1
|
Li T, Xu J, Wang L, Xu K, Chen W, Zhang L, Niu G, Zhang Y, Ding Z, Lv Y. Functional network reorganization after endovascular thrombectomy in patients with anterior circulation stroke. Neuroimage Clin 2024; 43:103648. [PMID: 39067302 PMCID: PMC11332103 DOI: 10.1016/j.nicl.2024.103648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Endovascular thrombectomy has been confirmed to be an effective therapy for acute ischemic stroke (AIS). However, how functional brain networks reorganize after restoration of blood supply in AIS patients, and whether the degree of reperfusion associates with functional network changes remains unclear. METHODS Resting-state fMRI data were collected from 43 AIS patients with anterior circulation occlusion after thrombectomy and 37 healthy controls (HCs). Both static and dynamic functional connectivity (FC) within four advanced functional networks including dorsal attention network (DAN), ventral attention network (VAN), executive control network (ECN) and default mode network (DMN), were calculated and compared between post-thrombectomy patients and HCs, and between two subgroups of post-thrombectomy patients with different reperfusion conditions. RESULTS As compared to HCs, patients showed significant differences in static FC of four functional networks, and in dynamic FC of DAN, ECN and DMN. Furthermore, patients with better reperfusion conditions exhibited increased static FC with precuneus, and altered dynamic FC within precuneus. Moreover, these alterations were associated with clinical assessments of stroke severity and functional recovery in post-thrombectomy patients. CONCLUSIONS Collectively, these findings may provide the potential imaging markers for assessment of thrombectomy efficacy and help establish the specific rehabilitation treatments for post-thrombectomy patients.
Collapse
Affiliation(s)
- Tongyue Li
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Jiaona Xu
- Department of Rehabilitation, Affiliated Hangzhou First People's Hospital, Westlake University, Hangzhou, Zhejiang, China
| | - Luoyu Wang
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Westlake University, Hangzhou, Zhejiang, China
| | - Kang Xu
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Weiwei Chen
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Liqing Zhang
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Westlake University, Hangzhou, Zhejiang, China
| | - Guozhong Niu
- Department of Neurology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Yu Zhang
- Department of Psychology, Affiliated Hangzhou First People's Hospital, Westlake University, Hangzhou, Zhejiang, China
| | - Zhongxiang Ding
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Westlake University, Hangzhou, Zhejiang, China.
| | - Yating Lv
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Wu X, Xu K, Li T, Wang L, Fu Y, Ma Z, Wu X, Wang Y, Chen F, Song J, Song Y, Lv Y. Abnormal intrinsic functional hubs and connectivity in patients with post-stroke depression. Ann Clin Transl Neurol 2024; 11:1852-1867. [PMID: 38775214 PMCID: PMC11251479 DOI: 10.1002/acn3.52091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 07/17/2024] Open
Abstract
OBJECTIVE The present study aimed to investigate the specific alterations of brain networks in patients with post-stroke depression (PSD), and further assist in elucidating the brain mechanisms underlying the PSD which would provide supporting evidence for early diagnosis and interventions for the disease. METHODS Resting-state functional magnetic resonace imaging data were acquired from 82 nondepressed stroke patients (Stroke), 39 PSD patients, and 74 healthy controls (HC). Voxel-wise degree centrality (DC) conjoined with seed-based functional connectivity (FC) analyses were performed to investigate the PSD-related connectivity alterations. The relationship between these alterations and depression severity was further examined in PSD patients. RESULTS Relative to both Stroke and HC groups, (1) PSD showed increased centrality in regions within the default mode network (DMN), including contralesional angular gyrus (ANG), posterior cingulate cortex (PCC), and hippocampus (HIP). DC values in contralesional ANG positively correlated with the Patient Health Questionnaire-9 (PHQ-9) scores in PSD group. (2) PSD exhibited increased connectivity between these three seeds showing altered DC and regions within the DMN: bilateral medial prefrontal cortex and middle temporal gyrus and ipsilesional superior parietal gyrus, and regions outside the DMN: bilateral calcarine, ipsilesional inferior occipital gyrus and contralesional lingual gyrus, while decreased connectivity between contralesional ANG and contralesional supramarginal gyrus. Moreover, these FC alterations could predict PHQ-9 scores in PSD group. INTERPRETATION These findings highlight that PSD was related with increased functional connectivity strength in some areas within the DMN, which might be attribute to the specific alterations of connectivity between within DMN and outside DMN regions in PSD.
Collapse
Affiliation(s)
- Xiumei Wu
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiangChina
- Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouZhejiangChina
| | - Kang Xu
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiangChina
- Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouZhejiangChina
| | - Tongyue Li
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiangChina
- Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouZhejiangChina
| | - Luoyu Wang
- School of Biomedical EngineeringShanghaiTech UniversityShanghaiChina
| | - Yanhui Fu
- Department of NeurologyAnshan Changda HospitalAnshanLiaoningChina
| | - Zhenqiang Ma
- Department of NeurologyAnshan Changda HospitalAnshanLiaoningChina
| | - Xiaoyan Wu
- Department of ImageAnshan Changda HospitalAnshanLiaoningChina
| | - Yiying Wang
- Department of UltrasonicsAnshan Changda HospitalAnshanLiaoningChina
| | - Fenyang Chen
- The Fourth Clinical Medical CollegeZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Jinyi Song
- III Department of Clinic MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Yulin Song
- Department of NeurologyAnshan Changda HospitalAnshanLiaoningChina
| | - Yating Lv
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiangChina
- Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouZhejiangChina
| |
Collapse
|
3
|
Krick S, Koob JL, Latarnik S, Volz LJ, Fink GR, Grefkes C, Rehme AK. Neuroanatomy of post-stroke depression: the association between symptom clusters and lesion location. Brain Commun 2023; 5:fcad275. [PMID: 37908237 PMCID: PMC10613857 DOI: 10.1093/braincomms/fcad275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 08/07/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023] Open
Abstract
Post-stroke depression affects about 30% of stroke patients and often hampers functional recovery. The diagnosis of depression encompasses heterogeneous symptoms at emotional, motivational, cognitive, behavioural or somatic levels. Evidence indicates that depression is caused by disruption of bio-aminergic fibre tracts between prefrontal and limbic or striatal brain regions comprising different functional networks. Voxel-based lesion-symptom mapping studies reported discrepant findings regarding the association between infarct locations and depression. Inconsistencies may be due to the usage of sum scores, thereby mixing different symptoms of depression. In this cross-sectional study, we used multivariate support vector regression for lesion-symptom mapping to identify regions significantly involved in distinct depressive symptom domains and global depression. MRI lesion data were included from 200 patients with acute first-ever ischaemic stroke (mean 0.9 ± 1.5 days of post-stroke). The Montgomery-Åsberg Depression Rating interview assessed depression severity in five symptom domains encompassing motivational, emotional and cognitive symptoms deficits, anxiety and somatic symptoms and was examined 8.4 days of post-stroke (±4.3). We found that global depression severity, irrespective of individual symptom domains, was primarily linked to right hemispheric lesions in the dorsolateral prefrontal cortex and inferior frontal gyrus. In contrast, when considering distinct symptom domains individually, the analyses yielded much more sensitive results in regions where the correlations with the global depression score yielded no effects. Accordingly, motivational deficits were associated with lesions in orbitofrontal cortex, dorsolateral prefrontal cortex, pre- and post-central gyri and basal ganglia, including putamen and pallidum. Lesions affecting the dorsal thalamus, anterior insula and somatosensory cortex were significantly associated with emotional symptoms such as sadness. Damage to the dorsolateral prefrontal cortex was associated with concentration deficits, cognitive symptoms of guilt and self-reproach. Furthermore, somatic symptoms, including loss of appetite and sleep disturbances, were linked to the insula, parietal operculum and amygdala lesions. Likewise, anxiety was associated with lesions impacting the central operculum, insula and inferior frontal gyrus. Interestingly, symptoms of anxiety were exclusively left hemispheric, whereas the lesion-symptom associations of the other domains were lateralized to the right hemisphere. In conclusion, this large-scale study shows that in acute stroke patients, differential post-stroke depression symptom domains are associated with specific structural correlates. Our findings extend existing concepts on the neural underpinnings of depressive symptoms, indicating that differential lesion patterns lead to distinct depressive symptoms in the first weeks of post-stroke. These findings may facilitate the development of personalized treatments to improve post-stroke rehabilitation.
Collapse
Affiliation(s)
- Sebastian Krick
- Department of Neurology, University Hospital Cologne, Cologne 50937, Germany
| | - Janusz L Koob
- Department of Neurology, University Hospital Cologne, Cologne 50937, Germany
| | - Sylvia Latarnik
- Department of Neurology, University Hospital Cologne, Cologne 50937, Germany
| | - Lukas J Volz
- Department of Neurology, University Hospital Cologne, Cologne 50937, Germany
| | - Gereon R Fink
- Department of Neurology, University Hospital Cologne, Cologne 50937, Germany
- Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM-3), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Christian Grefkes
- Department of Neurology, University Hospital Cologne, Cologne 50937, Germany
- Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM-3), Forschungszentrum Jülich, Jülich 52425, Germany
- Department of Neurology, Goethe University Hospital Frankfurt, Frankfurt am Main 60528, Germany
| | - Anne K Rehme
- Department of Neurology, University Hospital Cologne, Cologne 50937, Germany
| |
Collapse
|
4
|
Sobreiro MFM, Terroni L, Guajardo VD, Mattos PF, Leite CDC, Amaro E, Tinone G, Iosifescu DV, Fraguas R. The Impact of Post-Stroke Depressive Symptoms on Cognitive Performance in Women and in Men: A 4 Month Prospective Study. Life (Basel) 2023; 13:1554. [PMID: 37511929 PMCID: PMC10381498 DOI: 10.3390/life13071554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/21/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Background: Depressive symptoms have been associated with cognitive impairment after stroke, and women may be specifically affected. Objective: The aim of this study was to investigate gender-specific characteristics in the relationship between changes in depression severity and changes in cognitive performance after stroke. Methods: We prospectively evaluated 73 patients without a previous history of depression in the first and fourth months after a first ischemic stroke. The severity of depressive symptoms was assessed using the 31-item version of the Hamilton Rating Scale for Depression, and executive function, attention, working memory, and verbal fluency were assessed using a neuropsychological battery. Results: We included 46 (63.0%) men and 27 (36.9%) women, with mean ages of 55.2 (SD ± 15.1) and 46.8 (SD ± 14.7) years, respectively. We found significant improvement in the digit span forward and Stroop dots from month 1 to month 4 post stroke for both men and women. Women, but not men, presented a correlation between changes in phonemic verbal fluency and changes in the 31-item version of the Hamilton Rating Scale for Depression scores. Improvement in depression was correlated with improvement in verbal fluency, and worsening in depression was correlated with worsening in verbal fluency. Conclusions: Our results suggest that women might be more vulnerable to the relationship between depressive symptoms and cognitive performance, and improvement of depression may be necessary for women's improvement in phonemic verbal fluency from the first to the fourth month after a stroke. We did not adjust the results for multiple comparisons. Thus, our findings might be considered preliminary, and confirmatory studies, also focusing on specific characteristics of women that could explain these differences, are warranted.
Collapse
Affiliation(s)
- Matildes F M Sobreiro
- Grupo de Interconsultas, Departamento e Instituto de Psiquiatria do Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, Rua Dr. Ovídio Pires de Campos, 785, São Paulo CEP 05403-903, Brazil
| | - Luisa Terroni
- Grupo de Interconsultas, Departamento e Instituto de Psiquiatria do Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, Rua Dr. Ovídio Pires de Campos, 785, São Paulo CEP 05403-903, Brazil
| | - Valeri Delgado Guajardo
- Grupo de Interconsultas, Departamento e Instituto de Psiquiatria do Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, Rua Dr. Ovídio Pires de Campos, 785, São Paulo CEP 05403-903, Brazil
| | - Patricia Ferreira Mattos
- Grupo de Interconsultas, Departamento e Instituto de Psiquiatria do Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, Rua Dr. Ovídio Pires de Campos, 785, São Paulo CEP 05403-903, Brazil
| | - Claudia da Costa Leite
- Departamento de Radiologia do Hospital das Clinicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Edson Amaro
- Departamento de Radiologia do Hospital das Clinicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Gisela Tinone
- Departamento de Neurologia, Instituto Central do Hospital das Clinicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Dan V Iosifescu
- New York University School of Medicine and Nathan Kline Institute, New York, NY 10003, USA
| | - Renerio Fraguas
- Grupo de Interconsultas, Departamento e Instituto de Psiquiatria do Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, Rua Dr. Ovídio Pires de Campos, 785, São Paulo CEP 05403-903, Brazil
- Laboratório de Investigações Médicas, LIM 21, Departamento e Instituto de Psiquiatria do Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, Rua Dr. Ovídio Pires de Campos, 785, São Paulo CEP 05403-903, Brazil
- Divisão de Psiquiatria e Psicologia, Hospital Universitário, Universidade de São Paulo, São Paulo 05403-903, Brazil
| |
Collapse
|
5
|
Wu X, Wang L, Jiang H, Fu Y, Wang T, Ma Z, Wu X, Wang Y, Fan F, Song Y, Lv Y. Frequency-dependent and time-variant alterations of neural activity in post-stroke depression: A resting-state fMRI study. Neuroimage Clin 2023; 38:103445. [PMID: 37269698 PMCID: PMC10244813 DOI: 10.1016/j.nicl.2023.103445] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
BACKGROUND Post-stroke depression (PSD) is one of the most frequent psychiatric disorders after stroke. However, the underlying brain mechanism of PSD remains unclarified. Using the amplitude of low-frequency fluctuation (ALFF) approach, we aimed to investigate the abnormalities of neural activity in PSD patients, and further explored the frequency and time properties of ALFF changes in PSD. METHODS Resting-state fMRI data and clinical data were collected from 39 PSD patients (PSD), 82 S patients without depression (Stroke), and 74 age- and sex-matched healthy controls (HC). ALFF across three frequency bands (ALFF-Classic: 0.01-0.08 Hz; ALFF-Slow4: 0.027-0.073 Hz; ALFF-Slow5: 0.01-0.027 Hz) and dynamic ALFF (dALFF) were computed and compared among three groups. Ridge regression analyses and spearman's correlation analyses were further applied to explore the relationship between PSD-specific alterations and depression severity in PSD. RESULTS We found that PSD-specific alterations of ALFF were frequency-dependent and time-variant. Specially, compared to both Stroke and HC groups, PSD exhibited increased ALFF in the contralesional dorsolateral prefrontal cortex (DLPFC) and insula in all three frequency bands. Increased ALFF in ipsilesional DLPFC were observed in both slow-4 and classic frequency bands which were positively correlated with depression scales in PSD, while increased ALFF in the bilateral hippocampus and contralesional rolandic operculum were only found in slow-5 frequency band. These PSD-specific alterations in different frequency bands could predict depression severity. Moreover, decreased dALFF in contralesional superior temporal gyrus were observed in PSD group. LIMITATIONS Longitudinal studies are required to explore the alterations of ALFF in PSD as the disease progress. CONCLUSIONS The frequency-dependent and time-variant properties of ALFF could reflect the PSD-specific alterations in complementary ways, which may assist to elucidate underlying neural mechanisms and be helpful for early diagnosis and interventions for the disease.
Collapse
Affiliation(s)
- Xiumei Wu
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Luoyu Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haibo Jiang
- Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yanhui Fu
- Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Tiantian Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Zhenqiang Ma
- Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Xiaoyan Wu
- Department of Image, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Yiying Wang
- Department of Ultrasonics, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Fengmei Fan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, China.
| | - Yulin Song
- Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China.
| | - Yating Lv
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Fan Y, Wang L, Jiang H, Fu Y, Ma Z, Wu X, Wang Y, Song Y, Fan F, Lv Y. Depression circuit adaptation in post-stroke depression. J Affect Disord 2023; 336:52-63. [PMID: 37201899 DOI: 10.1016/j.jad.2023.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/22/2023] [Accepted: 05/06/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Lesion locations of post-stroke depression (PSD) mapped to a depression circuit which centered by the left dorsolateral prefrontal cortex (DLPFC). However, it remains unknown whether the compensatory adaptations that may occur in this depression circuit due to the lesions in PSD. METHODS Rs-fMRI data were collected from 82 non-depressed stroke patients (Stroke), 39 PSD patients and 74 healthy controls (HC). We tested the existence of depression circuit, examined PSD-related alterations of DLPFC-seeded connectivity and their associations with depression severity, and analyzed the connectivity between each repetitive transcranial magnetic stimulation (rTMS) target and DLPFC to find the best treatment target for PSD. RESULTS We found that: 1) the left DLPFC showed significantly stronger connectivity to lesions of PSD than Stroke group; 2) in comparison to both Stroke and HC groups, PSD exhibited increased connectivity with DLPFC in bilateral lingual gyrus, contralesional superior frontal gyrus, precuneus, and middle frontal gyrus (MFG); 3) the connectivity between DLPFC and the contralesional lingual gyrus positively correlated with depression severity; 4) the rTMS target in center of MFG showed largest between-group difference in connectivity with DLPFC, and also reported the highest predicted clinical efficacy. LIMITATIONS Longitudinal studies are required to explore the alterations of depression circuit in PSD as the disease progress. CONCLUSION PSD underwent specific alterations in depression circuit, which may help to establish objective imaging markers for early diagnosis and interventions of the disease.
Collapse
Affiliation(s)
- Yanzi Fan
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Luoyu Wang
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haibo Jiang
- Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yanhui Fu
- Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Zhenqiang Ma
- Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Xiaoyan Wu
- Department of Image, Anshan Changda Hospital, Anshan, Liaoning 114005, China
| | - Yiying Wang
- Department of Ultrasonics, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Yulin Song
- Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China.
| | - Fengmei Fan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, China.
| | - Yating Lv
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Pagonabarraga J, Álamo C, Castellanos M, Díaz S, Manzano S. Depression in Major Neurodegenerative Diseases and Strokes: A Critical Review of Similarities and Differences among Neurological Disorders. Brain Sci 2023; 13:brainsci13020318. [PMID: 36831861 PMCID: PMC9954482 DOI: 10.3390/brainsci13020318] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Depression and anxiety are highly prevalent in most neurological disorders and can have a major impact on the patient's disability and quality of life. However, mostly due to the heterogeneity of symptoms and the complexity of the underlying comorbidities, depression can be difficult to diagnose, resulting in limited recognition and in undertreatment. The early detection and treatment of depression simultaneously with the neurological disorder is key to avoiding deterioration and further disability. Although the neurologist should be able to identify and treat depression initially, a neuropsychiatry team should be available for severe cases and those who are unresponsive to treatment. Neurologists should be also aware that in neurodegenerative diseases, such as Alzheimer's or Parkinson's, different depression symptoms could develop at different stages of the disease. The treatment options for depression in neurological diseases include drugs, cognitive-behavioral therapy, and somatic interventions, among others, but often, the evidence-based efficacy is limited and the results are highly variable. Here, we review recent research on the diagnosis and treatment of depression in the context of Alzheimer's disease, Parkinson's disease, and strokes, with the aim of identifying common approaches and solutions for its initial management by the neurologist.
Collapse
Affiliation(s)
- Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Department of Medicine, Autonomous University of Barcelona, 08193 Barcelona, Spain
- Centro de Investigación en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Correspondence:
| | - Cecilio Álamo
- Department of Biomedical Sciences (Pharmacology), Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid, Spain
| | - Mar Castellanos
- Department of Neurology, A Coruña University Hospital and Biomedical Research Institute, 15006 La Coruña, Spain
| | - Samuel Díaz
- Headaches Unit, Department of Neurology, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Sagrario Manzano
- Department of Neurology, Infanta Leonor University Hospital, 28031 Madrid, Spain
| |
Collapse
|
8
|
Sun J, Ma Y, Guo C, Du Z, Chen L, Wang Z, Li X, Xu K, Luo Y, Hong Y, Yu X, Xiao X, Fang J, Lu J. Distinct patterns of functional brain network integration between treatment-resistant depression and non treatment-resistant depression: A resting-state functional magnetic resonance imaging study. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110621. [PMID: 36031163 DOI: 10.1016/j.pnpbp.2022.110621] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/13/2022] [Accepted: 08/21/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Previous neuroimaging has paid little attention to the differences in brain network integration between patients with treatment-resistant depression(TRD) and non-TRD (nTRD), and the relationship between their impaired brain network integration and clinical symptoms has not been elucidated. METHOD Eighty one major depressive disorder (MDD) patients (40 in TRD, 41 in nTRD) and 40 healthy controls (HCs) were enrolled for the functional magnetic resonance imaging (fMRI) scans. A seed-based functional connectivity (FC) method was used to investigate the brain network abnormalities of default mode network (DMN), affective network (AN), salience network (SN) and cognitive control network (CCN) for the MDD. Finally, the correlation was analyzed between the abnormal FCs and 17-item Hamilton Rating Scale for Depression scale (HAMD-17) scores. RESULTS Compared with the HC group, the FCs in DMN, AN, SN, CCN were altered in both the TRD and nTRD groups. Compared with the nTRD group, FC alterations in the AN and CCN were more abnormal in the TRD group, and the FC alterations were generally decreased at the SN in the TRD group. In addition, the FC values of right dorsolateral prefrontal cortices and left caudate nucleus in the TRD group and the FC values of right subgenual anterior cingulate cortex and left middle temporal gyrus in the nTRD group were positively correlated with HAMD-17 scale scores. CONCLUSIONS Abnormal FCs are present in four brain networks (DMN, AN, SN, CCN) in both the TRD and nTRD groups. Except of DMN, FCs in AN, SN and CCN maybe underlay the neurobiological mechanism in differentiating TRD from nTRD.
Collapse
Affiliation(s)
- Jifei Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 100053 Beijing, China
| | - Yue Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 100053 Beijing, China
| | - Chunlei Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 100053 Beijing, China
| | - Zhongming Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, 100700 Beijing, China
| | - Limei Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 100053 Beijing, China
| | - Zhi Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 100053 Beijing, China
| | - Xiaojiao Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 100053 Beijing, China
| | - Ke Xu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 100053 Beijing, China
| | - Yi Luo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 100053 Beijing, China
| | - Yang Hong
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 100053 Beijing, China
| | - Xue Yu
- Beijing First Hospital of Integrated Chinese and Western Medicine, 100026 Beijing, China
| | - Xue Xiao
- Beijing First Hospital of Integrated Chinese and Western Medicine, 100026 Beijing, China
| | - Jiliang Fang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 100053 Beijing, China.
| | - Jie Lu
- Xuanwu Hospital, Capital Medical University, 100053 Beijing, China.
| |
Collapse
|
9
|
Oestreich LKL, Wright P, O’Sullivan MJ. Hyperconnectivity and altered interactions of a nucleus accumbens network in post-stroke depression. Brain Commun 2022; 4:fcac281. [PMCID: PMC9677459 DOI: 10.1093/braincomms/fcac281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/30/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract
Post-stroke depression is a common complication of stroke. To date, no consistent locus of injury is associated with this complication. Here, we probed network dynamics and structural alterations in post-stroke depression in four functional circuits linked to major depressive disorder and a visual network, which served as a control network. Forty-four participants with recent stroke (mean age = 69.03, standard deviation age = 8.59, age range = 51–86 and gender: female = 10) and 16 healthy volunteers (mean age = 71.53, standard deviation age = 10.62, age range = 51–84 and gender: female = 11) were imaged with 3-Tesla structural, diffusion and resting-state functional MRI. The Geriatric Depression Scale was administered to measure depression severity. Associations between depression severity and functional connectivity were investigated within networks seeded from nucleus accumbens, amygdala, dorsolateral prefrontal cortex and primary visual cortex. In addition, the default mode network was identified by connectivity with medial prefrontal cortex and posterior cingulate cortex. Circuits that exhibited altered activity associated with depression severity were further investigated by extracting within-network volumetric and microstructural measures from structural images. In the stroke group, functional connectivity within the nucleus accumbens-seeded network (left hemisphere: P = 0.001; and right hemisphere: P = 0.004) and default mode network (cluster one: P < 0.001; and cluster two: P < 0.001) correlated positively with depressive symptoms. Normal anticorrelations between these two networks were absent in patients with post-stroke depression. Grey matter volume of the right posterior cingulate cortex (Pearson correlation coefficient = −0.286, P = 0.03), as well as microstructural measures in the posterior cingulate cortex (right: Pearson correlation coefficient = 0.4, P = 0.024; and left: Pearson correlation coefficient = 0.3, P = 0.048), right medial prefrontal cortex (Pearson correlation coefficient = 0.312, P = 0.039) and the medial forebrain bundle (Pearson correlation coefficient = 0.450, P = 0.003), a major projection pathway interconnecting the nucleus accumbens-seeded network and linking to medial prefrontal cortex, were associated with depression severity. Depression after stroke is marked by reduced mutual inhibition between functional circuits involving nucleus accumbens and default mode network as well as volumetric and microstructural changes within these networks. Aberrant network dynamics present in patients with post-stroke depression are therefore likely to be influenced by secondary, pervasive alterations in grey and white matter, remote from the site of injury.
Collapse
Affiliation(s)
- Lena K L Oestreich
- UQ Centre for Clinical Research, The University of Queensland , Brisbane 4072 , Australia
- Centre for Advanced Imaging, The University of Queensland , Brisbane 4072 , Australia
| | - Paul Wright
- Biomedical Engineering Department, King’s College London , London , UK
| | - Michael J O’Sullivan
- UQ Centre for Clinical Research, The University of Queensland , Brisbane 4072 , Australia
- Biomedical Engineering Department, King’s College London , London , UK
- Department of Neurology, Royal Brisbane and Women’s Hospital , Brisbane 4072 , Australia
- Institute of Molecular Bioscience, The University of Queensland , Brisbane 4072 , Australia
| |
Collapse
|
10
|
Sun J, Du Z, Ma Y, Chen L, Wang Z, Guo C, Luo Y, Gao D, Hong Y, Zhang L, Han M, Cao J, Hou X, Xiao X, Tian J, Yu X, Fang J, Zhao Y. Altered functional connectivity in first-episode and recurrent depression: A resting-state functional magnetic resonance imaging study. Front Neurol 2022; 13:922207. [PMID: 36119680 PMCID: PMC9475213 DOI: 10.3389/fneur.2022.922207] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/28/2022] [Indexed: 01/10/2023] Open
Abstract
Background Functional magnetic resonance imaging (fMRI) studies examining differences in the activity of brain networks between the first depressive episode (FDE) and recurrent depressive episode (RDE) are limited. The current study observed and compared the altered functional connectivity (FC) characteristics in the default mode network (DMN), cognitive control network (CCN), and affective network (AN) between the RDE and FDE. In addition, we further investigated the correlation between abnormal FC and clinical symptoms. Methods We recruited 32 patients with the RDE, 31 patients with the FDE, and 30 healthy controls (HCs). All subjects underwent resting-state fMRI. The seed-based FC method was used to analyze the abnormal brain networks in the DMN, CCN, and AN among the three groups and further explore the correlation between abnormal FC and clinical symptoms. Results One-way analysis of variance showed significant differences the FC in the DMN, CCN, and AN among the three groups in the frontal, parietal, temporal, and precuneus lobes and cerebellum. Compared with the RDE group, the FDE group generally showed reduced FC in the DMN, CCN, and AN. Compared with the HC group, the FDE group showed reduced FC in the DMN, CCN, and AN, while the RDE group showed reduced FC only in the DMN and AN. Moreover, the FC in the left posterior cingulate cortices and the right inferior temporal gyrus in the RDE group were positively correlated with the 17-item Hamilton Rating Scale for Depression (HAMD-17), and the FC in the left dorsolateral prefrontal cortices and the right precuneus in the FDE group were negatively correlated with the HAMD-17. Conclusions The RDE and FDE groups showed multiple abnormal brain networks. However, the alterations of abnormal FC were more extensive and intensive in the FDE group.
Collapse
Affiliation(s)
- Jifei Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhongming Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Limei Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhi Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunlei Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Luo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Deqiang Gao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Hong
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lei Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ming Han
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiudong Cao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaobing Hou
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Xue Xiao
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Jing Tian
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Xue Yu
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Jiliang Fang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Jiliang Fang
| | - Yanping Zhao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Yanping Zhao
| |
Collapse
|
11
|
Yao G, Zhang X, Li J, Liu S, Li X, Liu P, Xu Y. Improving Depressive Symptoms of Post-stroke Depression Using the Shugan Jieyu Capsule: A Resting-State Functional Magnetic Resonance Imaging Study. Front Neurol 2022; 13:860290. [PMID: 35493835 PMCID: PMC9047823 DOI: 10.3389/fneur.2022.860290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Regional homogeneity (ReHo) and fractional amplitude of low-frequency fluctuation (fALFF) were used to detect the neuroimaging mechanism of Shugan Jieyu Capsule (SG) in ameliorating depression of post-stroke depression (PSD) patients. Fifteen PSD patients took SG for 8 weeks, completed the 24-item Hamilton Depression Scale (HAMD) assessment at the baseline and 8 weeks later, and underwent functional magnetic resonance imaging (fMRI) scanning. Twenty-one healthy controls (HCs) underwent these assessments at the baseline. We found that SG improved depression of PSD patients, in which ReHo values decreased in the left calcarine sulcus (CAL.L) and increased in the left superior frontal gyrus (SFG.L) of PSD patients at the baseline. The fALFF values of the left inferior parietal cortex (IPL.L) decreased in PSD patients at the baseline. Abnormal functional activities in the brain regions were reversed to normal levels after the administration of SG for 8 weeks. Receiver operating characteristic (ROC) analysis found that the changes in three altered brain regions could be used to differentiate PSD patients at the baseline and HCs. Average signal values of altered regions were related to depression in all subjects at the baseline. Our results suggest that SG may ameliorate depression of PSD patients by affecting brain region activity and local synchronization.
Collapse
Affiliation(s)
- Guanqun Yao
- School of Clinical Medicine, Tsinghua University, Beijing, China
- Department of Psychiatry, Tsinghua University Yuquan Hospital, Beijing, China
| | - Xiaoqian Zhang
- School of Clinical Medicine, Tsinghua University, Beijing, China
- Department of Psychiatry, Tsinghua University Yuquan Hospital, Beijing, China
| | - Jing Li
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Sha Liu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinrong Li
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Pozi Liu
- School of Clinical Medicine, Tsinghua University, Beijing, China
- Department of Psychiatry, Tsinghua University Yuquan Hospital, Beijing, China
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
12
|
Pan C, Li G, Sun W, Miao J, Qiu X, Lan Y, Wang Y, Wang H, Zhu Z, Zhu S. Neural Substrates of Poststroke Depression: Current Opinions and Methodology Trends. Front Neurosci 2022; 16:812410. [PMID: 35464322 PMCID: PMC9019549 DOI: 10.3389/fnins.2022.812410] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/04/2022] [Indexed: 12/21/2022] Open
Abstract
Poststroke depression (PSD), affecting about one-third of stroke survivors, exerts significant impact on patients’ functional outcome and mortality. Great efforts have been made since the 1970s to unravel the neuroanatomical substrate and the brain-behavior mechanism of PSD. Thanks to advances in neuroimaging and computational neuroscience in the past two decades, new techniques for uncovering the neural basis of symptoms or behavioral deficits caused by focal brain damage have been emerging. From the time of lesion analysis to the era of brain networks, our knowledge and understanding of the neural substrates for PSD are increasing. Pooled evidence from traditional lesion analysis, univariate or multivariate lesion-symptom mapping, regional structural and functional analyses, direct or indirect connectome analysis, and neuromodulation clinical trials for PSD, to some extent, echoes the frontal-limbic theory of depression. The neural substrates of PSD may be used for risk stratification and personalized therapeutic target identification in the future. In this review, we provide an update on the recent advances about the neural basis of PSD with the clinical implications and trends of methodology as the main features of interest.
Collapse
|
13
|
Mechanisms of Repetitive Transcranial Magnetic Stimulation on Post-stroke Depression: A Resting-State Functional Magnetic Resonance Imaging Study. Brain Topogr 2022; 35:363-374. [PMID: 35286526 DOI: 10.1007/s10548-022-00894-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/21/2022] [Indexed: 12/25/2022]
Abstract
We aimed to identify neural mechanisms underlying clinical response to repetitive transcranial magnetic stimulation (rTMS) in post-stroke depression (PSD) by the Resting-state functional magnetic resonance imaging (rs-fMRI). Thirty-two depressed patients after ischemic stroke were randomized in a 1:1 ratio to receive 20 min of 5 Hz rTMS or sham over left dorsolateral prefrontal cortex (DLPFC) in addition to routine supportive treatments. The clinical outcome was measured by the 17-item Hamilton Depression Rating Scale (HDRS-17), while the imaging results were acquired from rs-fMRI, including regional homogeneity (ReHo), fractional amplitude of low-frequency fluctuation (fALFF) and seed-based dynamic functional connection (dFC). HRSD-17 scores were improved in the two groups after treatment (P < 0.01), while greater mood improvement was observed in the rTMS group (P < 0.05). Compared with the sham group, the rTMS group demonstrated regions with higher ReHo and fALFF values locating mainly in the left hemisphere and highly consistent with the default mode network (DMN) (p < 0.05). Using the medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC) as seeds, significant difference between the two groups in dFC within the DMN was found after treatment, including 10 connections with increased connectivity strength and 2 connections with reduced connectivity strength. The ReHo, fALFF and dFC values within DMN in the rTMS group were negatively correlated with the HDRS scores after treatment (P < 0.05). Our results indicated reductions in depressive symptoms following rTMS in PSD are associated with functional alterations of different depression-related areas within the DMN.
Collapse
|
14
|
Cai H, Zhao Z, Ni L, Han G, Hu X, Wu D, Ding X, Wang J. Structural and Functional Deficits in Patients with Poststroke Dementia: A Multimodal MRI Study. Neural Plast 2021; 2021:3536234. [PMID: 34777496 PMCID: PMC8580696 DOI: 10.1155/2021/3536234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/25/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022] Open
Abstract
Although many neuroimaging studies have reported structural and functional abnormalities in the brains of patients with cognitive impairments following stroke, little is known about the pattern of such brain reorganization in poststroke dementia (PSD). The present study was aimed at investigating alterations in spontaneous brain activity and gray matter volume (GMV) in PSD patients. We collected T1-weighted and resting-state functional magnetic resonance imaging data from 20 PSD patients, 24 poststroke nondementia (PSND) patients, and 21 well-matched normal controls (NCs). We compared the differences among the groups in GMV and the fractional amplitude of low-frequency fluctuations (fALFF). Then, we evaluated the relationship between these brain measures and cognitive assessments and explored the possible distinguisher for PSD by receiver operating characteristic (ROC) curve analysis. PSD patients showed smaller GMV in the right superior temporal gyrus and lower fALFF values in the right inferior frontal gyrus than both PSND patients and NCs, but such differences were not observed between PSND patients and NCs. Moreover, GMV in the left medial prefrontal cortex showed a significant positive correlation with the Mini-Cog assessment in PSD patients, and GMV in the left CPL displayed the highest area under the ROC curve among all the features for classifying PSD versus PSND patients. Our findings suggest that PSD patients show dementia-specific structural and functional alteration patterns, which may help elucidate the pathophysiological mechanisms underlying PSD.
Collapse
Affiliation(s)
- Huaying Cai
- Department of Neurology, Neuroscience Center, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Zhiyong Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Linhui Ni
- Department of Neurology, Neuroscience Center, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Guocan Han
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xingyue Hu
- Department of Neurology, Neuroscience Center, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Xianjun Ding
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jin Wang
- Department of Neurology, Neuroscience Center, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Jung J, Laverick R, Nader K, Brown T, Morris H, Wilson M, Auer DP, Rotshtein P, Hosseini AA. Altered hippocampal functional connectivity patterns in patients with cognitive impairments following ischaemic stroke: A resting-state fMRI study. NEUROIMAGE-CLINICAL 2021; 32:102742. [PMID: 34266772 PMCID: PMC8527045 DOI: 10.1016/j.nicl.2021.102742] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 06/06/2021] [Accepted: 06/21/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND Ischemic stroke with cognitive impairment is a considerable risk factor for developing dementia. Identifying imaging markers of cognitive impairment following ischemic stroke will help to develop prevention strategies against post-stroke dementia. METHODS We investigated the hippocampal functional connectivity (FC) pattern following ischemic stroke, using resting-state fMRI (rs-fMRI). Thirty-three cognitively impaired patients after ischemic stroke and sixteen age-matched controls with no known history of neurological disorder were recruited for the study. No patient had a direct ischaemic insult to hippocampus on the examination of brain imaging. Seven subfields of hippocampus were used as seeds region for FC analyses. RESULTS Across all hippocampal subfields, FC with the inferior parietal lobule was reduced in stroke patients as compared with healthy controls. This decreased FC included both supramarginal gyrus and angular gyrus. The FC of hippocampal subfields with cerebellum was increased. Importantly, the degree of the altered FC between hippocampal subfields and inferior parietal lobule was associated with their impaired memory function. CONCLUSION Our results demonstrated that decreased hippocampal-inferior parietal lobule connectivity was associated with cognitive impairment in patients with ischemic stroke. These findings provide novel insights into the role of hippocampus in cognitive impairment following ischemic stroke.
Collapse
Affiliation(s)
- JeYoung Jung
- School of Psychology, University of Nottingham, UK
| | | | - Kurdow Nader
- University Hospital Birmingham NHS Trust, Birmingham, UK
| | - Thomas Brown
- Division of Clinical Neuroscience, University of Nottingham, UK
| | - Haley Morris
- Division of Clinical Neuroscience, University of Nottingham, UK
| | | | - Dorothee P Auer
- NIHR Nottingham BRC, University of Nottingham, UK; Division of Clinical Neuroscience, University of Nottingham, UK
| | | | - Akram A Hosseini
- School of Psychology, University of Birmingham, UK; Division of Clinical Neuroscience, University of Nottingham, UK; Department of Neurology, Nottingham University Hospitals NHS Trust, Queen's Medical Centre, Nottingham, UK.
| |
Collapse
|
16
|
Park E, Park JW, Min YS, Lee YS, Kim BS, Kim JH, Lee HJ, Lee J, Chang Y, Jung TD. Dysfunction of anterior insula in the non- affected hemisphere in patients with post- stroke depression: A resting-state fMRI study. Technol Health Care 2021; 29:35-48. [PMID: 33682743 PMCID: PMC8150553 DOI: 10.3233/thc-218004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND: Post-stroke depression (PSD) is a consequential neuropsychiatric sequela that occurs after stroke. However, the pathophysiology of PSD are not well understood yet. OBJECTIVE: To explore alterations in functional connectivity (FC) between anterior insula and fronto-cortical and other subcortical regions in the non-affected hemisphere in patients with PSD compared to without PSD and healthy control. METHODS: Resting-state FC was estimated between the anterior insula and cortical and subcortical brain regions in the non-affected hemisphere in 13 patients with PSD, 12 patients without PSD, and 13 healthy controls. The severity of depressive mood was measured by the Beck Depression Inventory (BDI)-II. RESULTS: Patients with PSD showed significant differences in FC scores between the anterior insula and the superior frontal, middle frontal, and orbitofrontal gyrus in the non-affected hemisphere than healthy control or patients without PSD (P< 0.05). In post-hoc, patients with PSD showed higher FC scores between the anterior insula and the superior frontal region than patients without PSD (P< 0.05). Furthermore, alterations in FC of the superior frontal, middle frontal, and orbitofrontal gyrus were positively correlated with depression severity, as measured with the BDI-II (P< 0.001).
Collapse
Affiliation(s)
- Eunhee Park
- Department of Rehabilitation Medicine, Kyungpook National University Hospital, Jung-gu, Daegu 41944, Korea.,Department of Rehabilitation Medicine, School of Medicine, Kyungpook National University, Jung-gu, Daegu 41944, Korea.,Department of Rehabilitation Medicine, Kyungpook National University Hospital, Jung-gu, Daegu 41944, Korea
| | - Jang Woo Park
- Department of Korea Radioisotope Center for Pharmaceuticals, Korea Institute of Radiological & Medical Sciences, Nowon-gu, Seoul 01812, Korea.,Department of Rehabilitation Medicine, Kyungpook National University Hospital, Jung-gu, Daegu 41944, Korea
| | - Yu-Sun Min
- Department of Rehabilitation Medicine, Kyungpook National University Hospital, Jung-gu, Daegu 41944, Korea.,Department of Rehabilitation Medicine, School of Medicine, Kyungpook National University, Jung-gu, Daegu 41944, Korea
| | - Yang-Soo Lee
- Department of Rehabilitation Medicine, Kyungpook National University Hospital, Jung-gu, Daegu 41944, Korea.,Department of Rehabilitation Medicine, School of Medicine, Kyungpook National University, Jung-gu, Daegu 41944, Korea
| | - Byung-Soo Kim
- Department of Psychiatry, Kyungpook National University Hospital, Jung-gu, Daegu 41944, Korea.,Department of Psychiatry, School of Medicine, Kyungpook National University, Jung-gu, Daegu 41944, Korea
| | - Ju-Hyun Kim
- Department of Rehabilitation Medicine, Kyungpook National University Hospital, Jung-gu, Daegu 41944, Korea
| | - Hui Joong Lee
- Department of Radiology, School of Medicine, Kyungpook National University, Jung-gu, Daegu 41944, Korea
| | - Jongmin Lee
- Department of Radiology, School of Medicine, Kyungpook National University, Jung-gu, Daegu 41944, Korea
| | - Yongmin Chang
- Department of Radiology, School of Medicine, Kyungpook National University, Jung-gu, Daegu 41944, Korea.,Department of Medical & Biological Engineering, Kyungpook National University, Jung-gu, Daegu 41944, Korea.,Department of Molecular Medicine, School of Medicine, Kyungpook National University, Jung-gu, Daegu 41944, Korea
| | - Tae-Du Jung
- Department of Rehabilitation Medicine, Kyungpook National University Hospital, Jung-gu, Daegu 41944, Korea.,Department of Rehabilitation Medicine, School of Medicine, Kyungpook National University, Jung-gu, Daegu 41944, Korea
| |
Collapse
|
17
|
Wang J, Lyu H, Chen J, Lin S, Zheng H, Li J, Kong F, Gao J, Yu H, Hu Y, Guo Z. Cortical Alterations Are Associated with Depression in Subcortical Vascular Mild Cognitive Impairment Revealed by Surface-Based Morphometry. J Alzheimers Dis 2020; 78:673-681. [PMID: 33016903 DOI: 10.3233/jad-200156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Late-life depression often coexists with vascular cognitive impairment and affects the quality of life for elders. However, little is known about cortical morphometric interactions between subcortical vascular mild cognitive impairment (svMCI) and concomitant mild depressive symptoms at the early stage. OBJECTIVE We aimed to investigate cortical alterations of svMCI with and without depressive symptoms and determine whether these parameters are associated with depression symptoms and/or cognitive impairments. METHODS Surface based morphometry was performed on 18 svMCI patients with depressive symptoms (svMCI + D), 16 svMCI patients without depressive symptoms (svMCI-D), and 23 normal controls (NC). RESULTS Compared to NC, both svMCI + D and svMCI-D patients exhibited significantly decreased surface area (SA) in many cortical areas. Interestingly, svMCI + D patients showed significantly increased rather than decreased SA in right lateral occipital gyrus (LOG.R), and a consistent trend of increased SA in these areas compared to svMCI-D. In addition, the svMCI + D showed increased gray matter volume of left pericalcarine (periCAL.L) than svMCI-D, whereas svMCI-D showed decreased gray matter volume of periCAL.L than NC. Further correlation analyses revealed that the SA of left superior temporal gyrus (STG.L) and right lateral orbital part of frontal gyrus (lorbFG.R) were significantly correlated with Hamilton depression rating scale of svMCI + D. CONCLUSION In conclusion, these results extend our insight into svMCI and add weight to reevaluation of concomitant early stage depressive symptoms. Moreover, we suggest that LOG.R∖periCAL.L∖STG.L∖lorbFG.R might serve as sensitive and trait-dependent biomarkers to detect concomitant depressive symptoms in svMCI patients.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Neurology and Psychology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, P. R. China.,Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, P. R. China
| | - Hanqing Lyu
- Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, P. R. China.,Department of Radiology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, P. R. China
| | - Jianxiang Chen
- Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, P. R. China.,Department of Radiology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, P. R. China
| | - Songjun Lin
- Department of Neurology and Psychology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, P. R. China.,Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, P. R. China
| | - Haotao Zheng
- Department of Neurology and Psychology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, P. R. China.,Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, P. R. China
| | - Jinfang Li
- Department of Neurology and Psychology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, P. R. China.,Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, P. R. China
| | - Fanxin Kong
- Department of Neurology and Psychology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, P. R. China.,Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, P. R. China
| | - Jinyun Gao
- Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, P. R. China.,Department of Radiology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, P. R. China
| | - Haibo Yu
- Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, P. R. China.,Department of Acupuncture and Moxibustion, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, P. R. China
| | - Yuanming Hu
- Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, P. R. China.,Department of Radiology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, P. R. China
| | - Zhouke Guo
- Department of Neurology and Psychology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, P. R. China.,Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, P. R. China
| |
Collapse
|
18
|
Hong W, Zhao Z, Wang D, Li M, Tang C, Li Z, Xu R, Chan CCH. Altered gray matter volumes in post-stroke depressive patients after subcortical stroke. NEUROIMAGE-CLINICAL 2020; 26:102224. [PMID: 32146322 PMCID: PMC7063237 DOI: 10.1016/j.nicl.2020.102224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/18/2022]
Abstract
Stroke survivors are known to suffer from post-stroke depression (PSD). However, the likelihood of structural changes in the brains of PSD patients has not been explored. This study aims to extract changes in the gray matter of these patients and test how these changes account for the PSD symptoms. High-resolution T1 weighted images were collected from 23 PSD patients diagnosed with subcortical stroke. Voxel-based morphometry and support vector machine analyses were used to analyze the data. The results were compared with those collected from 33 non-PSD patients. PSD group showed decreased gray matter volume (GMV) in the left middle frontal gyrus (MFG) when compared to the non-PSD patients. Together with the clinical and demographic variables, the MFG's GMV predictive model was able to distinguish PSD from the non-PSD patients (0•70 sensitivity and 0•88 specificity). The changes in the left inferior frontal gyrus (61%) and dorsolateral prefrontal cortex (39%) suggest that the somatic/affective symptoms in PSD is likely to be due to patients' problems with understanding and appraising negative emotional stimuli. The impact brought by the reduced prefrontal to limbic system connectivity needs further exploration. These findings indicate possible systemic involvement of the frontolimbic network resulting in PSD after brain lesions which is likely to be independent from the location of the lesion. The results inform specific clinical interventions to be provided for treating depressive symptoms in post-stroke patients.
Collapse
Affiliation(s)
- Wenjun Hong
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Zhiyong Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China.
| | - Dongmei Wang
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Ming Li
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Chaozheng Tang
- State Key Laboratory of Cognitive Neuroscience and Leaning, Beijing Normal University, Beijing, China.
| | - Zheng Li
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Rong Xu
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Chetwyn C H Chan
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong; University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
19
|
Topological reorganization of the default mode network in patients with poststroke depressive symptoms: A resting-state fMRI study. J Affect Disord 2020; 260:557-568. [PMID: 31539693 DOI: 10.1016/j.jad.2019.09.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/02/2019] [Accepted: 09/08/2019] [Indexed: 01/21/2023]
Abstract
OBJECTIVE This study mapped the topological configuration of the default mode network (DMN) in patients with depressive symptoms after acute ischemic stroke. METHODS The study sample comprised 63 patients: 36 with poststroke depressive symptoms (PSD) and 37 without PSD matched according to age, gender and the severity of stroke. PSD was defined by a cutoff of ≥ 7 on the 15-item Geriatric Depression Scale (GDS). Resting-state functional magnetic resonance imaging (fMRI) was used to examine functional connectivity (FC) to reconstruct the DMN. Network based statistics estimated the FC differences of the DMN between the PSD and non-PSD groups. Graph theoretical approaches were used to characterize the topological properties of this network. RESULTS The study sample mainly comprised patients with mild to moderate stroke. A widespread hyper-connected configuration of the functional DMN was characterized in PSD group. The orbital frontal, dorsolateral prefrontal, dorsal medial prefrontal and, ventromedial prefrontal corticis, the middle temporal gyrus and the inferior parietal lobule were the functional hubs related to PSD. The nodal topology in inferior parietal lobule and superior frontal gyrus, overlapping with dorsal medial prefrontal and, ventromedial prefrontal cortices, tended to be functionally integrated in patients with PSD. After False Discovery Rate correction, no significant difference between the PSD and non-PSD groups was found with respect to the global and nodal metrics of the DMN. However, the correlations between these altered network metrics and severity of PSD were lacking. LIMITATIONS The diagnosis of PSD was based on the GDS score rather than established with a structured clinical interview. CONCLUSIONS The DMN in PSD was functionally integrated and more specialized in some core hubs such as the inferior parietal lobule and dorsal prefrontal cortex. The configuration of the subnetwork like DMN may be more essential in the pathogenesis of PSD than single stroke lesions.
Collapse
|
20
|
Xiang L, Lou Y, Liu L, Liu Y, Zhang W, Deng J, Guan Y, She M, You X, Liu M, Li H, Xu X, Liu F, Cai X. Gut Microbiotic Features Aiding the Diagnosis of Acute Ischemic Stroke. Front Cell Infect Microbiol 2020; 10:587284. [PMID: 33409158 PMCID: PMC7779606 DOI: 10.3389/fcimb.2020.587284] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence suggests that features of the gut microbiota correlate with ischemic stroke. However, the specific characteristics of the gut microbiota in patients suffering different types of ischemic stroke, or recovering from such strokes, have rarely been studied, and potential microbiotic predictors of different types of stroke have seldom been analyzed. We subjected fecal specimens from patients with lacunar or non-lacunar acute ischemic infarctions, and those recovering from such strokes, to bacterial 16S rRNA sequencing and compared the results to those of healthy volunteers. We identified microbial markers of different types of ischemic stroke and verified that these were of diagnostic utility. Patients with two types of ischemic stroke, and those recovering from ischemic stroke, exhibited significant shifts in microbiotic diversities compared to healthy subjects. Cluster of Orthologous Groups of Proteins (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed reduced metabolic and transport-related pathway activities in ischemic stroke patients. We performed fivefold cross-validation using a Random Forest model to identify two optimal bacterial species (operational taxonomic units; OTUs) serving as markers of lacunar infarction; these were Lachnospiraceae (OTU_45) and Bacteroides (OTU_4), and the areas under the receiver operating characteristic curves (AUCs under the ROCs) were 0.881 and 0.872 respectively. In terms of non-lacunar acute ischemic infarction detection, the two optimal species were Bilophila (OTU_330) and Lachnospiraceae (OTU_338); the AUCs under the ROCs were 0.985 and 0.929 respectively. In post-ischemic stroke patients, the three optimal species were Pseudomonas (OTU_35), Sphingomonadaceae (OTU_303), and Akkermansia (OTU_9); the AUCs under the ROCs were 1, 0.897, and 0.846 respectively. Notably, the gut microbial markers were of considerable value for utility when diagnosing lacunar infarction, non-lacunar acute ischemic infarction, and post-ischemic stroke. This study is the first to characterize the gut microbiotic profiles of patients with lacunar or non-lacunar, acute ischemic strokes, and those recovering from stroke, and to identify microbiotic predictors of such strokes.
Collapse
Affiliation(s)
- Lei Xiang
- Department of Integrative Chinese and Western Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanfeng Lou
- Department of Dermatology, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Lingyu Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuanling Liu
- Administrative Department, Guangdong Province Hospital for Women and Children Healthcare, Guangzhou, China
| | - Weizheng Zhang
- Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianxin Deng
- Department of Endocrinology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen University, Shenzhen, China
| | - Yubin Guan
- Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Miaoqin She
- Research Section, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Xinchao You
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Minqi Liu
- Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongwei Li
- Institute of Biotherapy, Southern Medical University, Guangzhou, China
| | - Xiaosong Xu
- Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Xiangsheng Cai, ; Fang Liu, ; Xiaosong Xu,
| | - Fang Liu
- Department of Dermatology, Jinling Hospital, Southern Medical University, Nanjing, China
- *Correspondence: Xiangsheng Cai, ; Fang Liu, ; Xiaosong Xu,
| | - Xiangsheng Cai
- Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Center for Medical Experiments, University of Chinese Academy of Science-Shenzhen Hospital, Shenzhen, China
- *Correspondence: Xiangsheng Cai, ; Fang Liu, ; Xiaosong Xu,
| |
Collapse
|
21
|
Degree centrality of key brain regions of attention networks in children with primary nocturnal enuresis: A resting-state functional magnetic resonance imaging study. Int J Dev Neurosci 2019; 79:32-36. [PMID: 31614189 DOI: 10.1016/j.ijdevneu.2019.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/06/2019] [Accepted: 09/30/2019] [Indexed: 11/20/2022] Open
Abstract
Primary nocturnal enuresis (PNE) is always associated with attention impairment, some of which even could develop to attention deficit hyperactivity disorder. The mechanism of attention impairment is not clear, especially lacking of objective indicators of neuroimaging. The aim of this study is to explore the possible functional imaging mechanism of impaired attention in PNE children. A total of 26 PNE children and 26 age-matched normal controls were recruited. Resting-state functional magnetic resonance imaging (rs-fMRI) was performed on these children. Degree centrality (DC) of key brain regions of DAN (lFEF, rFEF, lIFG, rIFG, lIPS, rIPS), VAN (TPJ, VFC) and DMN (PCC, aMPFC, lAG, rAG) were calculated and compared between PNE and normal children. And the correlations between DC values and attention behavioral results were measured. Compared with normal controls, PNE children exhibited lower DC value in the right frontal eye field (rFEF), left inferior parietal sulcus (lIPS), right inferior parietal sulcus (rIPS), temporal parietal junction (TPJ) and left angular gyrus (lAG). The correct number of continuous performance test (CPT) in the PNE group was significantly lower than the normal controls and there was no significant difference in the reaction time between the two groups. The correlation between DC values and attention behavioral results in PNE showed that the DC values of PCC and lAG were negatively correlated with the correct number. This work indicates that the damage of the key brain regions of DAN, VAN and DMN might be the possible functional imaging mechanism of impaired attention in children with PNE.
Collapse
|
22
|
Xu X, Tang R, Zhang L, Cao Z. Altered Topology of the Structural Brain Network in Patients With Post-stroke Depression. Front Neurosci 2019; 13:776. [PMID: 31396046 PMCID: PMC6668487 DOI: 10.3389/fnins.2019.00776] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/10/2019] [Indexed: 12/20/2022] Open
Abstract
There is a pressing need to further our understanding of the mechanisms underlying the depression symptoms in patients with post-stroke depression (PSD) in order to inform targeted therapeutic approaches. While previous research has demonstrated a reorganization in the functional brain network of PSD, it remains uncertain whether, or not it also occurs in the structural brain network. We therefore aim to investigate the structural brain network of patients with PSD as compared to post-stroke non-depression (PSND) patients. In addition, our research considers the relationship between network metrics and functional measurements. Thirty-one PSD patients and twenty-three PSND patients were recruited. All patients underwent MRI and functional assessments, including the Barthel index, mini-mental state examination (MMSE), and Hamilton depression rating scale (HAMD). Diffusion tensor imaging was used to construct the structural brain network and to conduct the subsequent graph theoretical analysis. Network measures were computed and compared between PSD and PSND patients. Associations between functional assessments and network measures were studied as well. We successfully detected increased global and local efficiency in patients with PSD. Regions with disrupted local connections were located primarily in the cognitive and limbic systems. More importantly, PSD patients' global and regional network measures were associated with depression severity, as measured by HAMD. These findings suggest that disrupted global and local network topologies might contribute to PSD patients' depression symptoms. Therefore, connectome-based network measures could be potential bio-markers for evaluating stroke patients' depression levels.
Collapse
Affiliation(s)
- Xiaopei Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Tang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Luping Zhang
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhijian Cao
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
23
|
Respino M, Jaywant A, Kuceyeski A, Victoria LW, Hoptman MJ, Scult MA, Sankin L, Pimontel M, Liston C, Belvederi Murri M, Alexopoulos GS, Gunning FM. The impact of white matter hyperintensities on the structural connectome in late-life depression: Relationship to executive functions. Neuroimage Clin 2019; 23:101852. [PMID: 31077981 PMCID: PMC6514361 DOI: 10.1016/j.nicl.2019.101852] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/06/2019] [Accepted: 05/02/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND White matter hyperintensities (WMH) represent ischemic white matter damage in late-life depression (LLD) and are associated with cognitive control dysfunction. Understanding the impact of WMH on the structural connectivity of gray matter and the cognitive control correlates of WMH-related structural dysconnectivity can provide insight into the pathophysiology of LLD. METHODS We compared WMH burden and performance on clinical measures of cognitive control in patients with LLD (N = 44) and a control group of non-depressed older adults (N = 59). We used the Network Modification (NeMo) Tool to investigate the impact of WMH on structural dysconnectivity in specific gray matter regions, and how such connectivity was related to cognitive control functions. RESULTS Compared to the control group, LLD participants had greater WMH burden, poorer performance on Trail Making Test (TMT) A & B, and greater self-reported dysexecutive behavior on the Frosntal Systems Behavior Scale-Executive Function subscale (FrSBe-EF). Within the LLD group, disrupted connectivity in the left supramarginal gyrus, paracentral lobule, thalamus, and pallidum was associated with psychomotor slowing (TMT-A). Altered connectivity in the left supramarginal gyrus, paracentral lobule, precentral gyrus, postcentral gyrus, thalamus, and pallidum was associated with poor attentional set-shifting (TMT-B). A follow-up analysis that isolated set-shifting ability (TMT-B/A ratio) confirmed the association with dysconnectivity in the bilateral paracentral lobule, right thalamus, left precentral gyrus, postcentral gyrus, and pallidum; additionally, it revealed associations with dysconnectivity in the right posterior cingulate, and left anterior cingulate, middle frontal cortex, and putamen. CONCLUSIONS In LLD, WMH are associated with region-specific disruptions in cortical and subcortical gray matter areas involved in attentional aspects of cognitive control systems and sensorimotor processing, which in turn are associated with slower processing speed, and reduced attentional set-shifting. CLINICAL TRIALS REGISTRATION https://clinicaltrials.gov/ct2/show/NCT01728194.
Collapse
Affiliation(s)
- Matteo Respino
- Department of Psychiatry, Weill Cornell Medicine, 525 E 68(th) St, New York, NY 10065, USA; Weill Cornell Institute of Geriatric Psychiatry, 21 Bloomingdale Road, White Plains, NY 10605, USA
| | - Abhishek Jaywant
- Department of Psychiatry, Weill Cornell Medicine, 525 E 68(th) St, New York, NY 10065, USA; Department of Rehabilitation Medicine, Weill Cornell Medicine, 525 E 68(th) St, New York, NY 10065, USA
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, 525 E 68(th) St, New York, NY 10065, USA
| | - Lindsay W Victoria
- Department of Psychiatry, Weill Cornell Medicine, 525 E 68(th) St, New York, NY 10065, USA; Weill Cornell Institute of Geriatric Psychiatry, 21 Bloomingdale Road, White Plains, NY 10605, USA
| | - Matthew J Hoptman
- Clinical Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA; Department of Psychiatry, NYU School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Matthew A Scult
- Department of Psychiatry, Weill Cornell Medicine, 525 E 68(th) St, New York, NY 10065, USA
| | - Lindsey Sankin
- Department of Psychiatry, Weill Cornell Medicine, 525 E 68(th) St, New York, NY 10065, USA
| | - Monique Pimontel
- Department of Psychiatry, Weill Cornell Medicine, 525 E 68(th) St, New York, NY 10065, USA
| | - Conor Liston
- Department of Psychiatry, Weill Cornell Medicine, 525 E 68(th) St, New York, NY 10065, USA; Feil Family Brain Mind Research Institute, Weill Cornell Medicine, 413 East 69(th) St, New York, NY 10021, USA
| | - Martino Belvederi Murri
- Department of Neuroscience, Ophthalmology, Genetics and Child-Maternal Science, University of Genoa, Corso Italia 22, 16145 Genova, Italy
| | - George S Alexopoulos
- Department of Psychiatry, Weill Cornell Medicine, 525 E 68(th) St, New York, NY 10065, USA; Weill Cornell Institute of Geriatric Psychiatry, 21 Bloomingdale Road, White Plains, NY 10605, USA
| | - Faith M Gunning
- Department of Psychiatry, Weill Cornell Medicine, 525 E 68(th) St, New York, NY 10065, USA; Weill Cornell Institute of Geriatric Psychiatry, 21 Bloomingdale Road, White Plains, NY 10605, USA.
| |
Collapse
|
24
|
Wang Z, Shi Y, Liu F, Jia N, Gao J, Pang X, Deng F. Diversiform Etiologies for Post-stroke Depression. Front Psychiatry 2018; 9:761. [PMID: 30728786 PMCID: PMC6351464 DOI: 10.3389/fpsyt.2018.00761] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 12/20/2018] [Indexed: 11/13/2022] Open
Abstract
After the onset of stroke, many patients suffer from emotional behavior changes. Approximately, one-third of stroke survivors are affected by post-stroke depression (PSD), making it a serious social and public health problem. Post-stroke depression (PSD) has an important impact on the course, recovery, and prognosis of stroke. The pathogenesis of PSD is very complex, involving many factors such as biological mechanism and social psychological mechanisms. This article provides a brief review of the hot issues related to etiologies of PSD.
Collapse
Affiliation(s)
- Zan Wang
- Department of Neurology and Neuroscience Center, The First Bethune Hospital of Jilin University, Changchun, China
| | - Yanmin Shi
- Department of Neurology and Neuroscience Center, The First Bethune Hospital of Jilin University, Changchun, China
| | - Fangfang Liu
- Department of Neurology and Neuroscience Center, The First Bethune Hospital of Jilin University, Changchun, China
| | - Nan Jia
- Department of Neurology and Neuroscience Center, The First Bethune Hospital of Jilin University, Changchun, China
| | - Junya Gao
- Department of Neurology and Neuroscience Center, The First Bethune Hospital of Jilin University, Changchun, China
| | - Xiaomin Pang
- Department of Neurology and Neuroscience Center, The First Bethune Hospital of Jilin University, Changchun, China
| | - Fang Deng
- Department of Neurology and Neuroscience Center, The First Bethune Hospital of Jilin University, Changchun, China
| |
Collapse
|