1
|
Shen F, Liu Q, Wang Y, Chen C, Ma H. Comparison of [ 18F] FDG PET/CT and [ 18F]FDG PET/MRI in the Detection of Distant Metastases in Breast Cancer: A Meta-Analysis. Clin Breast Cancer 2024:S1526-8209(24)00272-6. [PMID: 39438190 DOI: 10.1016/j.clbc.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE This meta-analysis aims to assess and compare the diagnostic effectiveness of [18F] FDG PET/CT and [18F] FDG PET/MRI for distant metastases in breast cancer patients. METHODS A comprehensive search of the PubMed and Embase databases was performed to identify relevant articles until September 22, 2023. Studies were eligible to be included if they assessed the diagnostic performance of [18F] FDG PET/CT and/or [18F] FDG PET/MRI in detecting distant metastases of breast cancer patients. The DerSimonian and Laird method was used to assess sensitivity and specificity, and then transformed through the Freeman-Tukey double arcsine transformation. RESULTS 29 articles consisting of 3779 patients were finally included in this study. The overall sensitivity of [18F] FDG PET/CT in diagnosing distant metastases of breast cancer was 0.96 (95% CI: 0.93-0.98), and the overall specificity was 0.95 (95% CI: 0.92-0.97). The overall sensitivity of [18F] FDG PET/MRI was 1.00 (95% CI: 0.97-1.00), and the specificity was 0.97 (95% CI: 0.94-1.00). The results suggested that [18F] FDG PET/CT and [18F] FDG PET/MRI appears to have similar sensitivity (P = .16) and specificity (P = .30) in diagnosing distant metastases of breast cancer. CONCLUSIONS The results of our meta-analysis indicated that [18F] FDG PET/CT and [18F] FDG PET/MRI in diagnosing distant metastases of breast cancer appear to have similar sensitivity and specificity. Patients who have access to only one of these modalities will not have the accuracy of their staging compromised. In clinical practice, both of these imaging techniques have their respective strengths and limitations, and physicians should take these into account when making the most suitable choice for patients.
Collapse
Affiliation(s)
- Fangqian Shen
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qi Liu
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yishuang Wang
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Can Chen
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hu Ma
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
2
|
Mainta IC, Sfakianaki I, Shiri I, Botsikas D, Garibotto V. The Clinical Added Value of Breast Cancer Imaging Using Hybrid PET/MR Imaging. Magn Reson Imaging Clin N Am 2023; 31:565-577. [PMID: 37741641 DOI: 10.1016/j.mric.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Dedicated MR imaging is highly performant for the evaluation of the primary lesion and should regularly be added to whole-body PET/MR imaging for the initial staging. PET/MR imaging is highly sensitive for the detection of nodal involvement and could be combined with the high specificity of axillary second look ultrasound for the confirmation of the N staging. For M staging, with the exception of lung lesions, PET/MR imaging is superior to PET/computed tomography, at half the radiation dose. The predictive value of multiparametric imaging with PET/MR imaging holds promise to improve through radiomics and artificial intelligence.
Collapse
Affiliation(s)
- Ismini C Mainta
- Department of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, Geneva 1205, Switzerland.
| | - Ilektra Sfakianaki
- Department of Radiology, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, Geneva 1205, Switzerland
| | - Isaac Shiri
- Department of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, Geneva 1205, Switzerland
| | - Diomidis Botsikas
- Department of Radiology, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, Geneva 1205, Switzerland
| | - Valentina Garibotto
- Department of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, Geneva 1205, Switzerland; Faculty of Medicine, University of Geneva, Rue Michel Servet 1, Geneva 1211, Switzerland
| |
Collapse
|
3
|
Jia T, Lv Q, Zhang B, Yu C, Sang S, Deng S. Assessment of androgen receptor expression in breast cancer patients using 18 F-FDG PET/CT radiomics and clinicopathological characteristics. BMC Med Imaging 2023; 23:93. [PMID: 37460990 PMCID: PMC10353086 DOI: 10.1186/s12880-023-01052-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023] Open
Abstract
OBJECTIVE In the present study, we mainly aimed to predict the expression of androgen receptor (AR) in breast cancer (BC) patients by combing radiomic features and clinicopathological factors in a non-invasive machine learning way. MATERIALS AND METHODS A total of 48 BC patients, who were initially diagnosed by 18F-FDG PET/CT, were retrospectively enrolled in this study. LIFEx software was used to extract radiomic features based on PET and CT data. The most useful predictive features were selected by the LASSO (least absolute shrinkage and selection operator) regression and t-test. Radiomic signatures and clinicopathologic characteristics were incorporated to develop a prediction model using multivariable logistic regression analysis. The receiver operating characteristic (ROC) curve, Hosmer-Lemeshow (H-L) test, and decision curve analysis (DCA) were conducted to assess the predictive efficiency of the model. RESULTS In the univariate analysis, the metabolic tumor volume (MTV) was significantly correlated with the expression of AR in BC patients (p < 0.05). However, there only existed feeble correlations between estrogen receptor (ER), progesterone receptor (PR), and AR status (p = 0.127, p = 0.061, respectively). Based on the binary logistic regression method, MTV, SHAPE_SphericityCT (CT Sphericity from SHAPE), and GLCM_ContrastCT (CT Contrast from grey-level co-occurrence matrix) were included in the prediction model for AR expression. Among them, GLCM_ContrastCT was an independent predictor of AR status (OR = 9.00, p = 0.018). The area under the curve (AUC) of ROC in this model was 0.832. The p-value of the H-L test was beyond 0.05. CONCLUSIONS A prediction model combining radiomic features and clinicopathological characteristics could be a promising approach to predict the expression of AR and noninvasively screen the BC patients who could benefit from anti-AR regimens.
Collapse
Affiliation(s)
- Tongtong Jia
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Qingfu Lv
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Bin Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Chunjing Yu
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China.
| | - Shibiao Sang
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Shengming Deng
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
4
|
Ruan D, Sun L. Diagnostic Performance of PET/MRI in Breast Cancer: A Systematic Review and Bayesian Bivariate Meta-analysis. Clin Breast Cancer 2023; 23:108-124. [PMID: 36549970 DOI: 10.1016/j.clbc.2022.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/07/2022] [Accepted: 11/26/2022] [Indexed: 12/04/2022]
Abstract
INTRODUCTION By performing a systematic review and meta-analysis, the diagnostic value of 18F-FDG PET/MRI in breast lesions, lymph nodes, and distant metastases was assessed, and the merits and demerits of PET/MRI in the application of breast cancer were comprehensively reviewed. METHODS Breast cancer-related studies using 18F-FDG PET/MRI as a diagnostic tool published before September 12, 2022 were included. The pooled sensitivity, specificity, log diagnostic odds ratio (LDOR), and area under the curve (AUC) were calculated using Bayesian bivariate meta-analysis in a lesion-based and patient-based manner. RESULTS We ultimately included 24 studies (including 1723 patients). Whether on a lesion-based or patient-based analysis, PET/MRI showed superior overall pooled sensitivity (0.95 [95% CI: 0.92-0.98] & 0.93 [95% CI: 0.88-0.98]), specificity (0.94 [95% CI: 0.90-0.97] & 0.94 [95% CI: 0.92-0.97]), LDOR (5.79 [95% CI: 4.95-6.86] & 5.64 [95% CI: 4.58-7.03]) and AUC (0.98 [95% CI: 0.94-0.99] & 0.98[95% CI: 0.92-0.99]) for diagnostic applications in breast cancer. In the specific subgroup analysis, PET/MRI had high pooled sensitivity and specificity for the diagnosis of breast lesions and distant metastatic lesions and was especially excellent for bone lesions. PET/MRI performed poorly for diagnosing axillary lymph nodes but was better than for lymph nodes at other sites (pooled sensitivity, specificity, LDOR, AUC: 0.86 vs. 0.58, 0.90 vs. 0.82, 4.09 vs. 1.98, 0.89 vs. 0.84). CONCLUSION 18F-FDG PET/MRI performed excellently in diagnosing breast lesions and distant metastases. It can be applied to the initial diagnosis of suspicious breast lesions, accurate staging of breast cancer patients, and accurate restaging of patients with suspected recurrence.
Collapse
Affiliation(s)
- Dan Ruan
- Department of Nuclear Medicine, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Long Sun
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, China.
| |
Collapse
|
5
|
Fowler AM, Strigel RM. Clinical advances in PET-MRI for breast cancer. Lancet Oncol 2022; 23:e32-e43. [PMID: 34973230 PMCID: PMC9673821 DOI: 10.1016/s1470-2045(21)00577-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/20/2021] [Accepted: 10/01/2021] [Indexed: 01/03/2023]
Abstract
Imaging is paramount for the early detection and clinical staging of breast cancer, as well as to inform management decisions and direct therapy. PET-MRI is a quantitative hybrid imaging technology that combines metabolic and functional PET data with anatomical detail and functional perfusion information from MRI. The clinical applicability of PET-MRI for breast cancer is an active area of research. In this Review, we discuss the rationale and summarise the clinical evidence for the use of PET-MRI in the diagnosis, staging, prognosis, tumour phenotyping, and assessment of treatment response in breast cancer. The continued development and approval of targeted radiopharmaceuticals, together with radiomics and automated analysis tools, will further expand the opportunity for PET-MRI to provide added value for breast cancer imaging and patient care.
Collapse
Affiliation(s)
- Amy M Fowler
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; University of Wisconsin Carbone Cancer Center, Madison, WI, USA.
| | - Roberta M Strigel
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| |
Collapse
|
6
|
Bruckmann NM, Kirchner J, Morawitz J, Umutlu L, Herrmann K, Bittner AK, Hoffmann O, Mohrmann S, Ingenwerth M, Schaarschmidt BM, Li Y, Stang A, Antoch G, Sawicki LM, Buchbender C. Prospective comparison of CT and 18F-FDG PET/MRI in N and M staging of primary breast cancer patients: Initial results. PLoS One 2021; 16:e0260804. [PMID: 34855886 PMCID: PMC8638872 DOI: 10.1371/journal.pone.0260804] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/18/2021] [Indexed: 01/10/2023] Open
Abstract
Objectives To compare the diagnostic accuracy of contrast-enhanced thoraco-abdominal computed tomography and whole-body 18F-FDG PET/MRI in N and M staging in newly diagnosed, histopathological proven breast cancer. Material and methods A total of 80 consecutive women with newly diagnosed and histopathologically confirmed breast cancer were enrolled in this prospective study. Following inclusion criteria had to be fulfilled: (1) newly diagnosed, treatment-naive T2-tumor or higher T-stage or (2) newly diagnosed, treatment-naive triple-negative tumor of every size or (3) newly diagnosed, treatment-naive tumor with molecular high risk (T1c, Ki67 >14%, HER2neu over-expression, G3). All patients underwent a thoraco-abdominal ceCT and a whole-body 18F-FDG PET/MRI. All datasets were evaluated by two experienced radiologists in hybrid imaging regarding suspect lesion count, localization, categorization and diagnostic confidence. Images were interpreted in random order with a reading gap of at least 4 weeks to avoid recognition bias. Histopathological results as well as follow-up imaging served as reference standard. Differences in staging accuracy were assessed using Mc Nemars chi2 test. Results CT rated the N stage correctly in 64 of 80 (80%, 95% CI:70.0–87.3) patients with a sensitivity of 61.5% (CI:45.9–75.1), a specificity of 97.6% (CI:87.4–99.6), a PPV of 96% (CI:80.5–99.3), and a NPV of 72.7% (CI:59.8–82.7). Compared to this, 18F-FDG PET/MRI determined the N stage correctly in 71 of 80 (88.75%, CI:80.0–94.0) patients with a sensitivity of 82.1% (CI:67.3–91.0), a specificity of 95.1% (CI:83.9–98.7), a PPV of 94.1% (CI:80.9–98.4) and a NPV of 84.8% (CI:71.8–92.4). Differences in sensitivities were statistically significant (difference 20.6%, CI:-0.02–40.9; p = 0.008). Distant metastases were present in 7/80 patients (8.75%). 18 F-FDG PET/MRI detected all of the histopathological proven metastases without any false-positive findings, while 3 patients with bone metastases were missed in CT (sensitivity 57.1%, specificity 95.9%). Additionally, CT presented false-positive findings in 3 patients. Conclusion 18F-FDG PET/MRI has a high diagnostic potential and outperforms CT in assessing the N and M stage in patients with primary breast cancer.
Collapse
Affiliation(s)
- Nils Martin Bruckmann
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Dusseldorf, Germany
| | - Julian Kirchner
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Dusseldorf, Germany
- * E-mail:
| | - Janna Morawitz
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Dusseldorf, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ann-Kathrin Bittner
- Department Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Oliver Hoffmann
- Department Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Svjetlana Mohrmann
- Department of Gynecology, Medical Faculty, University Dusseldorf, Dusseldorf, Germany
| | - Marc Ingenwerth
- Institute of Pathology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen and the German Cancer Consortium (DKTK), Essen, Germany
| | - Benedikt M. Schaarschmidt
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Yan Li
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andreas Stang
- Institute of Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, Essen, Germany
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Dusseldorf, Germany
| | - Lino M. Sawicki
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Dusseldorf, Germany
| | - Christian Buchbender
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Dusseldorf, Germany
| |
Collapse
|
7
|
Lindemann ME, Oehmigen M, Lanz T, Grafe H, Bruckmann NM, Umutlu L, Quick HH. CAD-based hardware attenuation correction in PET/MRI: First methodical investigations and clinical application of a 16-channel RF breast coil. Med Phys 2021; 48:6696-6709. [PMID: 34655079 DOI: 10.1002/mp.15284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Aim of this study was to evaluate the use of computer-aided design (CAD) models for attenuation correction (AC) of hardware components in positron emission tomography/magnetic resonance (PET/MR) imaging. METHODS The technical feasibility and quantitative impact of CAD-AC compared to computer tomography (CT)-based AC (reference) was investigated on a modular phantom consisting of 19 different material samples (plastics and metals arranged around a cylindrical emission phantom) typically used in phantoms, patient tables, and radiofrequency (RF) coils in PET/MR. The clinical applicability of the CAD-AC method was then evaluated on a 16-channel RF breast coil in a PET/MR patient study. The RF breast coil in this study was specifically designed PET compatible. Using this RF breast coil, the impact on clinical PET/MR breast imaging was systematically evaluated in breast phantom measurements and, furthermore, in n = 10 PET/MR patients with breast cancer. PET data were reconstructed three times: (1) no AC (NAC), (2) established CT-AC, and (3) CAD-AC. For both phantom measurements, a scan without attenuating hardware components (material probes or RF breast coil) was acquired serving as reference. Relative differences in PET data were calculated for all experiments. RESULTS In all phantom and patient measurements, significant gains in PET signal compared to NAC data were measurable with CT and CAD-AC. In initial phantom experiments, mean relative differences of -0.2% for CT-AC and 0.2% for CAD-AC were calculated compared to reference measurements without the material probes. The application to a RF breast coil depicts that CAD-AC results in significant gains compared to NAC data (10%) and a slight underestimation in PET signal of -1.3% in comparison to the no-coil reference measurement. In the patient study, a total of 15 congruent lesions in all 10 patients with a mean relative difference of 14% (CT and CAD-AC) in standardized uptake value compared to NAC data could be detected. CONCLUSIONS To ensure best possible PET image quality and accurate PET quantification in PET/MR imaging, the AC of hardware components such as phantoms and RF coils is important. In initial phantom experiments and in clinical application to an RF breast coil, it was found that CAD-based AC results in significant gains in PET signal compared to NAC data and provides comparably good results to the established method of CT-based AC.
Collapse
Affiliation(s)
- Maike E Lindemann
- High-Field and Hybrid MR Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mark Oehmigen
- High-Field and Hybrid MR Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Hong Grafe
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Nils Martin Bruckmann
- Department of Diagnostic and Interventional Radiology, University Hospital Duesseldorf, University of Duesseldorf, Duesseldorf, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Harald H Quick
- High-Field and Hybrid MR Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
8
|
PET/MRI for Staging the Axilla in Breast Cancer: Current Evidence and the Rationale for SNB vs. PET/MRI Trials. Cancers (Basel) 2021; 13:cancers13143571. [PMID: 34298781 PMCID: PMC8303241 DOI: 10.3390/cancers13143571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 01/03/2023] Open
Abstract
Simple Summary PET/MRI is a relatively new, hybrid imaging tool that allows practitioners to obtain both a local and systemic staging in breast cancer patients in a single exam. To date, the available evidence is not sufficient to determine the role of PET/MRI in breast cancer management. The aims of this paper are to provide an overview of the current literature on PET/MRI in breast cancer, and to illustrate two ongoing trials aimed at defining the eventual role of PET/MRI in axillary staging in two different settings: patients with early breast cancer and patients with positive axillary nodes that are candidates for primary systemic therapy. In both cases, findings from PET/MRI will be compared with the final pathology and could be helpful to better tailor axillary surgery in the future. Abstract Axillary surgery in breast cancer (BC) is no longer a therapeutic procedure but has become a purely staging procedure. The progressive improvement in imaging techniques has paved the way to the hypothesis that prognostic information on nodal status deriving from surgery could be obtained with an accurate diagnostic exam. Positron emission tomography/magnetic resonance imaging (PET/MRI) is a relatively new imaging tool and its role in breast cancer patients is still under investigation. We reviewed the available literature on PET/MRI in BC patients. This overview showed that PET/MRI yields a high diagnostic performance for the primary tumor and distant lesions of liver, brain and bone. In particular, the results of PET/MRI in staging the axilla are promising. This provided the rationale for two prospective comparative trials between axillary surgery and PET/MRI that could lead to a further de-escalation of surgical treatment of BC. • SNB vs. PET/MRI 1 trial compares PET/MRI and axillary surgery in staging the axilla of BC patients undergoing primary systemic therapy (PST). • SNB vs. PET/MRI 2 trial compares PET/MRI and sentinel node biopsy (SNB) in staging the axilla of early BC patients who are candidates for upfront surgery. Finally, these ongoing studies will help clarify the role of PET/MRI in BC and establish whether it represents a useful diagnostic tool that could guide, or ideally replace, axillary surgery in the future.
Collapse
|
9
|
Bruckmann NM, Sawicki LM, Kirchner J, Martin O, Umutlu L, Herrmann K, Fendler W, Bittner AK, Hoffmann O, Mohrmann S, Dietzel F, Ingenwerth M, Schaarschmidt BM, Li Y, Kowall B, Stang A, Antoch G, Buchbender C. Prospective evaluation of whole-body MRI and 18F-FDG PET/MRI in N and M staging of primary breast cancer patients. Eur J Nucl Med Mol Imaging 2020; 47:2816-2825. [PMID: 32333068 PMCID: PMC7567721 DOI: 10.1007/s00259-020-04801-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES To evaluate and compare the diagnostic potential of whole-body MRI and whole-body 18F-FDG PET/MRI for N and M staging in newly diagnosed, histopathologically proven breast cancer. MATERIAL AND METHODS A total of 104 patients (age 53.4 ± 12.5) with newly diagnosed, histopathologically proven breast cancer were enrolled in this study prospectively. All patients underwent a whole-body 18F-FDG PET/MRI. MRI and 18F-FDG PET/MRI datasets were evaluated separately regarding lesion count, lesion localization, and lesion characterization (malignant/benign) as well as the diagnostic confidence (5-point ordinal scale, 1-5). The N and M stages were assessed according to the eighth edition of the American Joint Committee on Cancer staging manual in MRI datasets alone and in 18F-FDG PET/MRI datasets, respectively. In the majority of lesions histopathology served as the reference standard. The remaining lesions were followed-up by imaging and clinical examination. Separately for nodal-positive and nodal-negative women, a McNemar chi2 test was performed to compare sensitivity and specificity of the N and M stages between 18F-FDG PET/MRI and MRI. Differences in diagnostic confidence scores were assessed by Wilcoxon signed rank test. RESULTS MRI determined the N stage correctly in 78 of 104 (75%) patients with a sensitivity of 62.3% (95% CI: 0.48-0.75), a specificity of 88.2% (95% CI: 0.76-0.96), a PPV (positive predictive value) of 84.6% % (95% CI: 69.5-0.94), and a NPV (negative predictive value) of 69.2% (95% CI: 0.57-0.8). Corresponding results for 18F-FDG PET/MRI were 87/104 (83.7%), 75.5% (95% CI: 0.62-0.86), 92.2% (0.81-0.98), 90% (0.78-0.97), and 78.3% (0.66-0.88), showing a significantly better sensitivity of 18F-FDG PET/MRI determining malignant lymph nodes (p = 0.008). The M stage was identified correctly in MRI and 18F-FDG PET/MRI in 100 of 104 patients (96.2%). Both modalities correctly staged all 7 patients with distant metastases, leading to false-positive findings in 4 patients in each modality (3.8%). In a lesion-based analysis, 18F-FDG PET/MRI showed a significantly better performance in correctly determining malignant lesions (85.8% vs. 67.1%, difference 18.7% (95% CI: 0.13-0.26), p < 0.0001) and offered a superior diagnostic confidence compared with MRI alone (4.1 ± 0.7 vs. 3.4 ± 0.7, p < 0.0001). CONCLUSION 18F-FDG PET/MRI has a better diagnostic accuracy for N staging in primary breast cancer patients and provides a significantly higher diagnostic confidence in lesion characterization than MRI alone. But both modalities bear the risk to overestimate the M stage.
Collapse
Affiliation(s)
- Nils Martin Bruckmann
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, Dusseldorf, Germany
| | - Lino M Sawicki
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, Dusseldorf, Germany
| | - Julian Kirchner
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, Dusseldorf, Germany.
| | - Ole Martin
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, Dusseldorf, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Wolfgang Fendler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ann-Kathrin Bittner
- Department Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Oliver Hoffmann
- Department Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Svjetlana Mohrmann
- Department of Gynecology, Medical Faculty, University Dusseldorf, Dusseldorf, Germany
| | - Frederic Dietzel
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, Dusseldorf, Germany
| | - Marc Ingenwerth
- Institute of Pathology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK), Essen, Germany
| | - Benedikt M Schaarschmidt
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Yan Li
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bernd Kowall
- Institute of Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, Essen, Germany
| | - Andreas Stang
- Institute of Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, Essen, Germany
| | - Gerald Antoch
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, Dusseldorf, Germany
| | - Christian Buchbender
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, Dusseldorf, Germany
| |
Collapse
|
10
|
Abstract
Oncologic imaging has been a major focus of clinical research on PET/MR over the last 10 years. Studies so far have shown that PET/MR with 18F-Fluorodeoxyglucose (FDG) overall provides a similar accuracy for tumor staging as FDG PET/CT. The effective radiation dose of whole-body FDG PET/MR is more than 50% lower than for FDG PET/CT, making PET/MR particularly attractive for imaging of children. However, the longer acquisition times and higher costs have so far limited broader clinical use of PET/MR technology for whole-body staging. With the currently available technology, PET/MR appears more promising for locoregional staging of diseases for which MR is the anatomical imaging modality of choice. These include brain tumors, head and neck cancers, gynecologic malignancies, and prostate cancer. For instance, PET imaging with ligands of prostate-specific membrane antigen, combined with multi-parametric MR, appears promising for detection of prostate cancer and differentiation from benign prostate pathologies as well as for detection of local recurrences. The combination of functional parameters from MR, such as apparent diffusion coefficients, and molecular parameters from PET, such as receptor densities or metabolic rates, is feasible in clinical studies, but clinical applications for this multimodal and multi-parametric imaging approach still need to be defined.
Collapse
|
11
|
Abstract
High-quality imaging diagnostics play a fundamental role in patient and therapy management of cancers of the female pelvis. Magnetic resonance imaging (MRI) and positron emission tomography (PET) represent two important imaging modalities, which are frequently applied for primary tumor evaluation, therapy monitoring, and assessment of potential tumor relapse. Based on its high soft-tissue contrast, MRI has been shown superior toward CT for the determination of the local extent of primary tumors and for the differentiation between post-therapeutic changes and tumor relapse. Molecular imaging utilizing 18F-fluorodeoxyglucose (18F-FDG) PET facilitates an insight into tumor metabolism depending on the glycolytic activity of tumorous cells. As the current gold standard of hybrid imaging, 18F-FDG-PET/CT has been demonstrated highly accurate and superior to conventional imaging modalities for the detection of tumorous tissue due to the combined analysis of metabolic and morphologic data. Therefore, 18F-FDG-PET has emerged to become a well-established imaging modality for the detection, re-/staging and therapy response monitoring of a variety of solid tumors, including gynecologic cancers. Integrated PET/MRI systems have been successfully introduced into scientific and clinical applications within the past 8 years. This new-generation hybrid imaging technology enables the simultaneous acquisition of PET- and MR Datasets, providing complementary metabolic, functional, and morphologic information of tumorous tissue. Combining the high soft-tissue contrast of MRI and the metabolic information derived from PET, PET/MRI bears the potential to be utilized as an accurate and efficient diagnostic tool for primary tumor staging, therapy monitoring and restaging of tumors of the female pelvis and plays a valuable role in the management of targeted tumor therapies in the future.
Collapse
Affiliation(s)
- Lale Umutlu
- University Hospital Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen, Germany.
| | - Gerald Antoch
- University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Dusseldorf, Germany
| | - Ken Herrmann
- University Hospital Essen, Department of Nuclear Medicine, Essen, Germany
| | - Johannes Grueneisen
- University Hospital Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen, Germany
| |
Collapse
|
12
|
Çelebi F. What is the Diagnostic Performance of 18F-FDG-PET/MRI in the Detection of Bone Metastasis in Patients with Breast Cancer? Eur J Breast Health 2019; 15:213-216. [PMID: 31620678 DOI: 10.5152/ejbh.2019.4885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 08/16/2019] [Indexed: 01/27/2023]
Abstract
Objective To evaluate the diagnostic performance of 18F-fluorodeoxyglucose (FDG)-positron emission tomography (PET)/magnetic resonance imaging (MRI) in the detection of bone metastasis in patients with breast cancer. Materials and methods From August 2018 to January 2019, a total of 23 patients with pathologically confirmed invasive breast cancer underwent whole-body hybrid 18F-FDG -PET/MRI for initial staging and follow-up of their malignancies. The number of the bone metastasis was recorded for each patient. The total 18F-FDG-PET/MRI protocol was compared with PET only and the contrast enhanced fused (CE) component for the detection of bone metastasis. Results Eight (26%) of 23 patients had bone metastasis. Bone metastases were dominantly localized in the spine (63%) and pelvis (25%). In terms of the total number of detected bone metastasis, there was a statistically significant difference between 18F-FDG-PET/MRI (mean 3.57; median 0; range, 0-2) and PET only component (mean 2.87; median 0; range, 0-1) (p=0.026), but no statistically significant difference was detected between 18F-FDG-PET/MRI and whole-body CE MRI (mean 3.43; median 0; range 0-2) (p=0.083). Conclusion Whole-body hybrid 18F-FDG-PET/MRI is superior to PET component only, but no statistically significant difference between hybrid 18F-FDG-PET/MRI and whole-body CE MRI is found for the detection of bone metastasis in patients with breast cancer.
Collapse
Affiliation(s)
- Filiz Çelebi
- Department of Radiology, Gayrettepe Florence Nightingale Hospital, İstanbul, Turkey
| |
Collapse
|
13
|
Schiano C, Franzese M, Pane K, Garbino N, Soricelli A, Salvatore M, de Nigris F, Napoli C. Hybrid 18F-FDG-PET/MRI Measurement of Standardized Uptake Value Coupled with Yin Yang 1 Signature in Metastatic Breast Cancer. A Preliminary Study. Cancers (Basel) 2019; 11:cancers11101444. [PMID: 31561604 PMCID: PMC6827137 DOI: 10.3390/cancers11101444] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose: Detection of breast cancer (BC) metastasis at the early stage is important for the assessment of BC progression status. Image analysis represents a valuable tool for the management of oncological patients. Our preliminary study combined imaging parameters from hybrid 18F-FDG-PET/MRI and the expression level of the transcriptional factor Yin Yang 1 (YY1) for the detection of early metastases. Methods: The study enrolled suspected n = 217 BC patients that underwent 18F-FDG-PET/MRI scans. The analysis retrospectively included n = 55 subjects. n = 40 were BC patients and n = 15 imaging-negative female individuals were healthy subjects (HS). Standard radiomics parameters were extracted from PET/MRI image. RNA was obtained from peripheral blood mononuclear cells and YY1 expression level was evaluated by real time reverse transcription polymerase chain reactions (qRT-PCR). An enzyme-linked immuosorbent assay (ELISA) was used to determine the amount of YY1 serum protein. Statistical comparison between subgroups was evaluated by Mann-Whitney U and Spearman’s tests. Results: Radiomics showed a significant positive correlation between Greg-level co-occurrence matrix (GLCM) and standardized uptake value maximum (SUVmax) (r = 0.8 and r = 0.8 respectively) in BC patients. YY1 level was significant overexpressed in estrogen receptor (ER)-positive/progesteron receptor-positive/human epidermal growth factor receptor2-negative (ER+/PR+/HER2-) subtype of BC patients with synchronous metastasis (SM) at primary diagnosis compared to metachronous metastasis (MM) and HS (p < 0.001) and correlating significantly with 18F-FDG-uptake parameter (SUVmax) (r = 0.48). Conclusions: The combination of functional 18F-FDG-PET/MRI parameters and molecular determination of YY1 could represent a novel integrated approach to predict synchronous metastatic disease with more accuracy than 18F-FDG-PET/MRI alone.
Collapse
Affiliation(s)
| | | | | | | | - Andrea Soricelli
- IRCCS SDN, 80134 Naples, Italy
- Department of Motor Sciences and Healthiness, University of Naples Parthenope, 80134 Naples, Italy
| | | | - Filomena de Nigris
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Claudio Napoli
- IRCCS SDN, 80134 Naples, Italy
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| |
Collapse
|
14
|
Diffusion-weighted imaging as a part of PET/MR for small lesion detection in patients with primary abdominal and pelvic cancer, with or without TOF reconstruction technique. Abdom Radiol (NY) 2019; 44:2639-2647. [PMID: 30863998 DOI: 10.1007/s00261-019-01980-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVES To investigate the value of diffusion-weighted imaging (DWI) in detection of small lesions (≤ 10 mm) in patients with primary abdominal and pelvic cancer in hybrid PET/MR with or without time-of-flight (TOF) technique. MATERIALS AND METHODS Twenty patients (11 females and 9 males, mean age 67.23 ± 12.90 years) with histologically confirmed primary abdominal and pelvic cancer underwent hybrid PET/MR examination. A total of 64 small lesions were included in this study, which were divided into two groups (≤ 10 mm and 10-30 mm). Visual scores of small lesion detection ability were rated by five-point ordinal scale. The visual scores and detectability of small lesions on TOF PET image, noTOF PET image, and DWI sequences of hybrid PET/MR examination with or without TOF technique were analyzed. Logistic regression model was established for analysis in the value of DWI in hybrid PET/MR examination with or without TOF technique in detection of the small lesions between two groups. RESULTS The visual evaluation revealed the small lesion (≤ 10 mm) visual scores of DWI (mean ± SD: 4.23 ± 1.41), TOF PET image (mean ± SD: 4.14 ± 0.89), and noTOF PET image (mean ± SD: 2.68 ± 1.13);.and the visual scores of small lesions (10-30 mm) on DWI (mean ± SD: 4.98 ± 0.15), TOF PET image (mean ± SD: 4.57 ± 0.59), and noTOF PET image (mean ± SD: 3.98 ± 1.05). The visual scores of all small lesions on DWI were higher than that on TOF PET data and noTOF PET data in both two groups (**P < 0.01). The missed diagnosis rates of small FDG avid lesions (≤ 10 mm) of DWI and noTOF PET image were 9.1% and 9.1%, respectively. However, the TOF PET-based clinical diagnosis detected all small lesions (≤ 30 mm). DWI was of great importance in detection of small lesions (≤ 10 mm) in the absence of TOF technique in PET/MR examination (**P < 0.01). DWI's effect on detection of small lesions(10-30 mm) has shown no difference between PET/MR examinations with TOF and without TOF techniques (P > 0.05). CONCLUSION DWI has significant value in the detection of small lesions (≤ 10 mm) in hybrid PET/MR examination without TOF technique for patients with primary abdominal and pelvic cancer. However, it had less detection benefits in the small lesions (≤ 10 mm) in hybrid PET/MR examination with TOF PET image.
Collapse
|
15
|
Integrated versus separate reading of F-18 FDG-PET/CT and MRI for abdominal malignancies – effect on staging outcomes and diagnostic confidence. Eur Radiol 2019; 29:6900-6910. [DOI: 10.1007/s00330-019-06253-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/04/2019] [Accepted: 04/25/2019] [Indexed: 12/11/2022]
|
16
|
Towards fast whole-body PET/MR: Investigation of PET image quality versus reduced PET acquisition times. PLoS One 2018; 13:e0206573. [PMID: 30376583 PMCID: PMC6207312 DOI: 10.1371/journal.pone.0206573] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 10/16/2018] [Indexed: 12/18/2022] Open
Abstract
Purpose The trend towards faster acquisition protocols in whole-body positron emission tomography/magnetic resonance (PET/MR) arises the question of whether short PET data acquisition protocols in a whole-body multi-station context allow for reduced PET acquisition times while providing adequate PET image quality and accurate quantification parameters. The study goal is to investigate how reducing PET acquisition times affects PET image quality and quantification in whole-body PET/MR in patients with oncologic findings. Methods Fifty-one patients with different oncologic findings underwent a clinical whole-body 18F-Fluorodeoxyglucose PET/MR examination. PET data was reconstructed with 4, 3, 2, and 1 min/bed time intervals for each patient to simulate the effect of reduced PET acquisition times. The 4-minute PET reconstructions served as reference standard. All whole-body PET data sets were analyzed regarding image quality, lesion detectability, PET quantification and standardized uptake values. Results A total of 91 lesions were detected in the 4-minute PET reconstructions. The same number of congruent lesions was also noticed in the 3 and 2 minutes-per-bed (mpb) reconstructed images. A total of 2 lesions in 2 patients was not detected in the 1 minute PET data reconstructions due to poor image quality. Image noise in the blood pool increased from 22.2% (4 mpb) to 42.1% (1 mpb). Signal-to-noise ratio declined with shorter timeframes from 13.1 (4 mpb) to 9.3 (1 mpb). SUVmean and SUVmax showed no significant changes between 4 and 1 mpb reconstructed timeframes. Conclusions Reconstruction of PET data with different time intervals has shown that 2 minutes acquisition time per bed position instead of 4 minutes is sufficient to provide accurate lesion detection and adequate image quality in a clinical setting, despite the trends to lower image quality with shorter PET acquisition times. This provides latitude for potential reduction of PET acquisition times in fast PET/MR whole-body examinations.
Collapse
|
17
|
Pujara AC, Kim E, Axelrod D, Melsaether AN. PET/MRI in Breast Cancer. J Magn Reson Imaging 2018; 49:328-342. [DOI: 10.1002/jmri.26298] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Akshat C. Pujara
- Department of Radiology, Division of Breast Imaging; University of Michigan Health System; Ann Arbor Michigan USA
| | - Eric Kim
- Department of Radiology; NYU School of Medicine; New York New York USA
| | - Deborah Axelrod
- Department of Surgery; Perlmutter Cancer Center, NYU School of Medicine; New York New York USA
| | - Amy N. Melsaether
- Department of Radiology; NYU School of Medicine; New York New York USA
| |
Collapse
|
18
|
Botsikas D, Bagetakos I, Picarra M, Da Cunha Afonso Barisits AC, Boudabbous S, Montet X, Lam GT, Mainta I, Kalovidouri A, Becker M. What is the diagnostic performance of 18-FDG-PET/MR compared to PET/CT for the N- and M- staging of breast cancer? Eur Radiol 2018; 29:1787-1798. [DOI: 10.1007/s00330-018-5720-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/13/2018] [Accepted: 08/14/2018] [Indexed: 12/19/2022]
|
19
|
Sah BR, Ghafoor S, Burger IA, Ter Voert EEGW, Sekine T, Delso G, Huellner M, Dedes KJ, Boss A, Veit-Haibach P. Feasibility of 18F-FDG Dose Reductions in Breast Cancer PET/MRI. J Nucl Med 2018; 59:1817-1822. [PMID: 29880506 DOI: 10.2967/jnumed.118.209007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/27/2018] [Indexed: 12/16/2022] Open
Abstract
The goal of this study was to determine the level of clinically acceptable 18F-FDG dose reduction in time-of-flight PET/MRI in patients with breast cancer. Methods: Twenty-six consecutive women with histologically proven breast cancer were analyzed (median age, 51 y; range, 34-83 y). Simulated dose-reduced PET images were generated by unlisting the list-mode data on PET/MRI. The acquired 20-min PET frame was reconstructed in 5 ways: a reconstruction of the first 2 min with 3 iterations and 28 subsets for reference, and reconstructions simulating 100%, 20%, 10%, and 5% of the original dose. General image quality and artifacts, image sharpness, image noise, and lesion detectability were analyzed using a 4-point scale. Qualitative parameters were compared using the nonparametric Friedman test for multiple samples and the Wilcoxon signed-rank test for paired samples. Different groups of independent samples were compared using the Mann-Whitney U test. Results: Overall, 355 lesions (71 lesions with 5 different reconstructions each) were evaluated. The 20-min reconstruction with 100% injected dose showed the best results in all categories. For general image quality and artifacts, image sharpness, and noise, the reconstructions with a simulated dose of 20% and 10% were significantly better than the 2-min reconstructions (P ≤ 0.001). Furthermore, 20%, 10%, and 5% reconstructions did not yield results different from those of the 2-min reconstruction for detectability of the primary lesion. For 10% of the injected dose, a calculated mean dose of 22.6 ± 5.5 MBq (range, 17.9-36.9 MBq) would have been applied, resulting in an estimated whole-body radiation burden of 0.5 ± 0.1 mSv (range, 0.4-0.7 mSv). Conclusion: Ten percent of the standard dose of 18F-FDG (reduction of ≤90%) results in clinically acceptable PET image quality in time-of-flight PET/MRI. The calculated radiation exposure would be comparable to the effective dose of a single digital mammogram. A reduction of radiation burden to this level might justify partial-body examinations with PET/MRI for dedicated indications.
Collapse
Affiliation(s)
- Bert-Ram Sah
- Department of Nuclear Medicine, University Hospital of Zurich, Zurich, Switzerland .,Department of Cancer Imaging, King`s College London, London, United Kingdom.,Department of Diagnostic and Interventional Radiology, University Hospital of Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| | - Soleen Ghafoor
- Department of Diagnostic and Interventional Radiology, University Hospital of Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| | - Irene A Burger
- Department of Nuclear Medicine, University Hospital of Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland.,Cancer Center Zurich, Zurich, Switzerland
| | - Edwin E G W Ter Voert
- Department of Nuclear Medicine, University Hospital of Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| | - Tetsuro Sekine
- Department of Nuclear Medicine, University Hospital of Zurich, Zurich, Switzerland
| | - Gaspar Delso
- Department of Nuclear Medicine, University Hospital of Zurich, Zurich, Switzerland.,GE Healthcare, Waukesha, Wisconsin
| | - Martin Huellner
- Department of Nuclear Medicine, University Hospital of Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| | - Konstantin J Dedes
- Cancer Center Zurich, Zurich, Switzerland.,Department of Gynaecology, University Hospital of Zurich, Zurich, Switzerland
| | - Andreas Boss
- Department of Diagnostic and Interventional Radiology, University Hospital of Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| | - Patrick Veit-Haibach
- Department of Nuclear Medicine, University Hospital of Zurich, Zurich, Switzerland.,Department of Diagnostic and Interventional Radiology, University Hospital of Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland.,Joint Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada; and.,University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Mannheim JG, Schmid AM, Schwenck J, Katiyar P, Herfert K, Pichler BJ, Disselhorst JA. PET/MRI Hybrid Systems. Semin Nucl Med 2018; 48:332-347. [PMID: 29852943 DOI: 10.1053/j.semnuclmed.2018.02.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Over the last decade, the combination of PET and MRI in one system has proven to be highly successful in basic preclinical research, as well as in clinical research. Nowadays, PET/MRI systems are well established in preclinical imaging and are progressing into clinical applications to provide further insights into specific diseases, therapeutic assessments, and biological pathways. Certain challenges in terms of hardware had to be resolved concurrently with the development of new techniques to be able to reach the full potential of both combined techniques. This review provides an overview of these challenges and describes the opportunities that simultaneous PET/MRI systems can exploit in comparison with stand-alone or other combined hybrid systems. New approaches were developed for simultaneous PET/MRI systems to correct for attenuation of 511 keV photons because MRI does not provide direct information on gamma photon attenuation properties. Furthermore, new algorithms to correct for motion were developed, because MRI can accurately detect motion with high temporal resolution. The additional information gained by the MRI can be employed to correct for partial volume effects as well. The development of new detector designs in combination with fast-decaying scintillator crystal materials enabled time-of-flight detection and incorporation in the reconstruction algorithms. Furthermore, this review lists the currently commercially available systems both for preclinical and clinical imaging and provides an overview of applications in both fields. In this regard, special emphasis has been placed on data analysis and the potential for both modalities to evolve with advanced image analysis tools, such as cluster analysis and machine learning.
Collapse
Affiliation(s)
- Julia G Mannheim
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Andreas M Schmid
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Johannes Schwenck
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany; Department of Nuclear Medicine and Clinical Molecular Imaging, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Prateek Katiyar
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Kristina Herfert
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Bernd J Pichler
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany.
| | - Jonathan A Disselhorst
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| |
Collapse
|
21
|
Sasaki M, Tozaki M, Kubota K, Murakami W, Yotsumoto D, Sagara Y, Ohi Y, Oosako S, Sagara Y. Simultaneous whole-body and breast 18F-FDG PET/MRI examinations in patients with breast cancer: a comparison of apparent diffusion coefficients and maximum standardized uptake values. Jpn J Radiol 2017; 36:122-133. [DOI: 10.1007/s11604-017-0707-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/12/2017] [Indexed: 12/28/2022]
|