1
|
Pelisek O, Kusnierova P, Hradilek P, Horakova J, Svub K, Siprova K, Sobek O, Ganesh A, Hanzlikova P, Volny O, Revendova KZ. Comparison of SIMOA and VEUS technologies for serum neurofilament light chain measurement in multiple sclerosis. Mult Scler Relat Disord 2024; 90:105815. [PMID: 39146894 DOI: 10.1016/j.msard.2024.105815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
INTRODUCTION The gold standard for serum neurofilament light chain (sNfL) determination is the single molecule array (SIMOA), the use of which is limited by availability and cost. The VEUS method is a fully automated, user-friendly diagnostic system requiring no sample preparation, with high reported sensitivity, multiplexing capability, and rapid diagnostics. The aim of this study was to compare the SIMOA and VEUS methods for determining sNfL levels in patients with multiple sclerosis (MS). METHODOLOGY A single-centre cross-sectional study was conducted at the MS Centre of University Hospital Ostrava. Patients were enrolled in the study from January 18 to January 31, 2024. Inclusion criteria were: 1) diagnosis of MS according to the revised 2017 McDonald criteria, 2) age ≥18 years, and 3) signed informed consent. The NF-light V2 diagnostic kit (SIMOA, Quanterix) and the Singleplex Neurology assay kit (VEUDx, EZDiatech) were used to determine sNfL concentrations. The two methods were compared by use of Spearman correlation, Passing-Bablok regression, and Bland-Altman analysis. RESULTS A total of 49 patients were included in the study, of whom 39 (79.6 %) were female. The median sNfL concentration was 7.73 (IQR 5.80-9.93) ng/L determined by SIMOA and 1.31 (IQR 1.18-1.65) ng/L by VEUS. We did not find a correlation between SIMOA and VEUS (rs = 0.025, p = 0.866). Passing-Bablok regression demonstrated a systematic and proportional difference between the two methods. A significant disagreement between them was also confirmed by the Bland-Altman plots. On average, sNfL values measured by SIMOA were 3.56 ng/L (95 % CI 0.78 to 6.34) higher than those measured by VEUS. CONCLUSION Our investigation uncovered noteworthy disparities between the SIMOA and VEUS techniques in determining sNfL levels. Specifically, the VEUS technique systematically produces lower estimates of sNFL levels. This substantial variance emphasizes the importance of carefully evaluating assay methods when quantifying sNfL.
Collapse
Affiliation(s)
- Ondrej Pelisek
- Department of Neurology, University Hospital Ostrava, Ostrava, Czech Republic; Centre of Clinical Neurosciences, University of Ostrava, Ostrava, Czech Republic
| | - Pavlina Kusnierova
- Institute of Laboratory Medicine, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic; Institute of Laboratory Medicine, University Hospital Ostrava, Ostrava, Czech Republic
| | - Pavel Hradilek
- Department of Neurology, University Hospital Ostrava, Ostrava, Czech Republic; Centre of Clinical Neurosciences, University of Ostrava, Ostrava, Czech Republic; Institute of Laboratory Medicine, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Jana Horakova
- Department of Neurology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Krystof Svub
- Department of Neurology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Katerina Siprova
- Department of Neurology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Ondrej Sobek
- Topelex Ltd., Laboratory for CSF, Neuroimmunology, Pathology and Special Diagnostics, Prague, Czech Republic
| | - Aravind Ganesh
- Departments of Clinical Neurosciences and Community Health Sciences, the Hotchkiss Brain Institute and the O'Brien Institute for Public Health, University of Calgary Cumming School of Medicine, Calgary, Canada
| | - Pavla Hanzlikova
- Department of Radiology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Ondrej Volny
- Department of Neurology, University Hospital Ostrava, Ostrava, Czech Republic; Centre of Clinical Neurosciences, University of Ostrava, Ostrava, Czech Republic
| | - Kamila Zondra Revendova
- Department of Neurology, University Hospital Ostrava, Ostrava, Czech Republic; Centre of Clinical Neurosciences, University of Ostrava, Ostrava, Czech Republic.
| |
Collapse
|
2
|
Hirschler L, Sollmann N, Schmitz‐Abecassis B, Pinto J, Arzanforoosh F, Barkhof F, Booth T, Calvo‐Imirizaldu M, Cassia G, Chmelik M, Clement P, Ercan E, Fernández‐Seara MA, Furtner J, Fuster‐Garcia E, Grech‐Sollars M, Guven NT, Hatay GH, Karami G, Keil VC, Kim M, Koekkoek JAF, Kukran S, Mancini L, Nechifor RE, Özcan A, Ozturk‐Isik E, Piskin S, Schmainda K, Svensson SF, Tseng C, Unnikrishnan S, Vos F, Warnert E, Zhao MY, Jancalek R, Nunes T, Emblem KE, Smits M, Petr J, Hangel G. Advanced MR Techniques for Preoperative Glioma Characterization: Part 1. J Magn Reson Imaging 2023; 57:1655-1675. [PMID: 36866773 PMCID: PMC10946498 DOI: 10.1002/jmri.28662] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 03/04/2023] Open
Abstract
Preoperative clinical magnetic resonance imaging (MRI) protocols for gliomas, brain tumors with dismal outcomes due to their infiltrative properties, still rely on conventional structural MRI, which does not deliver information on tumor genotype and is limited in the delineation of diffuse gliomas. The GliMR COST action wants to raise awareness about the state of the art of advanced MRI techniques in gliomas and their possible clinical translation or lack thereof. This review describes current methods, limits, and applications of advanced MRI for the preoperative assessment of glioma, summarizing the level of clinical validation of different techniques. In this first part, we discuss dynamic susceptibility contrast and dynamic contrast-enhanced MRI, arterial spin labeling, diffusion-weighted MRI, vessel imaging, and magnetic resonance fingerprinting. The second part of this review addresses magnetic resonance spectroscopy, chemical exchange saturation transfer, susceptibility-weighted imaging, MRI-PET, MR elastography, and MR-based radiomics applications. Evidence Level: 3 Technical Efficacy: Stage 2.
Collapse
Affiliation(s)
- Lydiane Hirschler
- C.J. Gorter MRI Center, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Nico Sollmann
- Department of Diagnostic and Interventional RadiologyUniversity Hospital UlmUlmGermany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der IsarTechnical University of MunichMunichGermany
- TUM‐Neuroimaging Center, Klinikum rechts der IsarTechnical University of MunichMunichGermany
| | - Bárbara Schmitz‐Abecassis
- Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
- Medical Delta FoundationDelftThe Netherlands
| | - Joana Pinto
- Institute of Biomedical Engineering, Department of Engineering ScienceUniversity of OxfordOxfordUK
| | | | - Frederik Barkhof
- Department of Radiology & Nuclear MedicineAmsterdam UMC, Vrije UniversiteitAmsterdamThe Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image ComputingUniversity College LondonLondonUK
| | - Thomas Booth
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
- Department of NeuroradiologyKing's College Hospital NHS Foundation TrustLondonUK
| | | | | | - Marek Chmelik
- Department of Technical Disciplines in Medicine, Faculty of Health CareUniversity of PrešovPrešovSlovakia
| | - Patricia Clement
- Department of Diagnostic SciencesGhent UniversityGhentBelgium
- Department of Medical ImagingGhent University HospitalGhentBelgium
| | - Ece Ercan
- Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Maria A. Fernández‐Seara
- Department of RadiologyClínica Universidad de NavarraPamplonaSpain
- IdiSNA, Instituto de Investigación Sanitaria de NavarraPamplonaSpain
| | - Julia Furtner
- Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
- Research Center of Medical Image Analysis and Artificial IntelligenceDanube Private UniversityKrems an der DonauAustria
| | - Elies Fuster‐Garcia
- Biomedical Data Science Laboratory, Instituto Universitario de Tecnologías de la Información y ComunicacionesUniversitat Politècnica de ValènciaValenciaSpain
| | - Matthew Grech‐Sollars
- Centre for Medical Image Computing, Department of Computer ScienceUniversity College LondonLondonUK
- Lysholm Department of Neuroradiology, National Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation TrustLondonUK
| | - Nazmiye Tugay Guven
- Institute of Biomedical EngineeringBogazici University IstanbulIstanbulTurkey
| | - Gokce Hale Hatay
- Institute of Biomedical EngineeringBogazici University IstanbulIstanbulTurkey
| | - Golestan Karami
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Vera C. Keil
- Department of Radiology & Nuclear MedicineAmsterdam UMC, Vrije UniversiteitAmsterdamThe Netherlands
- Cancer Center AmsterdamAmsterdamThe Netherlands
| | - Mina Kim
- Centre for Medical Image Computing, Department of Medical Physics & Biomedical Engineering and Department of NeuroinflammationUniversity College LondonLondonUK
| | - Johan A. F. Koekkoek
- Department of NeurologyLeiden University Medical CenterLeidenThe Netherlands
- Department of NeurologyHaaglanden Medical CenterThe HagueThe Netherlands
| | - Simran Kukran
- Department of BioengineeringImperial College LondonLondonUK
- Department of Radiotherapy and ImagingInstitute of Cancer ResearchLondonUK
| | - Laura Mancini
- Lysholm Department of Neuroradiology, National Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation TrustLondonUK
- Department of Brain Repair and Rehabilitation, Institute of NeurologyUniversity College LondonLondonUK
| | - Ruben Emanuel Nechifor
- Department of Clinical Psychology and PsychotherapyInternational Institute for the Advanced Studies of Psychotherapy and Applied Mental Health, Babes‐Bolyai UniversityCluj‐NapocaRomania
| | - Alpay Özcan
- Electrical and Electronics Engineering DepartmentBogazici University IstanbulIstanbulTurkey
| | - Esin Ozturk‐Isik
- Institute of Biomedical EngineeringBogazici University IstanbulIstanbulTurkey
| | - Senol Piskin
- Department of Mechanical Engineering, Faculty of Natural Sciences and EngineeringIstinye University IstanbulIstanbulTurkey
| | - Kathleen Schmainda
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Siri F. Svensson
- Department of Physics and Computational RadiologyOslo University HospitalOsloNorway
- Department of PhysicsUniversity of OsloOsloNorway
| | - Chih‐Hsien Tseng
- Medical Delta FoundationDelftThe Netherlands
- Department of Imaging PhysicsDelft University of TechnologyDelftThe Netherlands
| | - Saritha Unnikrishnan
- Faculty of Engineering and DesignAtlantic Technological University (ATU) SligoSligoIreland
- Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), ATU SligoSligoIreland
| | - Frans Vos
- Medical Delta FoundationDelftThe Netherlands
- Department of Radiology & Nuclear MedicineErasmus MCRotterdamThe Netherlands
- Department of Imaging PhysicsDelft University of TechnologyDelftThe Netherlands
| | - Esther Warnert
- Department of Radiology & Nuclear MedicineErasmus MCRotterdamThe Netherlands
| | - Moss Y. Zhao
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
- Stanford Cardiovascular InstituteStanford UniversityStanfordCaliforniaUSA
| | - Radim Jancalek
- Department of NeurosurgerySt. Anne's University Hospital, BrnoBrnoCzech Republic
- Faculty of Medicine, Masaryk UniversityBrnoCzech Republic
| | - Teresa Nunes
- Department of NeuroradiologyHospital Garcia de OrtaAlmadaPortugal
| | - Kyrre E. Emblem
- Department of Physics and Computational RadiologyOslo University HospitalOsloNorway
| | - Marion Smits
- Institute of Biomedical Engineering, Department of Engineering ScienceUniversity of OxfordOxfordUK
- Department of Radiology & Nuclear MedicineErasmus MCRotterdamThe Netherlands
- Brain Tumour CentreErasmus MC Cancer InstituteRotterdamThe Netherlands
| | - Jan Petr
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer ResearchDresdenGermany
| | - Gilbert Hangel
- Department of NeurosurgeryMedical University of ViennaViennaAustria
- High Field MR Centre, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
- Christian Doppler Laboratory for MR Imaging BiomarkersViennaAustria
- Medical Imaging ClusterMedical University of ViennaViennaAustria
| |
Collapse
|
3
|
Prognostic value of intrathecal IgM synthesis determined by various laboratory methods in patients with early multiple sclerosis - a prospective observational study. Mult Scler Relat Disord 2022; 63:103847. [DOI: 10.1016/j.msard.2022.103847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 02/06/2023]
|
4
|
Su X, Liu Y, Wang H, Chen N, Sun H, Yang X, Wang W, Zhang S, Wan X, Tan Q, Yue Q, Gong Q. Multimodal MR imaging signatures to identify brain diffuse midline gliomas with H3 K27M mutation. Cancer Med 2021; 11:1048-1058. [PMID: 34953060 PMCID: PMC8855915 DOI: 10.1002/cam4.4500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/05/2021] [Accepted: 11/28/2021] [Indexed: 02/05/2023] Open
Affiliation(s)
- Xiaorui Su
- Huaxi MR Research Center (HMRRC) Department of Radiology West China Hospital of Sichuan University Chengdu China
- Huaxi Glioma Center West China Hospital of Sichuan University Chengdu China
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu China
| | - Yanhui Liu
- Huaxi Glioma Center West China Hospital of Sichuan University Chengdu China
- Department of Neurosurgery West China Hospital of Sichuan University Chengdu China
| | - Haoyu Wang
- Huaxi Glioma Center West China Hospital of Sichuan University Chengdu China
- Department of Neurosurgery West China Hospital of Sichuan University Chengdu China
| | - Ni Chen
- Huaxi Glioma Center West China Hospital of Sichuan University Chengdu China
- Department of Pathology West China Hospital of Sichuan University Chengdu China
| | - Huaiqiang Sun
- Huaxi MR Research Center (HMRRC) Department of Radiology West China Hospital of Sichuan University Chengdu China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province Chengdu China
| | - Xibiao Yang
- Department of Radiology West China Hospital of Sichuan University Chengdu China
| | - Weina Wang
- Huaxi MR Research Center (HMRRC) Department of Radiology West China Hospital of Sichuan University Chengdu China
- Department of Radiology The First Affiliated Hospital College of Medicine Zhejiang University Hangzhou Zhejiang China
| | - Simin Zhang
- Huaxi MR Research Center (HMRRC) Department of Radiology West China Hospital of Sichuan University Chengdu China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province Chengdu China
| | - Xinyue Wan
- Huaxi MR Research Center (HMRRC) Department of Radiology West China Hospital of Sichuan University Chengdu China
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu China
| | - Qiaoyue Tan
- Huaxi MR Research Center (HMRRC) Department of Radiology West China Hospital of Sichuan University Chengdu China
- Department of Radiotherapy West China Hospital of Sichuan University Chengdu China
| | - Qiang Yue
- Huaxi Glioma Center West China Hospital of Sichuan University Chengdu China
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu China
- Department of Radiology West China Hospital of Sichuan University Chengdu China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC) Department of Radiology West China Hospital of Sichuan University Chengdu China
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province Chengdu China
| |
Collapse
|
5
|
Jenabi M, Young RJ, Moreno R, Gene M, Cho N, Otazo R, Holodny AI, Peck KK. Multiband diffusion tensor imaging for presurgical mapping of motor and language pathways in patients with brain tumors. J Neuroimaging 2021; 31:784-795. [PMID: 33817896 DOI: 10.1111/jon.12859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Assessment of the essential white matter fibers of arcuate fasciculus and corticospinal tract (CST), required for preoperative planning in brain tumor patients, relies on the reliability of diffusion tensor imaging (DTI). The recent development of multiband DTI (mb-DTI) based on simultaneous multislice excitation could maintain the overall quality of tractography while not exceeding standard clinical care time. To address this potential, we performed quantitative analyses to evaluate tractography results of arcuate fasciculus and CST acquired by mb-DTI in brain tumor patients. METHODS We retrospectively analyzed 44 patients with brain lesions who underwent presurgical single-shot DTI (s-DTI) and mb-DTI. We measured DTI parameters: fractional anisotropy (FA) and mean diffusivity (MD [mm2 s-1 ]) in whole brain and tumor regions; and the tractography parameters: fiber FA, MD (mm2 s-1 ), volume (mm3 ), and length (mm) in the whole brain, arcuate fasciculus, and CST. Additionally, three neuroradiologists performed a blinded visual assessment comparing s-DTI with mb-DTI. RESULTS The mb-DTI showed higher mean FA and lower MD (r > .95, p < .002) in whole brain and tumor regions of interest; slightly higher fiber FA, volume, and length; and slightly lower fiber MD in whole brain, arcuate fasciculus, and CST than in s-DTI. These differences were significant for fiber FA in all tracts; length (mm) in arcuate fasciculus; and fiber MD (mm2 s-1 ) and volume (mm3 ) in all patients with tumor involved in the arcuate fasciculus, CST, and whole brain tracts (p = .001). Visual assessment demonstrated that both techniques produced visually similar tracts. CONCLUSIONS This study demonstrated the clinical potential and significant advantages of preoperative mb-DTI in brain tumor patients.
Collapse
Affiliation(s)
- Mehrnaz Jenabi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Robert J Young
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Raquel Moreno
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Madeleine Gene
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nicholas Cho
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ricardo Otazo
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Andrei I Holodny
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Radiology, Weill Medical College of Cornell University, New York, New York, USA.,Department of Neuroscience, Weill-Cornell Graduate School of the Medical Sciences, New York, New York, USA
| | - Kyung K Peck
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|