1
|
Erdil E, Becker AS, Schwyzer M, Martinez-Tellez B, Ruiz JR, Sartoretti T, Vargas HA, Burger AI, Chirindel A, Wild D, Zamboni N, Deplancke B, Gardeux V, Maushart CI, Betz MJ, Wolfrum C, Konukoglu E. Predicting standardized uptake value of brown adipose tissue from CT scans using convolutional neural networks. Nat Commun 2024; 15:8402. [PMID: 39333526 PMCID: PMC11436835 DOI: 10.1038/s41467-024-52622-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/13/2024] [Indexed: 09/29/2024] Open
Abstract
The standard method for identifying active Brown Adipose Tissue (BAT) is [18F]-Fluorodeoxyglucose ([18F]-FDG) PET/CT imaging, which is costly and exposes patients to radiation, making it impractical for population studies. These issues can be addressed with computational methods that predict [18F]-FDG uptake by BAT from CT; earlier population studies pave the way for developing such methods by showing some correlation between the Hounsfield Unit (HU) of BAT in CT and the corresponding [18F]-FDG uptake in PET. In this study, we propose training convolutional neural networks (CNNs) to predict [18F]-FDG uptake by BAT from unenhanced CT scans in the restricted regions that are likely to contain BAT. Using the Attention U-Net architecture, we perform experiments on datasets from four different cohorts, the largest study to date. We segment BAT regions using predicted [18F]-FDG uptake values, achieving 23% to 40% better accuracy than conventional CT thresholding. Additionally, BAT volumes computed from the segmentations distinguish the subjects with and without active BAT with an AUC of 0.8, compared to 0.6 for CT thresholding. These findings suggest CNNs can facilitate large-scale imaging studies more efficiently and cost-effectively using only CT.
Collapse
Affiliation(s)
- Ertunc Erdil
- Computer Vision Lab., ETH Zurich, Zurich, Switzerland.
| | - Anton S Becker
- Computer Vision Lab., ETH Zurich, Zurich, Switzerland
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Moritz Schwyzer
- Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Borja Martinez-Tellez
- Department of Nursing, Physiotherapy and Medicine and SPORT Research Group (CTS-1024), CERNEP Research Center, University of Almería, Almería, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Granada, Spain
- Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jonatan R Ruiz
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, 18071, Granada, Spain
- Instituto de Investigación Biosanitaria, Ibs.Granada, Granada, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Thomas Sartoretti
- Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - H Alberto Vargas
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - A Irene Burger
- Department of Nuclear Medicine, University Zurich Hospital, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Alin Chirindel
- Department of Radiology and Nuclear Medicine, University Hospital of Basel, Basel, Switzerland
| | - Damian Wild
- Department of Radiology and Nuclear Medicine, University Hospital of Basel, Basel, Switzerland
| | - Nicola Zamboni
- Swiss Multi-Omics Center, ETH Zürich, Zürich, Switzerland
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Vincent Gardeux
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Claudia Irene Maushart
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Matthias Johannes Betz
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Christian Wolfrum
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Ender Konukoglu
- Computer Vision Lab., ETH Zurich, Zurich, Switzerland
- The LOOP Zürich - Medical Research Center, Zürich, Switzerland
| |
Collapse
|
2
|
Jalloul W, Moscalu M, Moscalu R, Jalloul D, Grierosu IC, Gutu M, Haba D, Mocanu V, Gutu MM, Stefanescu C. Are MTV and TLG Accurate for Quantifying the Intensity of Brown Adipose Tissue Activation? Biomedicines 2024; 12:151. [PMID: 38255256 PMCID: PMC10813038 DOI: 10.3390/biomedicines12010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Recent research has suggested that one novel mechanism of action for anti-obesity medications is to stimulate the activation of brown adipose tissue (BAT). 18FDG PET/CT remains the gold standard for defining and quantifying BAT. SUVmax is the most often used quantification tool in clinical practice. However, this parameter does not reflect the entire BAT volume. As a potential method for precisely evaluating BAT, we have utilised metabolic tumour volume (MTV) and total lesion glycolysis (TLG) to answer the question: Are MTV and TLG accurate in quantifying the intensity of BAT activation? After analysing the total number of oncological 18F-FDG PET/CT scans between 2021-2023, we selected patients with active BAT. Based on the BAT SUVmax, the patients were divided into BAT-moderate activation (MA) vs. BAT-high activation (HA). Furthermore, we statistically analysed the accuracy of TLG and MTV in assessing BAT activation intensity. The results showed that both parameters increased their predictive value regarding BAT activation, and presented a significantly high sensitivity and specificity for the correct classification of BAT activation intensity. To conclude, these parameters could be important indicators with increased accuracy for classifying BAT expression, and could bring additional information about the volume of BAT to complement the limitations of the SUVmax.
Collapse
Affiliation(s)
- Wael Jalloul
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (W.J.); (D.J.); (I.C.G.); (C.S.)
| | - Mihaela Moscalu
- Department of Preventive Medicine and Interdisciplinarity, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Roxana Moscalu
- Manchester Academic Health Science Centre, Cell Matrix Biology and Regenerative Medicine, The University of Manchester, Manchester M13 9PT, UK;
| | - Despina Jalloul
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (W.J.); (D.J.); (I.C.G.); (C.S.)
| | - Irena Cristina Grierosu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (W.J.); (D.J.); (I.C.G.); (C.S.)
| | - Mihaela Gutu
- County Hospital of Emergency “Saint John the New”, 720224 Suceava, Romania; (M.G.); (M.M.G.)
| | - Danisia Haba
- Department 1 Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Veronica Mocanu
- Department of Morpho-Functional Sciences (Pathophysiology), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Mihai Marius Gutu
- County Hospital of Emergency “Saint John the New”, 720224 Suceava, Romania; (M.G.); (M.M.G.)
| | - Cipriana Stefanescu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (W.J.); (D.J.); (I.C.G.); (C.S.)
| |
Collapse
|
3
|
Malaih AA, Dunn JT, Nygård L, Kovacs DG, Andersen FL, Barrington SF, Fischer BM. Test-retest repeatability and interobserver variation of healthy tissue metabolism using 18F-FDG PET/CT of the thorax among lung cancer patients. Nucl Med Commun 2022; 43:549-559. [PMID: 35081091 PMCID: PMC7612596 DOI: 10.1097/mnm.0000000000001537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVES The aim of this study was to assess the test-retest repeatability and interobserver variation in healthy tissue (HT) metabolism using 2-deoxy-2-[18F]fluoro-d-glucose (18F-FDG) PET/computed tomography (PET/CT) of the thorax in lung cancer patients. METHODS A retrospective analysis was conducted in 22 patients with non-small cell lung cancer who had two PET/CT scans of the thorax performed 3 days apart with no interval treatment. The maximum, mean and peak standardized uptake values (SUVs) in different HTs were measured by a single observer for the test-retest analysis and two observers for interobserver variation. Bland-Altman plots were used to assess the repeatability and interobserver variation. Intrasubject variability was evaluated using within-subject coefficients of variation (wCV). RESULTS The wCV of test-retest SUVmean measurements in mediastinal blood pool, bone marrow, skeletal muscles and lungs was less than 20%. The left ventricle (LV) showed higher wCV (>60%) in all SUV parameters with wide limits of repeatability. High interobserver agreement was found with wCV of less than 10% in SUVmean of all HT, but up to 22% was noted in the LV. CONCLUSION HT metabolism is stable in a test-retest scenario and has high interobserver agreement. SUVmean was the most stable metric in organs with low FDG uptake and SUVpeak in HTs with moderate uptake. Test-retest measurements in LV were highly variable irrespective of the SUV parameters used for measurements.
Collapse
Affiliation(s)
- Afnan A Malaih
- Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, PET Imaging Centre, St Thomas Hospital, King's College London, London, UK
| | - Joel T Dunn
- Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, PET Imaging Centre, St Thomas Hospital, King's College London, London, UK
| | - Lotte Nygård
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital
| | - David G Kovacs
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Flemming L Andersen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Sally F Barrington
- Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, PET Imaging Centre, St Thomas Hospital, King's College London, London, UK
| | - Barbara M Fischer
- Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, PET Imaging Centre, St Thomas Hospital, King's College London, London, UK
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Becker AS, Zellweger C, Bacanovic S, Franckenberg S, Nagel HW, Frick L, Schawkat K, Eberhard M, Blüthgen C, Volbracht J, Moos R, Wolfrum C, Burger IA. Brown fat does not cause cachexia in cancer patients: A large retrospective longitudinal FDG-PET/CT cohort study. PLoS One 2020; 15:e0239990. [PMID: 33031379 PMCID: PMC7544086 DOI: 10.1371/journal.pone.0239990] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
Background Brown adipose tissue (BAT) is a specialized form of adipose tissue, able to increase energy expenditure by heat generation in response to various stimuli. Recently, its pathological activation has been implicated in the pathogenesis of cancer cachexia. To establish a causal relationship, we retrospectively investigated the longitudinal changes in BAT and cancer in a large FDG-PET/CT cohort. Methods We retrospectively analyzed 13 461 FDG-PET/CT examinations of n = 8 409 patients at our institution from the winter months of 2007–2015. We graded the activation strength of BAT based on the anatomical location of the most caudally activated BAT depot into three tiers, and the stage of the cancer into five general grades. We validated the cancer grading by an interreader analysis and correlation with histopathological stage. Ambient temperature data (seven-day average before the examination) was obtained from a meteorological station close to the hospital. Changes of BAT, cancer, body mass index (BMI) and temperature between the different examinations were examined with Spearman’s test and a mixed linear model for correlation, and with a causal inference algorithm for causality. Results We found n = 283 patients with at least two examinations and active BAT in at least one of them. There was no significant interaction between the changes in BAT activation, cancer burden or BMI. Temperature changes exhibited a strong negative correlation with BAT activity (ϱ = -0.57, p<0.00001). These results were confirmed with the mixed linear model. Causal inference revealed a link of Temperature ➜ BAT in all subjects and also of BMI ➜ BAT in subjects who had lost weight and increased cancer burden, but no role of cancer and no causal links of BAT ➜ BMI. Conclusions Our data did not confirm the hypothesis that BAT plays a major role in cancer-mediated weight loss. Temperature changes are the main driver of incidental BAT activity on FDG-PET scans.
Collapse
Affiliation(s)
- Anton S. Becker
- Department of Health Sciences and Technology; Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
- * E-mail:
| | - Caroline Zellweger
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Sara Bacanovic
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Sabine Franckenberg
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Hannes W. Nagel
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Lukas Frick
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Khoschy Schawkat
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Matthias Eberhard
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Christian Blüthgen
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Jörk Volbracht
- Division of Controlling and Data Management, University Hospital Zurich, Zurich, Switzerland
| | - Rudolf Moos
- Division of Controlling and Data Management, University Hospital Zurich, Zurich, Switzerland
| | - Christian Wolfrum
- Department of Health Sciences and Technology; Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Irene A. Burger
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Ter Voert EEGW, Svirydenka H, Müller J, Becker AS, Balaz M, Efthymiou V, Maushart CI, Gashi G, Wolfrum C, Betz MJ, Burger IA. Low-dose 18F-FDG TOF-PET/MR for accurate quantification of brown adipose tissue in healthy volunteers. EJNMMI Res 2020; 10:5. [PMID: 31974702 PMCID: PMC6977803 DOI: 10.1186/s13550-020-0592-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/12/2020] [Indexed: 12/12/2022] Open
Abstract
Background Positron emission tomography (PET) is increasingly applied for in vivo brown adipose tissue (BAT) research in healthy volunteers. To limit the radiation exposure, the injected 18F-FDG tracer dose should be as low as possible. With simultaneous PET/MR imaging, the radiation exposure due to computed tomography (CT) can be avoided, but more importantly, the PET acquisition time can often be increased to match the more extensive magnetic resonance (MR) imaging protocol. The potential gain in detected coincidence counts, due to the longer acquisition time, can then be applied to decrease the injected tracer dose. The aim of this study was to investigate the minimal 18F-FDG dose for a 10-min time-of-flight (TOF) PET/MR acquisition that would still allow accurate quantification of supraclavicular BAT volume and activity. Methods Twenty datasets from 13 volunteers were retrospectively included from a prospective clinical study. PET emission datasets were modified to simulate step-wise reductions of the original 75 MBq injected dose. The resulting PET images were visually and quantitatively assessed and compared to a 4-min reference scan. For the visual assessment, the image quality and artifacts were scored using a 5-point and a 3-point Likert scale. For the quantitative analysis, image noise and artifacts, BAT metabolic activity, BAT metabolic volume (BMV), and total BAT glycolysis (TBG) were investigated. Results The visual assessment showed still good image quality for the 35%, 30%, and 25% activity reconstructions with no artifacts. Quantitatively, the background noise was similar to the reference for the 35% and 30% activity reconstructions and the artifacts started to increase significantly in the 25% and lower activity reconstructions. There was no significant difference in supraclavicular BAT metabolic activity, BMV, and TBG between the reference and the 35% to 20% activity reconstructions. Conclusions This study indicates that when the PET acquisition time is matched to the 10-min MRI protocol, the injected 18F-FDG tracer dose can be reduced to approximately 19 MBq (25%) while maintaining image quality and accurate supraclavicular BAT quantification. This could decrease the effective dose from 1.4 mSv to 0.36 mSv.
Collapse
Affiliation(s)
- Edwin E G W Ter Voert
- Department of Nuclear Medicine, University Hospital Zürich, Rämistrasse 100, 8091, Zürich, Switzerland. .,University of Zurich, Rämistrasse 71, 8006, Zürich, Switzerland.
| | - Hanna Svirydenka
- Department of Nuclear Medicine, University Hospital Zürich, Rämistrasse 100, 8091, Zürich, Switzerland.,Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Julian Müller
- Department of Nuclear Medicine, University Hospital Zürich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Anton S Becker
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zürich, Schorenstrasse 16, 8603, Schwerzenbach, Switzerland.,Institute of Diagnostic and Interventional Radiology, University Hospital Zürich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Miroslav Balaz
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zürich, Schorenstrasse 16, 8603, Schwerzenbach, Switzerland
| | - Vissarion Efthymiou
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zürich, Schorenstrasse 16, 8603, Schwerzenbach, Switzerland
| | - Claudia Irene Maushart
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland.,University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Gani Gashi
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland.,University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Christian Wolfrum
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zürich, Schorenstrasse 16, 8603, Schwerzenbach, Switzerland
| | - Matthias J Betz
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland.,University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Irene A Burger
- Department of Nuclear Medicine, University Hospital Zürich, Rämistrasse 100, 8091, Zürich, Switzerland.,Department of Nuclear Medicine, Kantonsspital Baden, Im Ergel 1, 5404, Baden, Switzerland
| |
Collapse
|
6
|
Carpentier AC, Blondin DP, Virtanen KA, Richard D, Haman F, Turcotte ÉE. Brown Adipose Tissue Energy Metabolism in Humans. Front Endocrinol (Lausanne) 2018; 9:447. [PMID: 30131768 PMCID: PMC6090055 DOI: 10.3389/fendo.2018.00447] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/20/2018] [Indexed: 12/16/2022] Open
Abstract
The demonstration of metabolically active brown adipose tissue (BAT) in humans primarily using positron emission tomography coupled to computed tomography (PET/CT) with the glucose tracer 18-fluorodeoxyglucose (18FDG) has renewed the interest of the scientific and medical community in the possible role of BAT as a target for the prevention and treatment of obesity and type 2 diabetes (T2D). Here, we offer a comprehensive review of BAT energy metabolism in humans. Considerable advances in methods to measure BAT energy metabolism, including nonesterified fatty acids (NEFA), chylomicron-triglycerides (TG), oxygen, Krebs cycle rate, and intracellular TG have led to very good quantification of energy substrate metabolism per volume of active BAT in vivo. These studies have also shown that intracellular TG are likely the primary energy source of BAT upon activation by cold. Current estimates of BAT's contribution to energy expenditure range at the lower end of what would be potentially clinically relevant if chronically sustained. Yet, 18FDG PET/CT remains the gold-standard defining method to quantify total BAT volume of activity, used to calculate BAT's total energy expenditure. Unfortunately, BAT glucose metabolism better reflects BAT's insulin sensitivity and blood flow. It is now clear that most glucose taken up by BAT does not fuel mitochondrial oxidative metabolism and that BAT glucose uptake can therefore be disconnected from thermogenesis. Furthermore, BAT thermogenesis is efficiently recruited upon repeated cold exposure, doubling to tripling its total oxidative capacity, with reciprocal reduction of muscle thermogenesis. Recent data suggest that total BAT volume may be much larger than the typically observed 50-150 ml with 18FDG PET/CT. Therefore, the current estimates of total BAT thermogenesis, largely relying on total BAT volume using 18FDG PET/CT, may underestimate the true contribution of BAT to total energy expenditure. Quantification of the contribution of BAT to energy expenditure begs for the development of more integrated whole body in vivo methods.
Collapse
Affiliation(s)
- André C. Carpentier
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Kirsi A. Virtanen
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland (UEF), Kuopio, Finland
| | - Denis Richard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, QC, Canada
| | - François Haman
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Éric E. Turcotte
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|