1
|
Savatović S, Zdora MC, De Marco F, Bikis C, Olbinado M, Rack A, Müller B, Thibault P, Zanette I. Multi-resolution X-ray phase-contrast and dark-field tomography of human cerebellum with near-field speckles. BIOMEDICAL OPTICS EXPRESS 2024; 15:142-161. [PMID: 38223169 PMCID: PMC10783905 DOI: 10.1364/boe.502664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 01/16/2024]
Abstract
In this study, we use synchrotron-based multi-modal X-ray tomography to examine human cerebellar tissue in three dimensions at two levels of spatial resolution (2.3 µm and 11.9 µm). We show that speckle-based imaging (SBI) produces results that are comparable to propagation-based imaging (PBI), a well-established phase-sensitive imaging method. The different SBI signals provide complementary information, which improves tissue differentiation. In particular, the dark-field signal aids in distinguishing tissues with similar average electron density but different microstructural variations. The setup's high resolution and the imaging technique's excellent phase sensitivity enabled the identification of different cellular layers and additionally, different cell types within these layers. We also correlated this high-resolution phase-contrast information with measured dark-field signal levels. These findings demonstrate the viability of SBI and the potential benefit of the dark-field modality for virtual histology of brain tissue.
Collapse
Affiliation(s)
- Sara Savatović
- Department of Physics, University of Trieste, Via Valerio 2, 34127 Trieste, Italy
- Elettra-Sincrotrone Trieste, Strada Statale 14 – km 163.5, 34149 Basovizza, Italy
| | - Marie-Christine Zdora
- Department of Biomedical Engineering, ETH Zürich, Gloriastrasse 35, 8092 Zürich, Switzerland
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Fabio De Marco
- Department of Physics, University of Trieste, Via Valerio 2, 34127 Trieste, Italy
- Elettra-Sincrotrone Trieste, Strada Statale 14 – km 163.5, 34149 Basovizza, Italy
| | - Christos Bikis
- Psychiatric Hospital in Winterthur, Wieshofstrasse 102, 8408 Winterthur, Switzerland
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, Hegenheimermattweg 167 B/C, 4123 Allschwil, Switzerland
| | - Margie Olbinado
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Alexander Rack
- ESRF – The European Synchrotron, CS40220, CEDEX 09, 38043 Grenoble, France
| | - Bert Müller
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, Hegenheimermattweg 167 B/C, 4123 Allschwil, Switzerland
| | - Pierre Thibault
- Department of Physics, University of Trieste, Via Valerio 2, 34127 Trieste, Italy
- Elettra-Sincrotrone Trieste, Strada Statale 14 – km 163.5, 34149 Basovizza, Italy
| | - Irene Zanette
- Elettra-Sincrotrone Trieste, Strada Statale 14 – km 163.5, 34149 Basovizza, Italy
| |
Collapse
|
2
|
Viermetz M, Gustschin N, Schmid C, Haeusele J, Gleich B, Renger B, Koehler T, Pfeiffer F. Initial Characterization of Dark-Field CT on a Clinical Gantry. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:1035-1045. [PMID: 36395124 DOI: 10.1109/tmi.2022.3222839] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
X-ray computed tomography (CT) is an important non-destructive imaging technique, particularly in clinical diagnostics. Even with the latest innovations like dual-energy and photon-counting CT, the image contrast is solely generated from attenuation in the tissue. An extension - fully compatible with these novelties - is dark-field CT, which retrieves an additional, so-called dark-field contrast. Unlike the attenuation channel, the dark-field channel is sensitive to tissue microstructure and porosity below the resolution of the imaging system, which allows additional insights into the health of the lung tissue or the structure of calcifications. The potential clinical value has been demonstrated in several preclinical studies and recently also in radiography patient studies. Just recently the first dark-field CT for the human body was established at the Technical University of Munich and in this paper, we discuss the performance of this prototype. We evaluate the interferometer components and the imposed challenges that the integration into the CT gantry brings by comparing the results to simulations and measurements at a laboratory setup. The influence of the clinical X-ray source on the Talbot-Lau interferometer and the impact of vibrations, which are immanent on the clinical CT gantry, are analyzed in detail to reveal their characteristic frequencies and origin. A beam hardening correction is introduced as an important step to adapt to the poly-chromatic spectrum and make quantitative dark-field imaging possible. We close with an analysis of the image resolution and the applied patient dose, and conclude that the performance is sufficient to suggest initial patient studies using the presented dark-field CT system.
Collapse
|
3
|
Zhong Z, Hasnah M, Broadbent A, Dooryhee E, Lucas M. Phase-space matching between bent Laue and flat Bragg crystals. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:1917-1923. [PMID: 31721734 DOI: 10.1107/s1600577519010774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
Through phase-space analysis of Dumond diagrams for a flat Bragg crystal, a single bent Laue crystal and a monochromator consisting of double-bent Laue crystals, this work shows that it is possible to match the flat Bragg crystal to both the single-crystal and double-crystal Laue monochromators. The matched system has the advantage that the phase space of the bent crystal's output beam is much larger than that of the flat crystal, making the combined system stable. Here it is suggested that such a matched system can be used at synchrotron facilities to realize X-ray dark-field imaging, analyzer-based imaging and diffraction-enhanced imaging at beamlines using double-Laue monochromators.
Collapse
Affiliation(s)
- Z Zhong
- National Syncrhrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - M Hasnah
- Department of Mathematics, Statistics and Physics, Qatar University, Al Jamiaa Street, Doha, Qatar
| | - A Broadbent
- National Syncrhrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - E Dooryhee
- National Syncrhrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - M Lucas
- National Syncrhrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
4
|
Abstract
Unlike conventional x-ray attenuation one of the advantages of phase contrast x-ray imaging is its capability of extracting useful physical properties of the sample. In particular the possibility to obtain information from small angle scattering about unresolvable structures with sub-pixel resolution sensitivity has drawn attention for both medical and material science applications. We report on a novel algorithm for the analyzer based x-ray phase contrast imaging modality, which allows the robust separation of absorption, refraction and scattering effects from three measured x-ray images. This analytical approach is based on a simple Gaussian description of the analyzer transmission function and this method is capable of retrieving refraction and small angle scattering angles in the full angular range typical of biological samples. After a validation of the algorithm with a simulation code, which demonstrated the potential of this highly sensitive method, we have applied this theoretical framework to experimental data on a phantom and biological tissues obtained with synchrotron radiation. Owing to its extended angular acceptance range the algorithm allows precise assessment of local scattering distributions at biocompatible radiation doses, which in turn might yield a quantitative characterization tool with sufficient structural sensitivity on a submicron length scale.
Collapse
|
5
|
Zamir A, Hagen C, Diemoz PC, Endrizzi M, Vittoria F, Chen Y, Anastasio MA, Olivo A. Recent advances in edge illumination x-ray phase-contrast tomography. J Med Imaging (Bellingham) 2017; 4:040901. [PMID: 29057286 PMCID: PMC5641577 DOI: 10.1117/1.jmi.4.4.040901] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/21/2017] [Indexed: 11/14/2022] Open
Abstract
Edge illumination (EI) is an x-ray phase-contrast imaging technique, exploiting sensitivity to x-ray refraction to visualize features, which are often not detected by conventional absorption-based radiography. The method does not require a high degree of spatial coherence and is achromatic and, therefore, can be implemented with both synchrotron radiation and commercial x-ray tubes. Using different retrieval algorithms, information about an object's attenuation, refraction, and scattering properties can be obtained. In recent years, a theoretical framework has been developed that enables EI computed tomography (CT) and, hence, three-dimensional imaging. This review provides a summary of these advances, covering the development of different image acquisition schemes, retrieval approaches, and applications. These developments constitute an integral part in the transformation of EI CT into a widely spread imaging tool for use in a range of fields.
Collapse
Affiliation(s)
- Anna Zamir
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Charlotte Hagen
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Paul C Diemoz
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Marco Endrizzi
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Fabio Vittoria
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Yujia Chen
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
| | - Mark A Anastasio
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
| | - Alessandro Olivo
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| |
Collapse
|
6
|
Endrizzi M, Vittoria FA, Rigon L, Dreossi D, Iacoviello F, Shearing PR, Olivo A. X-ray Phase-Contrast Radiography and Tomography with a Multiaperture Analyzer. PHYSICAL REVIEW LETTERS 2017; 118:243902. [PMID: 28665636 DOI: 10.1103/physrevlett.118.243902] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Indexed: 05/23/2023]
Abstract
We present a multiaperture analyzer setup for performing x-ray phase contrast imaging in planar and three-dimensional modalities. The method is based on strongly structuring the x-ray beam with an amplitude modulator, before it reaches the sample, and on a multiaperture analyzing element before detection. A multislice representation of the sample is used to establish a quantitative relation between projection images and the corresponding three-dimensional distributions, leading to successful tomographic reconstruction. Sample absorption, phase, and scattering are retrieved from the measurement of five intensity projections. The method is tested on custom-built phantoms with synchrotron radiation: sample absorption and phase can be reliably retrieved also in combination with strong scatterers, simultaneously attaining high sensitivity and dynamic range.
Collapse
Affiliation(s)
- M Endrizzi
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - F A Vittoria
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - L Rigon
- Physics Department, University of Trieste, Via Valerio 2, 34127 Trieste, Italy
- Istituto Nazionale di Fisica Nulceare, Sezione di Trieste, Via Valerio 2, 34127 Trieste, Italy
| | - D Dreossi
- Sincrotrone Trieste SCpA, S.S. 14 km 163.5, 34012 Basovizza Trieste, Italy
| | - F Iacoviello
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, WC1E 7JE, United Kingdom
| | - P R Shearing
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, WC1E 7JE, United Kingdom
| | - A Olivo
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
7
|
Vittoria FA, Endrizzi M, Diemoz PC, Zamir A, Wagner UH, Rau C, Robinson IK, Olivo A. X-ray absorption, phase and dark-field tomography through a beam tracking approach. Sci Rep 2015; 5:16318. [PMID: 26541117 PMCID: PMC4635357 DOI: 10.1038/srep16318] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/12/2015] [Indexed: 11/09/2022] Open
Abstract
We present a development of the beam-tracking approach that allows its implementation in computed tomography. One absorbing mask placed before the sample and a high resolution detector are used to track variations in the beam intensity distribution caused by the sample. Absorption, refraction, and dark-field are retrieved through a multi-Gaussian interpolation of the beam. Standard filtered back projection is used to reconstruct three dimensional maps of the real and imaginary part of the refractive index, and of the dark-field signal. While the method is here demonstrated using synchrotron radiation, its low coherence requirements suggest a possible implementation with laboratory sources.
Collapse
Affiliation(s)
- Fabio A Vittoria
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place, Gower Street, WC1E 6BT London, United Kingdom.,Research Complex at Harwell, Harwell Oxford Campus, OX11 0FA Didcot, United Kingdom
| | - Marco Endrizzi
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place, Gower Street, WC1E 6BT London, United Kingdom
| | - Paul C Diemoz
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place, Gower Street, WC1E 6BT London, United Kingdom.,Research Complex at Harwell, Harwell Oxford Campus, OX11 0FA Didcot, United Kingdom
| | - Anna Zamir
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place, Gower Street, WC1E 6BT London, United Kingdom
| | - Ulrich H Wagner
- Diamond Light Source, Harwell Oxford Campus, OX11 0DE Didcot, United Kingdom
| | - Christoph Rau
- Diamond Light Source, Harwell Oxford Campus, OX11 0DE Didcot, United Kingdom
| | - Ian K Robinson
- Research Complex at Harwell, Harwell Oxford Campus, OX11 0FA Didcot, United Kingdom.,London Centre for Nanotechnology, WC1H 0AH London, United Kingdom
| | - Alessandro Olivo
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place, Gower Street, WC1E 6BT London, United Kingdom
| |
Collapse
|
8
|
Pelliccia D, Paganin DM. Multi-modal hard x-ray imaging with a laboratory source using selective reflection from a mirror. BIOMEDICAL OPTICS EXPRESS 2014; 5:1153-1159. [PMID: 24761297 PMCID: PMC3985998 DOI: 10.1364/boe.5.001153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 03/08/2014] [Accepted: 03/10/2014] [Indexed: 06/03/2023]
Abstract
Multi-modal hard x-ray imaging sensitive to absorption, refraction, phase and scattering contrast is demonstrated using a simple setup implemented with a laboratory source. The method is based on selective reflection at the edge of a mirror, aligned to partially reflect a pencil x-ray beam after its interaction with a sample. Quantitative scattering contrast from a test sample is experimentally demonstrated using this method. Multi-modal imaging of a house fly (Musca domestica) is shown as proof of principle of the technique for biological samples.
Collapse
|
9
|
Pop I, Manoharan A, Zanini F, Tromba G, Patel S, Foschi F. Synchrotron light-based μCT to analyse the presence of dentinal microcracks post-rotary and reciprocating NiTi instrumentation. Clin Oral Investig 2014; 19:11-6. [PMID: 24532388 DOI: 10.1007/s00784-014-1206-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 02/02/2014] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The purpose of this study was to determine in vitro using a synchrotron radiation-based μCT (SRCT) whether rotary and reciprocating nickel titanium (NiTi) instrumentations lead to the formation of dentine microcracks. MATERIAL AND METHODS Fourteen extracted human molars were obtained with ethical approval. Seven distobuccal roots of the maxillary molars and seven mesial roots of the mandibular molars were assigned to two experimental groups: (A) prepared with rotary Pro Taper instrumentation (n = 6) and (B) reciprocating WaveOne (n = 6). Irrigation with 1 % NaOCl and 17 % EDTA solutions was carried out. The remaining roots served as positive control with induced fractures (group C). SRCT was used to scan all samples pre and post-operatively. An imaging software was used to determine the number and length of microcracks. Statistical analyses weighed differences between pre and post-instrumentation and between shaping methods. RESULTS A significant increase in the number and length of microcracks was detected post-shaping. No significant difference between rotary and reciprocating instrumentation was observed. CONCLUSIONS Within the limitations of this in vitro study, an increased number and length of microcracks was induced by mechanical instrumentation. Reciprocating and rotary instrumentation are similar in terms of effect. CLINICAL SIGNIFICANCE Dentinal damage may occur following rotary and reciprocating instrumentation.
Collapse
Affiliation(s)
- Ioana Pop
- Department of Restorative Dentistry, King's College London Dental Institute at Guy's, King's and St Thomas' Hospital, Floor 17, Tower Wing, Guy's Hospital, St Thomas' St, London, SE1 9RT, UK
| | | | | | | | | | | |
Collapse
|
10
|
Pelliccia D, Rigon L, Arfelli F, Menk RH, Bukreeva I, Cedola A. A three-image algorithm for hard x-ray grating interferometry. OPTICS EXPRESS 2013; 21:19401-19411. [PMID: 23938856 DOI: 10.1364/oe.21.019401] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A three-image method to extract absorption, refraction and scattering information for hard x-ray grating interferometry is presented. The method comprises a post-processing approach alternative to the conventional phase stepping procedure and is inspired by a similar three-image technique developed for analyzer-based x-ray imaging. Results obtained with this algorithm are quantitatively comparable with phase-stepping. This method can be further extended to samples with negligible scattering, where only two images are needed to separate absorption and refraction signal. Thanks to the limited number of images required, this technique is a viable route to bio-compatible imaging with x-ray grating interferometer. In addition our method elucidates and strengthens the formal and practical analogies between grating interferometry and the (non-interferometric) diffraction enhanced imaging technique.
Collapse
|
11
|
Bravin A, Coan P, Suortti P. X-ray phase-contrast imaging: from pre-clinical applications towards clinics. Phys Med Biol 2012; 58:R1-35. [PMID: 23220766 DOI: 10.1088/0031-9155/58/1/r1] [Citation(s) in RCA: 391] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Phase-contrast x-ray imaging (PCI) is an innovative method that is sensitive to the refraction of the x-rays in matter. PCI is particularly adapted to visualize weakly absorbing details like those often encountered in biology and medicine. In past years, PCI has become one of the most used imaging methods in laboratory and preclinical studies: its unique characteristics allow high contrast 3D visualization of thick and complex samples even at high spatial resolution. Applications have covered a wide range of pathologies and organs, and are more and more often performed in vivo. Several techniques are now available to exploit and visualize the phase-contrast: propagation- and analyzer-based, crystal and grating interferometry and non-interferometric methods like the coded aperture. In this review, covering the last five years, we will give an overview of the main theoretical and experimental developments and of the important steps performed towards the clinical implementation of PCI.
Collapse
Affiliation(s)
- Alberto Bravin
- European Synchrotron Radiation Facility, 6 rue Horowitz, 38043 Grenoble Cedex, France.
| | | | | |
Collapse
|
12
|
Chen RC, Dreossi D, Mancini L, Menk R, Rigon L, Xiao TQ, Longo R. PITRE: software for phase-sensitive X-ray image processing and tomography reconstruction. JOURNAL OF SYNCHROTRON RADIATION 2012; 19:836-45. [PMID: 22898966 DOI: 10.1107/s0909049512029731] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 06/29/2012] [Indexed: 05/22/2023]
Abstract
Synchrotron-radiation computed tomography has been applied in many research fields. Here, PITRE (Phase-sensitive X-ray Image processing and Tomography REconstruction) and PITRE_BM (PITRE Batch Manager) are presented. PITRE supports phase retrieval for propagation-based phase-contrast imaging/tomography (PPCI/PPCT), extracts apparent absorption, refractive and scattering information of diffraction enhanced imaging (DEI), and allows parallel-beam tomography reconstruction for conventional absorption CT data and for PPCT phase retrieved and DEI-CT extracted information. PITRE_BM is a batch processing manager for PITRE: it executes a series of tasks, created via PITRE, without manual intervention. Both PITRE and PITRE_BM are coded in Interactive Data Language (IDL), and have a user-friendly graphical user interface. They are freeware and can run on Microsoft Windows systems via IDL Virtual Machine, which can be downloaded for free and does not require a license. The data-processing principle and some examples of application will be presented.
Collapse
|
13
|
Diemoz PC, Bravin A, Glaser C, Coan P. Comparison of analyzer-based imaging computed tomography extraction algorithms and application to bone-cartilage imaging. Phys Med Biol 2010; 55:7663-79. [DOI: 10.1088/0031-9155/55/24/018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
14
|
Bech M, Bunk O, Donath T, Feidenhans'l R, David C, Pfeiffer F. Quantitative x-ray dark-field computed tomography. Phys Med Biol 2010; 55:5529-39. [PMID: 20808030 DOI: 10.1088/0031-9155/55/18/017] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The basic principles of x-ray image formation in radiology have remained essentially unchanged since Röntgen first discovered x-rays over a hundred years ago. The conventional approach relies on x-ray attenuation as the sole source of contrast and draws exclusively on ray or geometrical optics to describe and interpret image formation. Phase-contrast or coherent scatter imaging techniques, which can be understood using wave optics rather than ray optics, offer ways to augment or complement the conventional approach by incorporating the wave-optical interaction of x-rays with the specimen. With a recently developed approach based on x-ray optical gratings, advanced phase-contrast and dark-field scatter imaging modalities are now in reach for routine medical imaging and non-destructive testing applications. To quantitatively assess the new potential of particularly the grating-based dark-field imaging modality, we here introduce a mathematical formalism together with a material-dependent parameter, the so-called linear diffusion coefficient and show that this description can yield quantitative dark-field computed tomography (QDFCT) images of experimental test phantoms.
Collapse
Affiliation(s)
- M Bech
- Physik-Department, Technische Universität München, 85748 Garching, Germany.
| | | | | | | | | | | |
Collapse
|
15
|
Arfelli F, Rigon L, Menk RH. Microbubbles as x-ray scattering contrast agents using analyzer-based imaging. Phys Med Biol 2010; 55:1643-58. [DOI: 10.1088/0031-9155/55/6/008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Nesch I, Fogarty DP, Tzvetkov T, Reinhart B, Walus AC, Khelashvili G, Muehleman C, Chapman D. The design and application of an in-laboratory diffraction-enhanced x-ray imaging instrument. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2009; 80:093702. [PMID: 19791939 DOI: 10.1063/1.3213621] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We describe the design and application of a new in-laboratory diffraction-enhanced x-ray imaging (DEXI) instrument that uses a nonsynchrotron, conventional x-ray source to image the internal structure of an object. In the work presented here, a human cadaveric thumb is used as a test-sample to demonstrate the imaging capability of our instrument. A 22 keV monochromatic x-ray beam is prepared using a mismatched, two-crystal monochromator; a silicon analyzer crystal is placed in a parallel crystal geometry with the monochromator allowing both diffraction-enhanced imaging and multiple-imaging radiography to be performed. The DEXI instrument was found to have an experimentally determined spatial resolution of 160+/-7 mum in the horizontal direction and 153+/-7 mum in the vertical direction. As applied to biomedical imaging, the DEXI instrument can detect soft tissues, such as tendons and other connective tissues, that are normally difficult or impossible to image via conventional x-ray techniques.
Collapse
Affiliation(s)
- Ivan Nesch
- Nesch, LLC 9800 Connecticut Drive, Crown Point, Indiana 46307, USA
| | | | | | | | | | | | | | | |
Collapse
|