calculated by subtracting the mean values calculated for the periods between the change-points from the original data points. The time series were checked using external software, a set of external methods and the proposed tool, and the obtained results were comparable. The application of dynamic programming in the analysis of the phantom MRS data is a novel approach to QC. The obtained results confirm that the presented change-point-detection tool can be used either for independent analysis of MRS time series (or any other) or as a part of quality control.
Collapse
|
17
|
Liu XL, Li L, Li JN, Rong JH, Liu B, Hu ZX. Reliability of Glutamate Quantification in Human Nucleus Accumbens Using Proton Magnetic Resonance Spectroscopy at a 70-cm Wide-Bore Clinical 3T MRI System. Front Neurosci 2017; 11:686. [PMID: 29259538 PMCID: PMC5723319 DOI: 10.3389/fnins.2017.00686] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/22/2017] [Indexed: 12/29/2022] Open
Abstract
The human nucleus accumbens is a challenging region to study using proton magnetic resonance spectroscopy (1H-MRS) on a 70-cm wide-bore clinical 3T MRI system. The aim of this study was to investigate the reliability for quantitative measurement of glutamate concentration in the nucleus accumbens using a 70-cm wide-bore clinical 3T MRI. 1H-MRS of the nucleus accumbens was acquired using the Point-Resolved Spectroscopic Sequence (PRESS) with echo time of 40 ms from 10 healthy volunteers (5 female; age range: 18–30 years) on two separate visits (a baseline, and 1-month time point). The Java-based Magnetic Resonance User Interface (jMRUI) software package was used to quantitatively measure the absolute metabolite concentrations. The test-retest reliability and reproducibility were assessed using intraclass correlations coefficients (ICC), and coefficients of variation (CV). Glutamate concentrations were similar across visits (P = 0.832). Reproducibility measures for all metabolites were good with CV ranging from 7.8 to 14.0%. The ICC values of all metabolites for the intra-class measures were excellent (ICC > 0.8), except that the reliability for Glx (glutamate + glutamine) was good (ICC = 0.768). Pearson correlations for all metabolites were all highly significant (r = 0.636–0.788, P < 0.05). In conclusion, the short-echo-time PRESS can reliably obtain high quality glutamate spectrum from a ~3.4 cm3 voxel of the nucleus accumbens using a 70-cm wide-bore clinical 3T MRI.
Collapse
Affiliation(s)
- Xi-Long Liu
- Department of Radiology, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, Guangzhou, China
| | - Long Li
- Department of Radiology, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, Guangzhou, China
| | - Jian-Neng Li
- Department of Radiology, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, Guangzhou, China
| | - Jia-Hui Rong
- Department of Radiology, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, Guangzhou, China
| | - Bo Liu
- Department of Radiology, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, Guangzhou, China
| | - Ze-Xuan Hu
- Department of Radiology, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
18
|
Neuberger U, Kickingereder P, Helluy X, Fischer M, Bendszus M, Heiland S. Accuracy of 1H magnetic resonance spectroscopy for quantification of 2-hydroxyglutarate using linear combination and J-difference editing at 9.4 T. Z Med Phys 2017; 27:300-309. [DOI: 10.1016/j.zemedi.2017.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 01/28/2017] [Accepted: 04/19/2017] [Indexed: 11/27/2022]
|
19
|
Liu XL, Li L, Li JN, Tang JH, Rong JH, Liu B, Hu ZX. Quantifying absolute glutamate concentrations in nucleus accumbens of prescription opioid addicts by using 1H MRS. Brain Behav 2017; 7:e00769. [PMID: 28828225 PMCID: PMC5561325 DOI: 10.1002/brb3.769] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/07/2017] [Accepted: 06/13/2017] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION The diagnosis of psychoactive substance use disorders has been based primarily on descriptive, symptomatic checklist criteria. In opioid addiction, there are no objective biological indicators specific enough to guide diagnosis, monitor disease status, and evaluate efficacy of therapeutic interventions. Proton magnetic resonance spectroscopy (1H MRS) of the brain has potential to identify and quantify biomarkers for the diagnosis of opioid dependence. The purpose of this study was to detect the absolute glutamate concentration in the nucleus accumbens (NAc) of patients with prescription opioid dependence using 1H MRS, and to analyze its clinical associations. METHODS Twenty patients with clinically diagnosed definitive prescription opioid dependent (mean age = 26.5 ± 4.3 years) and 20 matched healthy controls (mean age = 26.1 ± 3.8 years) participated in this study. Patients were evaluated with the Barratt Impulsiveness Scale (BIS-11), the Self-Rating Anxiety Scale (SAS), and the opiate Addiction Severity Inventory (ASI). We used point-resolved spectroscopy to quantify the absolute concentrations of metabolites (glutamate, choline, N-acetylaspartate, glutamine, creatine) within the NAc. The difference between metabolite levels of groups and Pearson's correlation between glutamate levels and psychometric scores in patients were analyzed statistically. RESULTS Glutamate concentrations in the NAc were significantly higher in prescription opiate addicts than in controls (t = 3.84, p = .001). None of the other metabolites differed significantly between the two groups (all ps > .05). The glutamate concentrations correlated positively with BIS-11 scores in prescription opiate addicts (r = .671, p = .001), but not with SAS score and ASI index. CONCLUSIONS Glutamate levels in the NAc measured quantitatively with in vivo 1H MRS could be used as a biomarker to evaluate disease condition in opioid-dependent patients.
Collapse
Affiliation(s)
- Xi-Long Liu
- Department of Radiology Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces Guangzhou Medical University Guangzhou China
| | - Long Li
- Department of Radiology Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces Guangzhou Medical University Guangzhou China
| | - Jian-Neng Li
- Department of Radiology Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces Guangzhou Medical University Guangzhou China
| | - Ji-Hua Tang
- Department of Psychology and Addiction Medicine Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces Guangzhou Medical University Guangzhou China
| | - Jia-Hui Rong
- Department of Radiology Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces Guangzhou Medical University Guangzhou China
| | - Bo Liu
- Department of Radiology Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces Guangzhou Medical University Guangzhou China
| | - Ze-Xuan Hu
- Department of Radiology Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces Guangzhou Medical University Guangzhou China
| |
Collapse
|
20
|
Lanz B, Rackayova V, Braissant O, Cudalbu C. MRS studies of neuroenergetics and glutamate/glutamine exchange in rats: Extensions to hyperammonemic models. Anal Biochem 2017; 529:245-269. [DOI: 10.1016/j.ab.2016.11.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 11/16/2016] [Accepted: 11/30/2016] [Indexed: 01/27/2023]
|
21
|
Bonvento G, Valette J, Flament J, Mochel F, Brouillet E. Imaging and spectroscopic approaches to probe brain energy metabolism dysregulation in neurodegenerative diseases. J Cereb Blood Flow Metab 2017; 37:1927-1943. [PMID: 28276944 PMCID: PMC5464722 DOI: 10.1177/0271678x17697989] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/10/2017] [Accepted: 02/06/2017] [Indexed: 12/14/2022]
Abstract
Changes in energy metabolism are generally considered to play an important role in neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's diseases. Whether these changes are causal or simply a part of self-defense mechanisms is a matter of debate. Furthermore, energy defects have often been discussed solely in the context of their probable neuronal origin without considering the cellular heterogeneity of the brain. Recent data point towards the existence of a tri-cellular compartmentation of brain energy metabolism between neurons, astrocytes, and oligodendrocytes, each cell type having a distinctive metabolic profile. Still, the number of methods to follow energy metabolism in patients is extremely limited and existing clinical techniques are blind to most cellular processes. There is a need to better understand how brain energy metabolism is regulated in health and disease through experiments conducted at different scales in animal models to implement new methods in the clinical setting. The purpose of this review is to offer a brief overview of the broad spectrum of methodological approaches that have emerged in recent years to probe energy metabolism in more detail. We conclude that multi-modal neuroimaging is needed to follow non-cell autonomous energy metabolism dysregulation in neurodegenerative diseases.
Collapse
Affiliation(s)
- Gilles Bonvento
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale (DRF), Institut d’Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), CNRS UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Julien Valette
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale (DRF), Institut d’Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), CNRS UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Julien Flament
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale (DRF), Institut d’Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), CNRS UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
- INSERM US 27, Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France
| | - Fanny Mochel
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 6, Institut du Cerveau et de la Moelle épinière, Paris, France
- Department of Genetics, AP-HP Hôpital Pitié-Salpêtrière, Paris, France
- University Pierre and Marie Curie, Neurometabolic Research Group, Paris, France
| | - Emmanuel Brouillet
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale (DRF), Institut d’Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), CNRS UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| |
Collapse
|
22
|
Endres D, Tebartz van Elst L, Meyer SA, Feige B, Nickel K, Bubl A, Riedel A, Ebert D, Lange T, Glauche V, Biscaldi M, Philipsen A, Maier SJ, Perlov E. Glutathione metabolism in the prefrontal brain of adults with high-functioning autism spectrum disorder: an MRS study. Mol Autism 2017; 8:10. [PMID: 28316774 PMCID: PMC5351053 DOI: 10.1186/s13229-017-0122-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 02/14/2017] [Indexed: 12/12/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is a neurodevelopmental disease characterized by difficulties in social communication, unusually restricted, repetitive behavior and interests, and specific abnormalities in language and perception. The precise etiology of ASD is still unknown and probably heterogeneous. In a subgroup of patients, toxic environmental exposure might lead to an imbalance between oxidative stress and anti-oxidant systems. Previous serum and postmortem studies measuring levels of glutathione (GSH), the main cellular free radical scavenger in the brain, have supported the hypothesis that this compound might play a role in the pathophysiology of autism. Methods Using the method of single-voxel proton magnetic resonance spectroscopy (MRS), we analyzed the GSH signal in the dorsal anterior cingulate cortex (dACC) and the dorsolateral prefrontal cortex (DLPFC) of 24 ASD patients with normal or above average IQs and 18 matched control subjects. We hypothesized that we would find decreased GSH concentrations in both regions. Results We did not find overall group differences in neurometabolites including GSH, neither in the dorsal ACC (Wilks’ lambda test; p = 0.429) nor in the DLPFC (p = 0.288). In the dACC, we found a trend for decreased GSH signals in ASD patients (p = 0.076). Conclusions We were unable to confirm our working hypothesis regarding decreased GSH concentrations in the ASD group. Further studies combining MRS, serum, and cerebrospinal fluid measurements of GSH metabolism including other regions of interest or even whole brain spectroscopy are needed.
Collapse
Affiliation(s)
- Dominique Endres
- Section for Experimental Neuropsychiatry, Department of Psychiatry, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstr. 5, 79104 Freiburg, Germany
| | - Ludger Tebartz van Elst
- Section for Experimental Neuropsychiatry, Department of Psychiatry, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstr. 5, 79104 Freiburg, Germany
| | - Simon A Meyer
- Section for Experimental Neuropsychiatry, Department of Psychiatry, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstr. 5, 79104 Freiburg, Germany
| | - Bernd Feige
- Section for Experimental Neuropsychiatry, Department of Psychiatry, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstr. 5, 79104 Freiburg, Germany
| | - Kathrin Nickel
- Section for Experimental Neuropsychiatry, Department of Psychiatry, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstr. 5, 79104 Freiburg, Germany
| | - Anna Bubl
- Department for Psychiatry and Psychotherapy, Saarland University Medical Center, Kirrberger Str. 100, 66421 Homburg, Saar Germany
| | - Andreas Riedel
- Section for Experimental Neuropsychiatry, Department of Psychiatry, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstr. 5, 79104 Freiburg, Germany
| | - Dieter Ebert
- Section for Experimental Neuropsychiatry, Department of Psychiatry, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstr. 5, 79104 Freiburg, Germany
| | - Thomas Lange
- Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 60a, 79106 Freiburg, Germany
| | - Volkmar Glauche
- Department of Neurology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106 Freiburg, Germany
| | - Monica Biscaldi
- Department for Child and Adolescent Psychiatry and Psychotherapy, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstr. 8, 79104 Freiburg, Germany
| | - Alexandra Philipsen
- School of Medicine and Health Sciences, Psychiatry and Psychotherapy - University Hospital, Karl-Jaspers-Klinik, Medical Campus University of Oldenburg, Hermann-Ehlers-Str. 7, 26160 Bad Zwischenahn, Germany
| | - Simon J Maier
- Section for Experimental Neuropsychiatry, Department of Psychiatry, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstr. 5, 79104 Freiburg, Germany
| | - Evgeniy Perlov
- Section for Experimental Neuropsychiatry, Department of Psychiatry, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstr. 5, 79104 Freiburg, Germany.,Clinic for Psychiatry Luzern, Schafmattstrasse 1, 4915 St. Urban, Switzerland
| |
Collapse
|
23
|
Larsen RJ, Newman M, Nikolaidis A. Reduction of variance in measurements of average metabolite concentration in anatomically-defined brain regions. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 272:73-81. [PMID: 27662403 DOI: 10.1016/j.jmr.2016.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 09/09/2016] [Accepted: 09/10/2016] [Indexed: 06/06/2023]
Abstract
Multiple methods have been proposed for using Magnetic Resonance Spectroscopy Imaging (MRSI) to measure representative metabolite concentrations of anatomically-defined brain regions. Generally these methods require spectral analysis, quantitation of the signal, and reconciliation with anatomical brain regions. However, to simplify processing pipelines, it is practical to only include those corrections that significantly improve data quality. Of particular importance for cross-sectional studies is knowledge about how much each correction lowers the inter-subject variance of the measurement, thereby increasing statistical power. Here we use a data set of 72 subjects to calculate the reduction in inter-subject variance produced by several corrections that are commonly used to process MRSI data. Our results demonstrate that significant reductions of variance can be achieved by performing water scaling, accounting for tissue type, and integrating MRSI data over anatomical regions rather than simply assigning MRSI voxels with anatomical region labels.
Collapse
Affiliation(s)
- Ryan J Larsen
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, United States.
| | - Michael Newman
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, United States
| | - Aki Nikolaidis
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, United States
| |
Collapse
|
24
|
Xin L, Tkáč I. A practical guide to in vivo proton magnetic resonance spectroscopy at high magnetic fields. Anal Biochem 2016; 529:30-39. [PMID: 27773654 DOI: 10.1016/j.ab.2016.10.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/03/2016] [Accepted: 10/19/2016] [Indexed: 12/26/2022]
Abstract
Localized proton magnetic resonance spectroscopy (1H-MRS) is a noninvasive tool for measuring in vivo neurochemical information in animal and human brains. With the increase of magnetic field strength, whereas localized 1H-MRS benefits from higher sensitivity and spectral dispersion, it is challenged by increased spatial inhomogeneity of the B0 and B1 fields, larger chemical shift displacement error, and shortened T2 relaxation times of metabolites. Advanced localized 1H-MRS methodologies developed for high magnetic fields have shown promising results and allow the measurement of neurochemical profiles with up to 19 brain metabolites, including less-abundant metabolites, such as glutathione, glycine, γ-aminobutyric acid and ascorbate. To provide a practical guide for conducting in vivo1H-MRS studies at high magnetic field strength, we reviewed various essential technical aspects from data acquisition (hardware requirements, B1 and B0 inhomogeneity, water suppression, localization sequences and acquisition strategies) to data processing (frequency and phase correction, spectral quality control, spectral fitting and concentration referencing). Additionally, we proposed guidelines for choosing the most appropriate data acquisition and processing approaches to maximize the achievable neurochemical information.
Collapse
Affiliation(s)
- Lijing Xin
- Animal Imaging and Technology Core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Ivan Tkáč
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
25
|
Scavuzzo CJ, Moulton CJ, Larsen RJ. The use of magnetic resonance spectroscopy for assessing the effect of diet on cognition. Nutr Neurosci 2016; 21:1-15. [DOI: 10.1080/1028415x.2016.1218191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Claire J. Scavuzzo
- Neuroscience Program, University of Illinois at Urbana-Champaign, USA
- Department of Psychology, University of Alberta, Edmonton, Canada
| | | | - Ryan J. Larsen
- Biomedical Imaging Center, Beckman Institute, University of Illinois at Urbana-Champaign, USA
| |
Collapse
|
26
|
Endres D, Tebartz van Elst L, Feige B, Backenecker S, Nickel K, Bubl A, Lange T, Mader I, Maier S, Perlov E. On the Effect of Sex on Prefrontal and Cerebellar Neurometabolites in Healthy Adults: An MRS Study. Front Hum Neurosci 2016; 10:367. [PMID: 27531975 PMCID: PMC4969301 DOI: 10.3389/fnhum.2016.00367] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 07/11/2016] [Indexed: 11/13/2022] Open
Abstract
In neuropsychiatric research, the aspects of sex have received increasing attention over the past decade. With regard to the neurometabolic differences in the prefrontal cortex and the cerebellum of both men and women, we performed a magnetic resonance spectroscopic (MRS) study of a large group of healthy subjects. For neurometabolic measurements, we used single-voxel proton MRS. The voxels of interest (VOI) were placed in the pregenual anterior cingulate cortex (pACC) and the left cerebellar hemisphere. Absolute quantification of creatine (Cre), total choline (t-Cho), glutamate and glutamine (Glx), N-acetylaspartate, and myo-inositol (mI) was performed. Thirty-three automatically matched ACCs and 31 cerebellar male-female pairs were statistically analyzed. We found no significant neurometabolic differences in the pACC region (Wilks' lambda: p = 0.657). In the left cerebellar region, we detected significant variations between the male and female groups (p = 0.001). Specifically, we detected significantly higher Cre (p = 0.005) and t-Cho (p = 0.000) levels in men. Additionally, males tended to have higher Glx and mI concentrations. This is the first study to report neurometabolic sex differences in the cerebellum. The effects of sexual hormones might have influenced our findings. Our data indicates the importance of adjusting for the confounding effects of sex in MRS studies.
Collapse
Affiliation(s)
- Dominique Endres
- Section for Experimental Neuropsychiatry, Department for Psychiatry and Psychotherapy, University Medical Center Freiburg Freiburg, Germany
| | - Ludger Tebartz van Elst
- Section for Experimental Neuropsychiatry, Department for Psychiatry and Psychotherapy, University Medical Center Freiburg Freiburg, Germany
| | - Bernd Feige
- Section for Experimental Neuropsychiatry, Department for Psychiatry and Psychotherapy, University Medical Center Freiburg Freiburg, Germany
| | - Stephan Backenecker
- Section for Experimental Neuropsychiatry, Department for Psychiatry and Psychotherapy, University Medical Center Freiburg Freiburg, Germany
| | - Kathrin Nickel
- Section for Experimental Neuropsychiatry, Department for Psychiatry and Psychotherapy, University Medical Center Freiburg Freiburg, Germany
| | - Anna Bubl
- Department for Psychiatry and Psychotherapy, Saarland University Medical Center Homburg, Germany
| | - Thomas Lange
- Department for Radiology, Medical Physics, University Medical Center Freiburg Freiburg, Germany
| | - Irina Mader
- Department of Neuroradiology, University Medical Center Freiburg Freiburg, Germany
| | - Simon Maier
- Section for Experimental Neuropsychiatry, Department for Psychiatry and Psychotherapy, University Medical Center Freiburg Freiburg, Germany
| | - Evgeniy Perlov
- Section for Experimental Neuropsychiatry, Department for Psychiatry and Psychotherapy, University Medical Center Freiburg Freiburg, Germany
| |
Collapse
|
27
|
Vafaeyan H, Ebrahimzadeh SA, Rahimian N, Alavijeh SK, Madadi A, Faeghi F, Harirchian MH, Rad HS. Quantification of diagnostic biomarkers to detect multiple sclerosis lesions employing (1)H-MRSI at 3T. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2015; 38:611-8. [PMID: 26526449 DOI: 10.1007/s13246-015-0390-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/19/2015] [Indexed: 11/25/2022]
Abstract
Proton magnetic resonance spectroscopic imaging ((1)H-MRSI) enables the quantification of metabolite concentration ratios in the brain. The major purpose of the current work is to characterize NAA/Cho, NAA/Cr and Myo/Cr in multiple sclerosis (MS) patients, and to estimate their reproducibility in healthy controls. Twelve MS patients and five healthy volunteers were imaged using (1)H-MRSI at 3T. Eddy current correction was performed using a single-voxel non-water suppressed acquisition on an external water phantom. Time-domain quantification was carried out using subtract-QUEST technique, and based on an optimal simulated metabolite database. Reproducibility was evaluated on the same quantified ratios in five normal subjects. An optimal database was created for the quantification of the MRSI data, consisting of choline (Cho), creatine (Cr), N-acetyl aspartate (NAA), lactate (Lac), lipids, myo-inositol (Myo) and glutamine + glutamate (Glx). Decreasing of NAA/Cr and NAA/Cho ratios, as well as an increase in Myo/Cr ratio were observed for MS patients in comparison with control group. Reproducibility of NAA/Cr, NAA/Cho and Myo/Cr in control group was 0.98, 0.87 and 0.64, respectively, expressed as the squared correlation coefficient R (2) between duplicate experiments. We showed that MRSI alongside the time-domain quantification of spectral ratios offers a sensitive and reproducible framework to differentiate MS patients from normals.
Collapse
Affiliation(s)
- H Vafaeyan
- Quantitative MR Imaging and Spectroscopy Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- School of Para-Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - S A Ebrahimzadeh
- Department of Radiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - N Rahimian
- Iranian Center of Neurological Research, TUMS, Tehran, Iran
| | - S Karimi Alavijeh
- Quantitative MR Imaging and Spectroscopy Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Medical Physics and Biomedical Engineering Department, TUMS, Keshavarz Boulevard, Tehran, Iran
| | - A Madadi
- Quantitative MR Imaging and Spectroscopy Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - F Faeghi
- School of Para-Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - M H Harirchian
- Iranian Center of Neurological Research, TUMS, Tehran, Iran
| | - H Saligheh Rad
- Quantitative MR Imaging and Spectroscopy Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
- Medical Physics and Biomedical Engineering Department, TUMS, Keshavarz Boulevard, Tehran, Iran.
| |
Collapse
|
28
|
Endres D, Perlov E, Maier S, Feige B, Nickel K, Goll P, Bubl E, Lange T, Glauche V, Graf E, Ebert D, Sobanski E, Philipsen A, Tebartz van Elst L. Normal Neurochemistry in the Prefrontal and Cerebellar Brain of Adults with Attention-Deficit Hyperactivity Disorder. Front Behav Neurosci 2015; 9:242. [PMID: 26441572 PMCID: PMC4585345 DOI: 10.3389/fnbeh.2015.00242] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/24/2015] [Indexed: 01/07/2023] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder. In an attempt to extend earlier neurochemical findings, we organized a magnetic resonance spectroscopy (MRS) study as part of a large, government-funded, prospective, randomized, multicenter clinical trial comparing the effectiveness of specific psychotherapy with counseling and stimulant treatment with placebo treatment (Comparison of Methylphenidate and Psychotherapy Study). We report the baseline neurochemical data for the anterior cingulate cortex (ACC) and the cerebellum in a case–control setting. For the trial, 1,480 adult patients were contacted for participation, 518 were assessed for eligibility, 433 were randomized, and 187 were potentially eligible for neuroimaging. The control group included 119 healthy volunteers. Single-voxel proton MRS was performed. In the patient group, 113 ACC and 104 cerebellar spectra fulfilled all quality criteria for inclusion in statistical calculations, as did 82 ACC and 78 cerebellar spectra in the control group. We did not find any significant neurometabolic differences between the ADHD and control group in the ACC (Wilks’ lambda test: p = 0.97) or in the cerebellum (p = 0.62). Thus, we were unable to replicate earlier findings in this methodologically sophisticated study. We discuss our findings in the context of a comprehensive review of other MRS studies on ADHD and a somewhat skeptical neuropsychiatric research perspective. As in other neuropsychiatric disorders, the unclear nosological status of ADHD might be an explanation for false-negative findings.
Collapse
Affiliation(s)
- Dominique Endres
- Section for Experimental Neuropsychiatry, Department for Psychiatry and Psychotherapy, University Medical Center Freiburg , Freiburg , Germany
| | - Evgeniy Perlov
- Section for Experimental Neuropsychiatry, Department for Psychiatry and Psychotherapy, University Medical Center Freiburg , Freiburg , Germany
| | - Simon Maier
- Section for Experimental Neuropsychiatry, Department for Psychiatry and Psychotherapy, University Medical Center Freiburg , Freiburg , Germany
| | - Bernd Feige
- Section for Experimental Neuropsychiatry, Department for Psychiatry and Psychotherapy, University Medical Center Freiburg , Freiburg , Germany
| | - Kathrin Nickel
- Section for Experimental Neuropsychiatry, Department for Psychiatry and Psychotherapy, University Medical Center Freiburg , Freiburg , Germany
| | - Peter Goll
- Section for Experimental Neuropsychiatry, Department for Psychiatry and Psychotherapy, University Medical Center Freiburg , Freiburg , Germany
| | - Emanuel Bubl
- Section for Experimental Neuropsychiatry, Department for Psychiatry and Psychotherapy, University Medical Center Freiburg , Freiburg , Germany
| | - Thomas Lange
- Department of Radiology, Medical Physics, University Medical Center Freiburg , Freiburg , Germany ; Freiburg Institute for Advanced Studies, Albert-Ludwigs-University , Freiburg , Germany
| | - Volkmar Glauche
- Department of Neurology, University Medical Center Freiburg , Freiburg , Germany
| | - Erika Graf
- Clinical Trials Unit, University Medical Center Freiburg , Freiburg , Germany
| | - Dieter Ebert
- Section for Experimental Neuropsychiatry, Department for Psychiatry and Psychotherapy, University Medical Center Freiburg , Freiburg , Germany
| | - Esther Sobanski
- Clinic for Psychiatry and Psychotherapy, Central Institute for Mental Health Mannheim , Mannheim , Germany
| | - Alexandra Philipsen
- Section for Experimental Neuropsychiatry, Department for Psychiatry and Psychotherapy, University Medical Center Freiburg , Freiburg , Germany
| | - Ludger Tebartz van Elst
- Section for Experimental Neuropsychiatry, Department for Psychiatry and Psychotherapy, University Medical Center Freiburg , Freiburg , Germany
| |
Collapse
|
29
|
Skorupa A, Wicher M, Banasik T, Jamroz E, Paprocka J, Kiełtyka A, Sokół M, Konopka M. Four-and-one-half years' experience in monitoring of reproducibility of an MR spectroscopy system--application of in vitro results to interpretation of in vivo data. J Appl Clin Med Phys 2014; 15:323–334. [PMID: 24892353 PMCID: PMC5711050 DOI: 10.1120/jacmp.v15i3.4754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 02/16/2014] [Accepted: 01/29/2014] [Indexed: 11/23/2022] Open
Abstract
The primary purpose of this work was to assess long-term in vitro reproducibility of metabolite levels measured using 1H MRS (proton magnetic resonance spectroscopy). The secondary purpose was to use the in vitro results for interpretation of 1H MRS in vivo spectra acquired from patients diagnosed with Canavan disease. 1H MRS measurements were performed in the period from April 2006 to September 2010. 118 short and 116 long echo spectra were acquired from a stable phantom during this period. Change-point analysis of the in vitro N-acetylaspartate levels was exploited in the computation of fT factor (ratio of the actual to the reference N-acetylaspartate level normalized by the reciprocity principle). This coefficient was utilized in the interpretation of in vivo spectra analyzed using absolute reference technique. The monitored time period was divided into six time intervals based on short echo in vitro data (seven time intervals based on long echo in vitro data) characterized by fT coefficient ranging from 0.97 to 1.09 (based on short echo data) and from 1.0 to 1.11 (based on long echo data). Application of this coefficient to interpretation of in vivo spectra confirmed increased N-acetylaspartate level in Canavan disease. Long-term monitoring of an MRS system reproducibility, allowing for absolute referencing of metabolite levels, facilitates interpretation of metabolic changes in white matter disorders.
Collapse
Affiliation(s)
- Agnieszka Skorupa
- Maria Sk?odowska-Curie Memorial Cancer Center and Institute of Oncology.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Teixeira PAG, Hossu G, Kauffmann F, Sewonu A, Constans JM, Blum A, Felblinger J. Influence of calcium on choline measurements by 1H MR spectroscopy of thigh muscles. Eur Radiol 2014; 24:1309-19. [PMID: 24633428 DOI: 10.1007/s00330-014-3131-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 02/05/2014] [Accepted: 02/14/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To study the effects of calcium on the choline peak measurements with 1H MR spectroscopy. MATERIAL AND METHODS The thigh muscles of two cadaveric specimens were prospectively evaluated on a 3 T MR unit before and after the injection of calcium carbonate (up to 0.4322 g). The choline peaks of 147 spectra from 10 different anatomic locations were quantitatively evaluated. The influence of the calcium concentration and its disposition with respect to the main magnetic field were considered. B0 phase maps were used to evaluate field inhomogeneities. RESULTS The presence of calcium led to a 43 % underestimation of the choline peak and the choline concentration (p = 0.0002 and 0.0036). The mean choline concentrations before and after CaCO3 injection were 3.53 ± 1.72 mmol/l and 1.58 ± 0.63 mmol/l. The influence of calcium carbonate on the choline peak estimations was proportional to the calcium concentration. There was a significant position-dependent difference in the estimation of the choline peak amplitude (p < 0.0154). Calcium injection led to a measurable increase in field inhomogeneities. CONCLUSION There was a significant underestimation of the choline peak amplitude and concentration in the presence of calcium, which might cause misinterpretations of MR spectra. KEY POINTS The presence of calcium led to significant underestimation of choline measurements. The influence of calcium is dependent on its concentration and distribution. Quantitative MR spectroscopy of calcified tumours should be interpreted with caution.
Collapse
|
31
|
Mazzetti S, Bracco C, Regge D, Caivano R, Russo F, Stasi M. Choline-containing compounds quantification by 1H NMR spectroscopy using external reference and noise measurements. Phys Med 2013; 29:677-83. [DOI: 10.1016/j.ejmp.2012.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/22/2012] [Accepted: 07/01/2012] [Indexed: 11/26/2022] Open
|
32
|
Brain metabolite alterations in young adults at familial high risk for schizophrenia using proton magnetic resonance spectroscopy. Schizophr Res 2013; 148:59-66. [PMID: 23791389 DOI: 10.1016/j.schres.2013.05.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 05/19/2013] [Accepted: 05/22/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND Proton magnetic resonance spectroscopy ((1)H MRS) enables in-vivo measurement of several relevant brain metabolites and has provided evidence of a range of neurochemical abnormalities in schizophrenia, especially in glutamate and N-acetyl-aspartate (NAA). While individuals at high familial risk for schizophrenia (HR) exhibit some neurobiological findings observed in the disorder, (1)H MRS findings and their clinical correlates are not well characterized in this population. METHODS We compared 23 adolescent and young adult offspring of schizophrenia patients with 24 age- and sex-matched healthy controls using (1)H MRS. We acquired multi-voxel, short TE (1)H MRS measurements at 1.5T and obtained metabolite concentrations of N-acetyl-aspartate (NAA), combined glutamate and glutamine (Glu+Gln) and choline-containing compounds (GPC+PC) for the left and right thalamus, anterior cingulate gyrus, and caudate. We also assessed the relationship between regional metabolite levels, clinical measures and brain volume in a subset of 16 high-risk and 15 control subjects. RESULTS Compared to healthy controls, high-risk subjects showed reductions in NAA levels in all three regions (thalamus, caudate, and anterior cingulate cortex), increases in Glu+Gln in the thalamus and caudate, and increases in GPC+PC in the anterior cingulate. In HR, thalamic Glu+Gln concentration was positively correlated and thalamic NAA inversely correlated with measures of schizotypy. Anterior cingulate GPC+PC and caudate Glu+Gln were significantly correlated with attenuated psychotic symptom severity. Anterior cingulate NAA was correlated with executive function. CONCLUSIONS Our data suggest the occurrence of metabolic alterations in young relatives of schizophrenia patients similar to those seen in patients with established illness. The observed correlations with cognitive deficits and psychosis-related psychopathology suggest that these metabolic measures may have value as biomarkers of risk for schizophrenia.
Collapse
|
33
|
Kalyanam R, Boutte D, Gasparovic C, Hutchison KE, Calhoun VD. Group independent component analysis of MR spectra. Brain Behav 2013; 3:229-42. [PMID: 23785655 PMCID: PMC3683283 DOI: 10.1002/brb3.131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/16/2013] [Accepted: 02/01/2013] [Indexed: 11/05/2022] Open
Abstract
This study investigates the potential of independent component analysis (ICA) to provide a data-driven approach for group level analysis of magnetic resonance (MR) spectra. ICA collectively analyzes data to identify maximally independent components, each of which captures covarying resonances, including those from different metabolic sources. A comparative evaluation of the ICA approach with the more established LCModel method in analyzing two different noise-free, artifact-free, simulated data sets of known compositions is presented. The results from such ideal simulations demonstrate the ability of data-driven ICA to decompose data and accurately extract components resembling modeled basis spectra from both data sets, whereas the LCModel results suffer when the underlying model deviates from assumptions, thus highlighting the sensitivity of model-based approaches to modeling inaccuracies. Analyses with simulated data show that independent component weights are good estimates of concentrations, even of metabolites with low intensity singlet peaks, such as scyllo-inositol. ICA is also applied to single voxel spectra from 193 subjects, without correcting for baseline variations, line-width broadening or noise. The results provide evidence that, despite the presence of confounding artifacts, ICA can be used to analyze in vivo spectra and extract resonances of interest. ICA is a promising technique for decomposing MR spectral data into components resembling metabolite resonances, and therefore has the potential to provide a data-driven alternative to the use of metabolite concentrations derived from curve-fitting individual spectra in making group comparisons.
Collapse
Affiliation(s)
- Ravi Kalyanam
- The Mind Research Network Albuquerque, New Mexico ; Department of ECE, University of New Mexico Albuquerque, New Mexico
| | | | | | | | | |
Collapse
|
34
|
Quantification of HSV-1-mediated expression of the ferritin MRI reporter in the mouse brain. Gene Ther 2012; 20:589-96. [PMID: 22996196 DOI: 10.1038/gt.2012.70] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The development of effective strategies for gene therapy has been hampered by difficulties verifying transgene delivery in vivo and quantifying gene expression non-invasively. Magnetic resonance imaging (MRI) offers high spatial resolution and three-dimensional views, without tissue depth limitations. The iron-storage protein ferritin is a prototype MRI gene reporter. Ferritin forms a paramagnetic ferrihydrite core that can be detected by MRI via its effect on the local magnetic field experienced by water protons. In an effort to better characterize the ferritin reporter for central nervous system applications, we expressed ferritin in the mouse brain in vivo using a neurotropic herpes simplex virus type 1 (HSV-1). We computed three-dimensional maps of MRI transverse relaxation rates in the mouse brain with ascending doses of ferritin-expressing HSV-1. We established that the transverse relaxation rates correlate significantly to the number of inoculated infectious particles. Our results are potentially useful for quantitatively assessing limitations of ferritin reporters for gene therapy applications.
Collapse
|
35
|
Mandal PK. In vivo proton magnetic resonance spectroscopic signal processing for the absolute quantitation of brain metabolites. Eur J Radiol 2012; 81:e653-64. [DOI: 10.1016/j.ejrad.2011.03.076] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 03/24/2011] [Accepted: 03/24/2011] [Indexed: 10/18/2022]
|
36
|
Pope WB, Prins RM, Albert Thomas M, Nagarajan R, Yen KE, Bittinger MA, Salamon N, Chou AP, Yong WH, Soto H, Wilson N, Driggers E, Jang HG, Su SM, Schenkein DP, Lai A, Cloughesy TF, Kornblum HI, Wu H, Fantin VR, Liau LM. Non-invasive detection of 2-hydroxyglutarate and other metabolites in IDH1 mutant glioma patients using magnetic resonance spectroscopy. J Neurooncol 2011; 107:197-205. [PMID: 22015945 DOI: 10.1007/s11060-011-0737-8] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 09/26/2011] [Indexed: 10/16/2022]
Abstract
Mutations of the isocitrate dehydrogenase 1 and 2 genes (IDH1 and IDH2) are commonly found in primary brain cancers. We previously reported that a novel enzymatic activity of these mutations results in the production of the putative oncometabolite, R(-)-2-hydroxyglutarate (2-HG). Here we investigated the ability of magnetic resonance spectroscopy (MRS) to detect 2-HG production in order to non-invasively identify patients with IDH1 mutant brain tumors. Patients with intrinsic glial brain tumors (n = 27) underwent structural and spectroscopic magnetic resonance imaging prior to surgery. 2-HG levels from MRS data were quantified using LC-Model software, based upon a simulated spectrum obtained from a GAMMA library added to the existing prior knowledge database. The resected tumors were then analyzed for IDH1 mutational status by genomic DNA sequencing, Ki-67 proliferation index by immunohistochemistry, and concentrations of 2-HG and other metabolites by liquid chromatography-mass spectrometry (LC-MS). MRS detected elevated 2-HG levels in gliomas with IDH1 mutations compared to those with wild-type IDH1 (P = 0.003). The 2-HG levels measured in vivo with MRS were significantly correlated with those measured ex vivo from the corresponding tumor samples using LC-MS (r (2) = 0.56; P = 0.0001). Compared with wild-type tumors, those with IDH1 mutations had elevated choline (P = 0.01) and decreased glutathione (P = 0.03) on MRS. Among the IDH1 mutated gliomas, quantitative 2-HG values were correlated with the Ki-67 proliferation index of the tumors (r ( 2 ) = 0.59; P = 0.026). In conclusion, water-suppressed proton ((1)H) MRS provides a non-invasive measure of 2-HG in gliomas, and may serve as a potential biomarker for patients with IDH1 mutant brain tumors. In addition to 2-HG, alterations in several other metabolites measured by MRS correlate with IDH1 mutation status.
Collapse
Affiliation(s)
- Whitney B Pope
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Quantitative proton magnetic resonance spectroscopy and spectroscopic imaging of the brain: a didactic review. Top Magn Reson Imaging 2011; 21:115-28. [PMID: 21613876 DOI: 10.1097/rmr.0b013e31821e568f] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This article presents background information related to methodology for estimating brain metabolite concentration from magnetic resonance spectroscopy (MRS) and magnetic resonance spectroscopic imaging measurements of living human brain tissue. It reviews progress related to this methodology, with emphasis placed on progress reported during the past 10 years. It is written for a target audience composed of radiologists and magnetic resonance imaging technologists. It describes in general terms the relationship between MRS signal amplitude and concentration. It then presents an overview of the many practical problems associated with deriving concentration solely from absolute measured signal amplitudes and demonstrates how a various signal calibration approaches can be successfully used. The concept of integrated signal amplitude is presented with examples that are helpful for qualitative reading of MRS data as well as for understanding the methodology used for quantitative measurements. The problems associated with the accurate measurement of individual signal amplitudes in brain spectra having overlapping signals from other metabolites and overlapping nuisance signals from water and lipid are presented. Current approaches to obtaining accurate amplitude estimates with least-squares fitting software are summarized.
Collapse
|
38
|
Helms G, Dathe H, Weiskopf N, Dechent P. Identification of signal bias in the variable flip angle method by linear display of the algebraic Ernst equation. Magn Reson Med 2011; 66:669-77. [PMID: 21432900 PMCID: PMC3193384 DOI: 10.1002/mrm.22849] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 12/16/2010] [Accepted: 12/20/2010] [Indexed: 12/03/2022]
Abstract
A novel linear parameterization for the variable flip angle method for longitudinal relaxation time T1 quantification from spoiled steady state MRI is derived from the half angle tangent transform, τ, of the flip angle. Plotting the signal S at coordinates x = Sτ and y = S/τ, respectively, establishes a line that renders signal amplitude and relaxation term separately as y-intercept and slope. This representation allows for estimation of the respective parameter from the experimental data. A comprehensive analysis of noise propagation is performed. Numerical results for efficient optimization of longitudinal relaxation time and proton density mapping experiments are derived. Appropriate scaling allows for a linear presentation of data that are acquired at different short pulse repetition times, TR << T1 thus increasing flexibility in the data acquisition by removing the limitation of a single pulse repetition time. Signal bias, like due to slice-selective excitation or imperfect spoiling, can be readily identified by systematic deviations from the linear plot. The method is illustrated and validated by 3T experiments on phantoms and human brain. Magn Reson Med, 2011. © 2011 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Gunther Helms
- MR-Research in Neurology and Psychiatry, University Medical Centre, Göttingen, Germany.
| | | | | | | |
Collapse
|
39
|
(1)H-MRS of brain metabolites in migraine without aura: absolute quantification using the phantom replacement technique. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2010; 23:227-41. [PMID: 20706770 DOI: 10.1007/s10334-010-0221-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 06/21/2010] [Accepted: 06/23/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Several studies have demonstrated differences in migraine patients when performing (1)H-MRS; however, no studies have performed (1)H-MRS in migraine without aura (MwoA), the most common migraine subtype. The aim of this (1)H-MRS study was to elucidate whether any differences could be found between MwoA patients and controls by performing absolute quantification. MATERIALS AND METHODS (1)H-MRS was performed in 22 MwoA patients and 25 control subjects. Absolute quantification was based on the phantom replacement technique. Corrections were made for T (1) and T (2) relaxation effects, CSF content, coil loading and temperature. The method was validated by phantom measurements and in vivo measurements in the occipital visual cortex. RESULTS After calibration of the quantification procedure and the implementation of the required correction factors, measured absolute concentrations in the visual cortex of MwoA patients showed no significant differences compared to controls, in contrast to relative results obtained in earlier studies. CONCLUSION In this study, we demonstrate the implementation of quantitative in vivo (1)H-MRS spectroscopy in migraine patients. Despite rigorous quantification, no spectroscopic abnormalities could be found in patients with migraine without aura.
Collapse
|
40
|
Skoch A, Jiru F, Bunke J. Spectroscopic imaging: Basic principles. Eur J Radiol 2008; 67:230-239. [DOI: 10.1016/j.ejrad.2008.03.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Accepted: 03/03/2008] [Indexed: 10/22/2022]
|
41
|
Jiru F. Introduction to post-processing techniques. Eur J Radiol 2008; 67:202-217. [DOI: 10.1016/j.ejrad.2008.03.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Accepted: 03/03/2008] [Indexed: 11/16/2022]
|
42
|
Hajek M, Dezortova M. Introduction to clinical in vivo MR spectroscopy. Eur J Radiol 2008; 67:185-193. [DOI: 10.1016/j.ejrad.2008.03.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Accepted: 03/03/2008] [Indexed: 11/29/2022]
|
43
|
Klose U. Measurement sequences for single voxel proton MR spectroscopy. Eur J Radiol 2008; 67:194-201. [PMID: 18599235 DOI: 10.1016/j.ejrad.2008.03.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 03/21/2008] [Indexed: 11/25/2022]
Abstract
Proton spectroscopy is easy to perform at clinically used whole body MR scanners, since the necessary hardware is identical to that of MR imaging. Only specific measurements sequences for the acquisition of volume selected spectral information and appropriate evaluation software have to be installed. Several techniques for a volume-selective spectroscopy have been proposed, but only two are widely used in clinical examinations: the double spin-echo sequence (point resolved spectroscopy sequence (PRESS)) and the stimulated echo sequence (stimulated echo acquisition mode (STEAM)). The properties of these sequences are described and additional techniques for artifact reduction and the extraction of selected signals are explained.
Collapse
Affiliation(s)
- Uwe Klose
- Section of Experimental MR of the CNS, Department of Neuroradiology, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
44
|
Abstract
The introduction to the application of (1)H MR spectroscopy for clinical and research studies of mesial temporal and extratemporal epilepsies is done. The techniques of single voxel and spectroscopic imaging are discussed and the analysis of (1)H MR spectra together with basic metabolic descriptions is presented.
Collapse
|
45
|
(1)H MR spectroscopy of inflammation, infection and ischemia of the brain. Eur J Radiol 2008; 67:250-257. [PMID: 18407447 DOI: 10.1016/j.ejrad.2008.02.033] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 02/27/2008] [Indexed: 11/21/2022]
Abstract
Different pathologic patterns in multiple sclerosis (MS) are reflected by alterations of metabolites in (1)H MR spectroscopy of the brain. Elevated choline (Cho), lactate (Lac), lipids and macromolecules are reliable markers for acute demyelination regardless of the clinical entity (also in acute disseminated encephalomyelitis). N-acetyl-aspartate (NAA) is a suitable marker for neuronal integrity. It is reduced in acute MS lesions and in normal appearing white matter, even distant to acute and chronic-lesions. Recovery from reduced NAA levels to subnormal values during remyelination, and varying time courses of NAA in normal appearing white matter during relapsing remitting disease indicate the value of this spectroscopic marker for monitoring activity and recovery. Inositol (Ins) is increased in chronic MS lesions being a marker for astrocytic gliosis. In viral disease, Cho and Ins are always increased, whereas a reduction of NAA mostly reflects an advanced or a detoriated clinical state. In bacterial brain abscesses, numerous amino acids, lipids and Lac can be elevated. In ischemia, especially the Lac/NAA in comparison with perfusion and diffusion weighted imaging seems to be a new measure for areas of metabolic need, and may help to better characterise the penumbra of the stroke and the final infarct size.
Collapse
|