1
|
Alcantara R, Azcona J, Pitarch M, Arenas N, Castells X, Milioni P, Iotti V, Besutti G. Breast radiation dose with contrast-enhanced mammography-guided biopsy: a retrospective comparison with stereotactic and tomosynthesis guidance. Eur Radiol 2024:10.1007/s00330-024-10920-3. [PMID: 39143245 DOI: 10.1007/s00330-024-10920-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/21/2024] [Accepted: 05/25/2024] [Indexed: 08/16/2024]
Abstract
OBJECTIVES This retrospective study aimed to compare the average glandular dose (AGD) per acquisition in breast biopsies guided by contrast-enhanced mammography (CEM), conventional stereotactic breast biopsy (SBB), and digital breast tomosynthesis (DBT). The study also investigated the influence of compressed breast thickness (CBT) and density on AGD. Furthermore, the study aimed to estimate the AGD per procedure for each guidance modality. METHODS The study included 163 female patients (mean age 57 ± 10 years) who underwent mammography-guided biopsies using SBB (9%), DBT (65%), or CEM (26%) guidance. AGD and CBT data were extracted from DICOM headers, and breast density was visually assessed. Statistical analyses included two-sample t-tests and descriptive statistics. RESULTS Mean AGD per acquisition varied slightly among CEM (1.48 ± 0.22 mGy), SBB (1.49 ± 0.40 mGy), and DBT (1.55 ± 0.47 mGy), with CEM presenting higher AGD at lower CBTs and less dose escalation at higher CBTs. For CBT > 55 mm, CEM showed reduced AGD compared to SBB and DBT (p < 0.001). Breast density had minimal impact on AGD, except for category A. The estimated AGD per procedure was approximately 11.84 mGy for CEM, 11.92 mGy for SBB, and 6.2 mGy for DBT. CONCLUSION The study found mean AGD per acquisition to be similar for CEM and SBB, with DBT slightly higher. CEM demonstrated higher AGD at lower CBT but lower AGD at higher CBT, indicating reduced dose escalation with increasing thickness. While breast density had minimal overall impact, variations were noted in category A. DBT was more dose-efficient per procedure due to fewer acquisitions required. CLINICAL RELEVANCE STATEMENT CEM guidance provides effective lesion visualization within safe radiation limits, improving the precision of percutaneous image-guided breast interventions and supporting its potential consideration in a wider range of breast diagnostic procedures. KEY POINTS Limited data exist on the AGD using CEM guidance for breast biopsies. CEM and SBB exhibit similar AGD per acquisition; DBT demonstrated the lowest AGD per procedure. Radiation from CEM guidance fits within safe limits for percutaneous image-guided breast interventions.
Collapse
Affiliation(s)
- Rodrigo Alcantara
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Radiology and Nuclear Medicine Department, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain.
| | - Javier Azcona
- Radiology and Nuclear Medicine Department, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain
| | - Mireia Pitarch
- Radiology and Nuclear Medicine Department, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain
| | - Natalia Arenas
- Radiology and Nuclear Medicine Department, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain
| | - Xavier Castells
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Epidemiology and Evaluation Department, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Health Services Research on Chronic Patients Network (REDISSEC), Institute of Health Carlos III, Madrid, Spain
| | | | - Valentina Iotti
- Radiology Unit, Department of Diagnostic Imaging and Laboratory Medicine, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Giulia Besutti
- Radiology Unit, Department of Diagnostic Imaging and Laboratory Medicine, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
2
|
Petrillo A, Fusco R, Petrosino T, Vallone P, Granata V, Rubulotta MR, Pariante P, Raiano N, Scognamiglio G, Fanizzi A, Massafra R, Lafranceschina M, La Forgia D, Greco L, Ferranti FR, De Soccio V, Vidiri A, Botta F, Dominelli V, Cassano E, Sorgente E, Pecori B, Cerciello V, Boldrini L. A multicentric study of radiomics and artificial intelligence analysis on contrast-enhanced mammography to identify different histotypes of breast cancer. LA RADIOLOGIA MEDICA 2024; 129:864-878. [PMID: 38755477 DOI: 10.1007/s11547-024-01817-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/16/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVE To evaluate the performance of radiomic analysis on contrast-enhanced mammography images to identify different histotypes of breast cancer mainly in order to predict grading, to identify hormone receptors, to discriminate human epidermal growth factor receptor 2 (HER2) and to identify luminal histotype of the breast cancer. METHODS From four Italian centers were recruited 180 malignant lesions and 68 benign lesions. However, only the malignant lesions were considered for the analysis. All patients underwent contrast-enhanced mammography in cranium caudal (CC) and medium lateral oblique (MLO) view. Considering histological findings as the ground truth, four outcomes were considered: (1) G1 + G2 vs. G3; (2) HER2 + vs. HER2 - ; (3) HR + vs. HR - ; and (4) non-luminal vs. luminal A or HR + /HER2- and luminal B or HR + /HER2 + . For multivariate analysis feature selection, balancing techniques and patter recognition approaches were considered. RESULTS The univariate findings showed that the diagnostic performance is low for each outcome, while the results of the multivariate analysis showed that better performances can be obtained. In the HER2 + detection, the best performance (73% of accuracy and AUC = 0.77) was obtained using a linear regression model (LRM) with 12 features extracted by MLO view. In the HR + detection, the best performance (77% of accuracy and AUC = 0.80) was obtained using a LRM with 14 features extracted by MLO view. In grading classification, the best performance was obtained by a decision tree trained with three predictors extracted by MLO view reaching an accuracy of 82% on validation set. In the luminal versus non-luminal histotype classification, the best performance was obtained by a bagged tree trained with 15 predictors extracted by CC view reaching an accuracy of 94% on validation set. CONCLUSIONS The results suggest that radiomics analysis can be effectively applied to design a tool to support physician decision making in breast cancer classification. In particular, the classification of luminal versus non-luminal histotypes can be performed with high accuracy.
Collapse
Affiliation(s)
- Antonella Petrillo
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy.
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013, Naples, Italy
| | - Teresa Petrosino
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Paolo Vallone
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Vincenza Granata
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Maria Rosaria Rubulotta
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Paolo Pariante
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Nicola Raiano
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Giosuè Scognamiglio
- Pathology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Annarita Fanizzi
- Direzione Scientifica, IRCCS Istituto Tumori Giovanni Paolo II, Via Orazio Flacco 65, 70124, Bari, Italy
| | - Raffaella Massafra
- SSD Fisica Sanitaria, IRCCS Istituto Tumori Giovanni Paolo II, Via Orazio Flacco 65, 70124, Bari, Italy
| | - Miria Lafranceschina
- Struttura Semplice Dipartimentale Di Radiodiagnostica Senologica, IRCCS Istituto Tumori Giovanni Paolo II, Via Orazio Flacco 65, 70124, Bari, Italy
| | - Daniele La Forgia
- Struttura Semplice Dipartimentale Di Radiodiagnostica Senologica, IRCCS Istituto Tumori Giovanni Paolo II, Via Orazio Flacco 65, 70124, Bari, Italy
| | - Laura Greco
- Radiology and Diagnostic Imaging, Istituto Di Ricovero E Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca Romana Ferranti
- Radiology and Diagnostic Imaging, Istituto Di Ricovero E Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Valeria De Soccio
- Radiology and Diagnostic Imaging, Istituto Di Ricovero E Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Antonello Vidiri
- Radiology and Diagnostic Imaging, Istituto Di Ricovero E Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca Botta
- Breast Imaging Division, IEO Istituto Europeo Di Oncologia, 20141, Milan, Italy
| | - Valeria Dominelli
- Breast Imaging Division, IEO Istituto Europeo Di Oncologia, 20141, Milan, Italy
| | - Enrico Cassano
- Breast Imaging Division, IEO Istituto Europeo Di Oncologia, 20141, Milan, Italy
| | - Eugenio Sorgente
- Radiation Protection and Innovative Technology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Biagio Pecori
- Radiation Protection and Innovative Technology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Vincenzo Cerciello
- Medical Physics, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Luca Boldrini
- Dipartimento Di Diagnostica Per Immagini, Radioterapia Oncologica Ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| |
Collapse
|
3
|
Endarko, Celina FM, Gani MRA. Analysis of dual-energy mammography subtraction technique for the dose and image quality evaluation using 3D-printed breast phantom. Phys Eng Sci Med 2023; 46:1693-1701. [PMID: 37721685 DOI: 10.1007/s13246-023-01330-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 09/04/2023] [Indexed: 09/19/2023]
Abstract
This study aimed to quantitatively assess the radiation dose using XR-QA2 and the image quality of the dual-energy subtraction mammography technique on an in-house phantom. The analysis was carried out to investigate the effect of targets/filters on dose value and image quality using an in-house phantom made of PLA + as an object representing compressed breasts. All irradiation parameters were performed in the craniocaudal position with manual mode. Mean glandular dose (MGD) was recorded, followed by the calculation of the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and modulation transfer function (MTF) for image quality assessment parameters. The results showed that the image quality was accepted at dose levels within the IAEA and BAPETEN tolerance limit for 60 mm equivalent compressed breast using dual-energy mammography. Furthermore, the target/filter (W/Rh) reduced the dose by 1.03 mGy compared to the Mo/Mo and Mo/Rh with an enhancement in image quality. This indicated that the target/filter (W/Rh) combination was optimal due to the image quality improvement obtained with lower MGD.
Collapse
Affiliation(s)
- Endarko
- Laboratory of Medical Physics and Biophysics, Institut Teknologi Sepuluh Nopember, Kampus ITS, Sukolilo, Surabaya, 60111, East Java, Indonesia.
| | - Fitria M Celina
- Laboratory of Medical Physics and Biophysics, Institut Teknologi Sepuluh Nopember, Kampus ITS, Sukolilo, Surabaya, 60111, East Java, Indonesia
| | - M Roslan A Gani
- Department of Radiodiagnostic, "Dharmais" National Cancer Center Hospital, Jakarta, Indonesia
| |
Collapse
|
4
|
Petrillo A, Fusco R, Barretta ML, Granata V, Mattace Raso M, Porto A, Sorgente E, Fanizzi A, Massafra R, Lafranceschina M, La Forgia D, Trombadori CML, Belli P, Trecate G, Tenconi C, De Santis MC, Greco L, Ferranti FR, De Soccio V, Vidiri A, Botta F, Dominelli V, Cassano E, Boldrini L. Radiomics and artificial intelligence analysis by T2-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging to predict Breast Cancer Histological Outcome. LA RADIOLOGIA MEDICA 2023; 128:1347-1371. [PMID: 37801198 DOI: 10.1007/s11547-023-01718-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/01/2023] [Indexed: 10/07/2023]
Abstract
OBJECTIVE The objective of the study was to evaluate the accuracy of radiomics features obtained by MR images to predict Breast Cancer Histological Outcome. METHODS A total of 217 patients with malignant lesions were analysed underwent MRI examinations. Considering histological findings as the ground truth, four different types of findings were used in both univariate and multivariate analyses: (1) G1 + G2 vs G3 classification; (2) presence of human epidermal growth factor receptor 2 (HER2 + vs HER2 -); (3) presence of the hormone receptor (HR + vs HR -); and (4) presence of luminal subtypes of breast cancer. RESULTS The best accuracy for discriminating HER2 + versus HER2 - breast cancers was obtained considering nine predictors by early phase T1-weighted subtraction images and a decision tree (accuracy of 88% on validation set). The best accuracy for discriminating HR + versus HR - breast cancers was obtained considering nine predictors by T2-weighted subtraction images and a decision tree (accuracy of 90% on validation set). The best accuracy for discriminating G1 + G2 versus G3 breast cancers was obtained considering 16 predictors by early phase T1-weighted subtraction images in a linear regression model with an accuracy of 75%. The best accuracy for discriminating luminal versus non-luminal breast cancers was obtained considering 27 predictors by early phase T1-weighted subtraction images and a decision tree (accuracy of 94% on validation set). CONCLUSIONS The combination of radiomics analysis and artificial intelligence techniques could be used to support physician decision-making in prediction of Breast Cancer Histological Outcome.
Collapse
Affiliation(s)
- Antonella Petrillo
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy.
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013, Naples, Italy
| | - Maria Luisa Barretta
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Vincenza Granata
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Mauro Mattace Raso
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Annamaria Porto
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Eugenio Sorgente
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Annarita Fanizzi
- Direzione Scientifica-IRCCS, Istituto Tumori Giovanni Paolo II-Via Orazio Flacco 65, 70124, Bari, Italy
| | - Raffaella Massafra
- SSD Fisica Sanitaria-IRCCS Istituto Tumori Giovanni Paolo II-Via Orazio Flacco 65, 70124, Bari, Italy
| | - Miria Lafranceschina
- Struttura Semplice Dipartimentale di Radiodiagnostica Senologica-IRCCS Istituto Tumori Giovanni Paolo II-Via Orazio Flacco 65, 70124, Bari, Italy
| | - Daniele La Forgia
- Struttura Semplice Dipartimentale di Radiodiagnostica Senologica-IRCCS Istituto Tumori Giovanni Paolo II-Via Orazio Flacco 65, 70124, Bari, Italy
| | | | - Paolo Belli
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Giovanna Trecate
- Department of Radiodiagnostic and Magnetic Resonance, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Chiara Tenconi
- Department of Medical Physics, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Maria Carmen De Santis
- De Santis Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Laura Greco
- Radiology and Diagnostic Imaging, Istituto di Ricovero E Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca Romana Ferranti
- Radiology and Diagnostic Imaging, Istituto di Ricovero E Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Valeria De Soccio
- Radiology and Diagnostic Imaging, Istituto di Ricovero E Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Antonello Vidiri
- Radiology and Diagnostic Imaging, Istituto di Ricovero E Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca Botta
- Breast Imaging Division, IEO Istituto Europeo di Oncologia, 20141, Milan, Italy
| | - Valeria Dominelli
- Breast Imaging Division, IEO Istituto Europeo di Oncologia, 20141, Milan, Italy
| | - Enrico Cassano
- Breast Imaging Division, IEO Istituto Europeo di Oncologia, 20141, Milan, Italy
| | - Luca Boldrini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| |
Collapse
|
5
|
Shim S, Unkelbach J, Landsmann A, Boss A. Quantitative Study on the Breast Density and the Volume of the Mammary Gland According to the Patient's Age and Breast Quadrant. Diagnostics (Basel) 2023; 13:3343. [PMID: 37958239 PMCID: PMC10648521 DOI: 10.3390/diagnostics13213343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/29/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023] Open
Abstract
OBJECTIVES Breast density is considered an independent risk factor for the development of breast cancer. This study aimed to quantitatively assess the percent breast density (PBD) and the mammary glands volume (MGV) according to the patient's age and breast quadrant. We propose a regression model to estimate PBD and MGV as a function of the patient's age. METHODS The breast composition in 1027 spiral breast CT (BCT) datasets without soft tissue masses, calcifications, or implants from 517 women (57 ± 8 years) were segmented. The breast tissue volume (BTV), MGV, and PBD of the breasts were measured in the entire breast and each of the four quadrants. The three breast composition features were analyzed in the seven age groups, from 40 to 74 years in 5-year intervals. A logarithmic model was fitted to the BTV, and a multiplicative inverse model to the MGV and PBD as a function of age was established using a least-squares method. RESULTS The BTV increased from 545 ± 345 to 676 ± 412 cm3, and the MGV and PBD decreased from 111 ± 164 to 57 ± 43 cm3 and from 21 ± 21 to 11 ± 9%, respectively, from the youngest to the oldest group (p < 0.05). The average PBD over all ages were 14 ± 13%. The regression models could predict the BTV, MGV, and PBD based on the patient's age with residual standard errors of 386 cm3, 67 cm3, and 13%, respectively. The reduction in MGV and PBD in each quadrant followed the ones in the entire breast. CONCLUSIONS The PBD and MGV computed from BCT examinations provide important information for breast cancer risk assessment in women. The study quantified the breast mammary gland reduction and density decrease over the entire breast. It established mathematical models to estimate the breast composition features-BTV, MGV, and PBD, as a function of the patient's age.
Collapse
Affiliation(s)
- Sojin Shim
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland; (A.L.); (A.B.)
| | - Jan Unkelbach
- Department of Radiation Oncology, University Hospital Zurich, 8091 Zurich, Switzerland;
| | - Anna Landsmann
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland; (A.L.); (A.B.)
| | - Andreas Boss
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland; (A.L.); (A.B.)
| |
Collapse
|
6
|
van Nijnatten TJA, Lobbes MBI, Cozzi A, Patel BK, Zuley ML, Jochelson MS. Barriers to Implementation of Contrast-Enhanced Mammography in Clinical Practice: AJR Expert Panel Narrative Review. AJR Am J Roentgenol 2023; 221:3-6. [PMID: 36448912 PMCID: PMC11025563 DOI: 10.2214/ajr.22.28567] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Accumulating evidence shows that contrast-enhanced mammography (CEM) has higher diagnostic performance than digital mammography and ultrasound and comparable diagnostic performance to MRI for various indications. CEM also offers certain practical advantages for patients. Nevertheless, the clinical implementation of CEM has been limited because of a range of factors. This AJR Expert Panel Narrative Review explores such factors hindering CEM implementation. These factors include the following: the risks of iodinated contrast media, increased radiation exposure, indications for which CEM is not the preferred test or for which further evidence is needed, workflow adjustments needed when performing CEM examinations, incomplete availability of CEM-guided biopsy systems, and reimbursement challenges. Considerations that currently mitigate or are expected to mitigate these factors are also highlighted.
Collapse
Affiliation(s)
- Thiemo J A van Nijnatten
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, PO Box 5800, Maastricht 6202 AZ, The Netherlands
- GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Marc B I Lobbes
- GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Medical Imaging, Zuyderland Medical Center, Sittard-Geleen, The Netherlands
| | - Andrea Cozzi
- Unit of Radiology, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | | | | | - Maxine S Jochelson
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
7
|
Klarić K, Šribar A, Budisavljević A, Labinac L, Valković Zujić P. Evaluation of Contrast-Enhanced Mammography and Development of Flowchart for BI-RADS Classification of Breast Lesions. Diagnostics (Basel) 2023; 13:1958. [PMID: 37296810 PMCID: PMC10252621 DOI: 10.3390/diagnostics13111958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
This study aimed to evaluate contrast-enhanced mammography (CEM) and to compare breast lesions on CEM and breast magnetic resonance imaging (MRI) using 5 features. We propose a flowchart for BI-RADS classification of breast lesions on CEM based on the Kaiser score (KS) flowchart for breast MRI. Sixty-eight subjects (women and men; median age 61.4 ± 11.6 years) who were suspected of having a malignant process in the breast based on digital mammography (MG) findings were included in the study. The patients underwent breast ultrasound (US), CEM, MRI and biopsy of the suspicious lesion. There were 47 patients with malignant lesions confirmed by biopsy and 21 patients with benign lesions, for each of which a KS was calculated. In the patients with malignant lesions, the MRI-derived KS was 9 (IQR 8-9); its CEM equivalent was 9 (IQR 8-9); and BI-RADS was 5 (IQR 4-5). In patients with benign lesions, MRI-derived KS was 3 (IQR 2-3); its CEM equivalent was 3 (IQR 1.7-5); and BI-RADS was 3 (IQR 0-4). There was no significant difference between the ROC-AUC of CEM and MRI (p = 0.749). In conclusion, there were no significant differences in KS results between CEM and breast MRI. The KS flowchart is useful for evaluating breast lesions on CEM.
Collapse
Affiliation(s)
- Kristina Klarić
- Department of Radiology, Pula General Hospital, 52100 Pula, Croatia
| | - Andrej Šribar
- Clinic for Anesthesiology, Resuscitation and Intensive Care Medicine, Dubrava Clinical Hospital, 10000 Zagreb, Croatia;
- School of Dental Medicine, Zagreb University, 10000 Zagreb, Croatia
| | | | - Loredana Labinac
- Department of Pathology and Cytology, Pula General Hospital, 52100 Pula, Croatia;
| | - Petra Valković Zujić
- Department of Radiology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia;
- Faculty of Medicine, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia
| |
Collapse
|
8
|
Norsuddin NM, Mei Sin JG, Ravintaran R, Arasaratnam S, Abdul Karim MK. Impact of age and breast thickness on mean glandular dose of standard digital mammography and digital breast tomosynthesis. Appl Radiat Isot 2023; 192:110525. [PMID: 36436228 DOI: 10.1016/j.apradiso.2022.110525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 09/28/2022] [Accepted: 10/18/2022] [Indexed: 01/04/2023]
Abstract
This study compares the mean glandular dose (MGD) across 2D, 3D projection and Contrast-Enhanced Digital Mammography (CEDM) mammographic techniques. The important metadata were extracted from the digital mammography console. 650 subjects were clustered based on projections, age and CBT. The MGD of 2D, 3D, and CEDM was positively correlated with CBT but inversely correlated with the age factor. This study indicate MGD of CEDM was 16% and 22% lower compared to 2D and 3D techniques, respectively.
Collapse
Affiliation(s)
- Norhashimah Mohd Norsuddin
- Department of Diagnostic & Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, 56000, Malaysia
| | - Justine Go Mei Sin
- Department of Diagnostic & Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, 56000, Malaysia
| | - Rathieswari Ravintaran
- Department of Diagnostic & Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, 56000, Malaysia
| | - Shantini Arasaratnam
- Department of Radiology, Hospital Kuala Lumpur, Jalan Pahang, Kuala Lumpur, 50586, Malaysia
| | | |
Collapse
|
9
|
Shim S, Kolditz D, Steiding C, Ruth V, Hoetker AM, Unkelbach J, Boss A. Radiation dose estimates based on Monte Carlo simulation for spiral breast computed tomography imaging in a large cohort of patients. Med Phys 2023; 50:2417-2428. [PMID: 36622370 DOI: 10.1002/mp.16211] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 12/04/2022] [Accepted: 12/10/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Spiral breast computed tomography (BCT) equipped with a photon-counting detector (PCD) is a new radiological modality allowing for the compression-free acquisition of high-resolution 3-D datasets of the breast. Optimized dose exposu04170/re setups according to breast size were previously proposed but could not effectively be applied in a clinical environment due to ambiguity in measuring breast size. PURPOSE This study aims to report the standard radiation dose values in a large cohort of patients examined with BCT, and to provide a mathematical model to estimate radiation dose based on morphological features of the breast. METHODS This retrospective study was conducted on 1657 BCT examinations acquired between 2018 and 2021 from 829 participants (57 ± 10 years, all female). Applying a dedicated breast tissue segmentation algorithm and Monte Carlo (MC) simulation, mean absorbed dose (MAD), mean glandular dose (MGD), mean skin dose (MSD), maximum glandular dose (maxGD), and maximum skin dose (maxSD) were calculated and related to morphological features such as breast volume, effective diameter, breast length, skin volume, and glandularity. Effective dose (ED) was calculated by applying the corresponding beam and tissue weighting factors, 1 Sv/Gy and 0.12 per breast. Relevant morphological features predicting dose values were identified based on the Spearman's rank correlation coefficient. Exponential or bi-exponential models predicting the dose values as a function of morphological features were fitted by using a non-linear least squares (LS) method. The models were validated by assessing R2 and residual standard error (RSE). RESULTS The most relevant morphological features for radiation dose estimation were the breast volume (correlation coefficient: -0.8), diameter (-0.7), and length (-0.6). The glandularity presented a weak-positive correlation (0.4) with MGD and maxGD due to the inhomogeneous distribution of the glandularity and absorbed dose in the 3-D breast volume. The standard MGDs were calculated to be 7.3 ± 0.7, 6.5 ± 0.3, and 5.9 ± 0.3 mGy, MADs to 7.6 ± 0.8, 6.8 ± 0.3, and 6.2 ± 0.3 mGy, maxSDs to 19.9 ± 1.6, 19.5 ± 0.5, and 18.9 ± 0.5 mGy, and EDs to 0.88 ± 0.08, 0.78 ± 0.04, and 0.72 ± 0.04 mSv for small, medium, and large breasts with average breast lengths of 5.9 ± 1.6, 8.7 ± 1.3, and 12.2 ± 2.0 cm, respectively. The estimated glandularity - 23.1 ± 16.9, 12.5 ± 11.4, and 6.9 ± 7.3% from small to large breasts. The mathematical models were able to estimate the MAD, MGD, MSD, and maxSD as a function of each morphological feature with only upto 0.5 mGy RSE. CONCLUSION We presented the typical morphological features and standard dose values according to the breast size acquired from a large patient cohort. We established radiation dose estimation models allowing accurate estimation of dose values including MGD with an acceptable RSE based on each of the easily measured morphological features of the breast. Clinicians could use the breast length to operate as a dosimetric alert of the scanner prior to a BCT scan. Radiation exposure for BCT was lower than diagnostic mammography (MG) and cone-beam breast CT (BCT).
Collapse
Affiliation(s)
- Sojin Shim
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | | | | | - Veikko Ruth
- AB-CT - Advanced Breast-CT GmbH, Erlangen, Germany
| | - Andreas M Hoetker
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Jan Unkelbach
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Andreas Boss
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Di Maria S, Vedantham S, Vaz P. Breast dosimetry in alternative X-ray-based imaging modalities used in current clinical practices. Eur J Radiol 2022; 155:110509. [PMID: 36087425 PMCID: PMC9851082 DOI: 10.1016/j.ejrad.2022.110509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 01/21/2023]
Abstract
In X-ray breast imaging, Digital Mammography (DM) and Digital Breast Tomosynthesis (DBT), are the standard and largely used techniques, both for diagnostic and screening purposes. Other techniques, such as dedicated Breast Computed Tomography (BCT) and Contrast Enhanced Mammography (CEM) have been developed as an alternative or a complementary technique to the established ones. The performance of these imaging techniques is being continuously assessed to improve the image quality and to reduce the radiation dose. These imaging modalities are predominantly used in the diagnostic setting to resolve incomplete or indeterminate findings detected with conventional screening examinations and could potentially be used either as an adjunct or as a primary screening tool in select populations, such as for women with dense breasts. The aim of this review is to describe the radiation dosimetry for these imaging techniques, and to compare the mean glandular dose with standard breast imaging modalities, such as DM and DBT.
Collapse
Affiliation(s)
- S Di Maria
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Campus Tecnológico e Nuclear, Estrada Nacional 10, km 139,7, 2695-066 Bobadela LRS, Portugal.
| | - S Vedantham
- Department of Medical Imaging, The University of Arizona, Tucson, AZ, USA; Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA
| | - P Vaz
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Campus Tecnológico e Nuclear, Estrada Nacional 10, km 139,7, 2695-066 Bobadela LRS, Portugal
| |
Collapse
|
11
|
Lesion-specific exposure parameters for breast cancer diagnosis on digital breast tomosynthesis and full-field digital mammography. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Gordon PB. The Impact of Dense Breasts on the Stage of Breast Cancer at Diagnosis: A Review and Options for Supplemental Screening. Curr Oncol 2022; 29:3595-3636. [PMID: 35621681 PMCID: PMC9140155 DOI: 10.3390/curroncol29050291] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of breast cancer screening is to find cancers early to reduce mortality and to allow successful treatment with less aggressive therapy. Mammography is the gold standard for breast cancer screening. Its efficacy in reducing mortality from breast cancer was proven in randomized controlled trials (RCTs) conducted from the early 1960s to the mid 1990s. Panels that recommend breast cancer screening guidelines have traditionally relied on the old RCTs, which did not include considerations of breast density, race/ethnicity, current hormone therapy, and other risk factors. Women do not all benefit equally from mammography. Mortality reduction is significantly lower in women with dense breasts because normal dense tissue can mask cancers on mammograms. Moreover, women with dense breasts are known to be at increased risk. To provide equity, breast cancer screening guidelines should be created with the goal of maximizing mortality reduction and allowing less aggressive therapy, which may include decreasing the interval between screening mammograms and recommending consideration of supplemental screening for women with dense breasts. This review will address the issue of dense breasts and the impact on the stage of breast cancer at the time of diagnosis, and discuss options for supplemental screening.
Collapse
Affiliation(s)
- Paula B Gordon
- Department of Radiology, Faculty of Medicine, University of British Columbia, 505-750 West Broadway, Vancouver, BC V5Z 1H4, Canada
| |
Collapse
|
13
|
Fusco R, Granata V, Grazzini G, Pradella S, Borgheresi A, Bruno A, Palumbo P, Bruno F, Grassi R, Giovagnoni A, Grassi R, Miele V, Barile A. Radiomics in medical imaging: pitfalls and challenges in clinical management. Jpn J Radiol 2022; 40:919-929. [PMID: 35344132 DOI: 10.1007/s11604-022-01271-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/14/2022] [Indexed: 12/21/2022]
Abstract
BACKGROUND Radiomics and radiogenomics are two words that recur often in language of radiologists, nuclear doctors and medical physicists especially in oncology field. Radiomics is the technique of medical images analysis to extract quantitative data that are not detected by human eye. METHODS This article is a narrative review on Radiomics in Medical Imaging. In particular, the review exposes the process, the limitations related to radiomics, and future prospects are discussed. RESULTS Several studies showed that radiomics is very promising. However, there were some critical issues: poor standardization and generalization of radiomics results, data-quality control, repeatability, reproducibility, database balancing and issues related to model overfitting. CONCLUSIONS Radiomics procedure should made considered all pitfalls and challenges to obtain robust and reproducible results that could be generalized in other patients cohort.
Collapse
Affiliation(s)
| | - Vincenza Granata
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli", Naples, Italy.
| | - Giulia Grazzini
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.,Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122, Milan, Italy
| | - Silvia Pradella
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.,Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122, Milan, Italy
| | - Alessandra Borgheresi
- Department of Clinical Special and Dental Sciences, School of Radiology, University Politecnica delle Marche, Ancona, Italy
| | - Alessandra Bruno
- Department of Clinical Special and Dental Sciences, School of Radiology, University Politecnica delle Marche, Ancona, Italy
| | - Pierpaolo Palumbo
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122, Milan, Italy.,Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, Abruzzo Health Unit 1, 67100, L'Aquila, Italy
| | - Federico Bruno
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122, Milan, Italy.,Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, 67100, L'Aquila, Italy
| | - Roberta Grassi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122, Milan, Italy.,Division of Radiology, "Università Degli Studi della Campania Luigi Vanvitelli", Naples, Italy
| | - Andrea Giovagnoni
- Department of Clinical Special and Dental Sciences, School of Radiology, University Politecnica delle Marche, Ancona, Italy
| | - Roberto Grassi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122, Milan, Italy.,Division of Radiology, "Università Degli Studi della Campania Luigi Vanvitelli", Naples, Italy
| | - Vittorio Miele
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.,Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122, Milan, Italy
| | - Antonio Barile
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122, Milan, Italy.,Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, 67100, L'Aquila, Italy
| |
Collapse
|
14
|
Granata V, Fusco R, Setola SV, Simonetti I, Cozzi D, Grazzini G, Grassi F, Belli A, Miele V, Izzo F, Petrillo A. An update on radiomics techniques in primary liver cancers. Infect Agent Cancer 2022; 17:6. [PMID: 35246207 PMCID: PMC8897888 DOI: 10.1186/s13027-022-00422-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Radiomics is a progressing field of research that deals with the extraction of quantitative metrics from medical images. Radiomic features detention indirectly tissue features such as heterogeneity and shape and can, alone or in combination with demographic, histological, genomic, or proteomic data, be used for decision support system in clinical setting. METHODS This article is a narrative review on Radiomics in Primary Liver Cancers. Particularly, limitations and future perspectives are discussed. RESULTS In oncology, assessment of tissue heterogeneity is of particular interest: genomic analysis have demonstrated that the degree of tumour heterogeneity is a prognostic determinant of survival and an obstacle to cancer control. Therefore, that Radiomics could support cancer detection, diagnosis, evaluation of prognosis and response to treatment, so as could supervise disease status in hepatocellular carcinoma (HCC) and Intrahepatic Cholangiocarcinoma (ICC) patients. Radiomic analysis is a convenient radiological image analysis technique used to support clinical decisions as it is able to provide prognostic and / or predictive biomarkers that allow a fast, objective and repeatable tool for disease monitoring. CONCLUSIONS Although several studies have shown that this analysis is very promising, there is little standardization and generalization of the results, which limits the translation of this method into the clinical context. The limitations are mainly related to the evaluation of data quality, repeatability, reproducibility, overfitting of the model. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Via Mariano Semmola 80131, Naples, Italy.
| | | | - Sergio Venazio Setola
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Via Mariano Semmola 80131, Naples, Italy
| | - Igino Simonetti
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Via Mariano Semmola 80131, Naples, Italy
| | - Diletta Cozzi
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.,Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via Della Signora 2, 20122, Milan, Italy
| | - Giulia Grazzini
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.,Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via Della Signora 2, 20122, Milan, Italy
| | - Francesca Grassi
- Division of Radiology, "Università Degli Studi Della Campania Luigi Vanvitelli", Naples, Italy
| | - Andrea Belli
- Division of Hepatobiliary Surgical Oncology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", 80131, Naples, Italy
| | - Vittorio Miele
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.,Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via Della Signora 2, 20122, Milan, Italy
| | - Francesco Izzo
- Division of Hepatobiliary Surgical Oncology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", 80131, Naples, Italy
| | - Antonella Petrillo
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Via Mariano Semmola 80131, Naples, Italy
| |
Collapse
|
15
|
Impact of Obtaining a Digital Breast Tomosynthesis (DBT) Spot Compression View on Assessment of Equivocal DBT Findings. AJR Am J Roentgenol 2022; 219:37-45. [PMID: 35170358 DOI: 10.2214/ajr.21.27190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Background: A recently introduced DBT device allows obtaining DBT spot compression views using a small paddle during DBT acquisition. Objective: To evaluate the impact on diagnostic performance of obtaining a DBT spot compression view for assessment of equivocal DBT findings. Methods: This retrospective study included 102 women (mean age, 60 years) in whom a DBT spot compression view was obtained to characterize an equivocal finding on DBT at the performing radiologist's discretion, performed from December 14, 2018 to December 18, 2019. Two fellowship-trained breast radiologists and one breast imaging fellow independently reviewed examinations, aware of the location of the equivocal lesions. Readers first assigned a BI-RADS category using standard DBT views followed immediately by a category using the DBT spot compression view. BIRADS categories 2-3 were considered negative, and categories ≥4a were considered positive. Histology and at least 1 year of imaging follow-up served as reference standard. Intrareader agreement for one reader and interreader agreement among all readers were evaluated using kappa coefficients. Diagnostic performance was compared between DBT with and without DBT spot compression views using McNemar tests. Results: Intrareader agreement increased from 0.43 to 0.72, and interreader agreement increased from 0.21 to 0.45, based on kappa coefficients for DBT with and without spot compression views. Eighteen cancers were present. Compared with standard DBT views, DBT spot compression views yielded significantly increased accuracy for all three readers (74% vs 90%, 73% vs 94%, 71% vs 94%); significantly increased specificity for all three readers (69% vs 90%, 75% vs 94%; 68% vs 93%); and significantly increased sensitivity for one reader (67% vs 94%) without significant change in sensitivity for the two other readers (89% vs 100%; 100% vs 89%). Radiation dose was 1.97 mGy for the DBT spot compression view, versus 1.78-1.81 mGy for standard DBT craniocaudal and mediolateral oblique views. Conclusion: The DBT spot compression view increased intrareader agreement, interreader agreement, and diagnostic accuracy (primarily from improved specificity); the view's supplemental dose was slightly higher than that of a standard DBT view. Clinical impact: DBT spot compression may help characterize equivocal DBT findings, reducing further workup for benign findings.
Collapse
|
16
|
Evaluation of Breast Galactography Using Digital Breast Tomosynthesis: A Clinical Exploratory Study. Diagnostics (Basel) 2021; 11:diagnostics11112060. [PMID: 34829407 PMCID: PMC8622426 DOI: 10.3390/diagnostics11112060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/28/2022] Open
Abstract
Objectives: To compare the application value of digital breast tomosynthesis (DBT) and full-field digital mammography (FFDM) in breast galactography. Materials and Methods: A total of 128 patients with pathological nipple discharge (PND) were selected to undergo galactography. DBT and FFDM were performed for each patient after injecting the contrast agent; the radiation dose of DBT and FFDM was calculated, and the image quality was evaluated in consensus by two senior breast radiologists. Histopathologic data were found in 49 of the 128 patients. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for both FFDM- and DBT-galactography were calculated using histopathologic results as a reference standard. Data were presented as percentages along with their 95% confidence intervals (CI). Results: The average age of the 128 patients was 46.53 years. The average glandular dose (AGD) of DBT-galactography was slightly higher than that of FFDM-galactography (p < 0.001). DBT-galactography was 30.7% higher than FFDM-galactography in CC view, while DBT-galactography increased by 21.7% compared with FFDM-galactography in ML view. Regarding catheter anatomic distortion, structure detail, and overall image quality groups, DBT scores were higher than FFDM scores, and the differences were significant for all measures (p < 0.05). In 49 patients with pathological nipple discharge, we found that the DBT-galactography had higher sensitivity, specificity, PPV, and NPV (93.3%, 75%, 97.7%, and 50%, respectively) than FFDM-galactography (91.1%, 50%, 95.3%, and 33.3%, respectively). Conclusions: Compared to FFDM-galactography, within the acceptable radiation dose range, DBT-galactography increases the sensitivity and specificity of lesion detection by improving the image quality, providing more confidence for the diagnosis of clinical ductal lesions.
Collapse
|
17
|
Kornecki A. Current Status of Contrast Enhanced Mammography: A Comprehensive Review. Can Assoc Radiol J 2021; 73:141-156. [PMID: 34492211 DOI: 10.1177/08465371211029047] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES The purpose of this article is to provide a detailed and updated review of the physics, techniques, indications, limitations, reporting, implementation and management of contrast enhanced mammography. BACKGROUND Contrast enhanced mammography (CEM), is an emerging iodine-based modified dual energy mammography technique. In addition to having the same advantages as standard full-field digital mammography (FFDM), CEM provides information regarding tumor enhancement, relying on tumor angiogenesis, similar to dynamic contrast enhanced magnetic resonance imaging (DCE-MRI). This article reviews current literature on CEM and highlights considerations that are critical to the successful use of this modality. CONCLUSION Multiple studies point to the advantage of using CEM in the diagnostic setting of breast imaging, which approaches that of DCE-MRI.
Collapse
Affiliation(s)
- Anat Kornecki
- Department of Medical Imaging, Breast Division, Western University, St. Joseph Health Care, London, Ontario, Canada
| |
Collapse
|
18
|
Granata V, Fusco R, Barretta ML, Picone C, Avallone A, Belli A, Patrone R, Ferrante M, Cozzi D, Grassi R, Grassi R, Izzo F, Petrillo A. Radiomics in hepatic metastasis by colorectal cancer. Infect Agent Cancer 2021; 16:39. [PMID: 34078424 PMCID: PMC8173908 DOI: 10.1186/s13027-021-00379-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023] Open
Abstract
Background Radiomics is an emerging field and has a keen interest, especially in the oncology field. The process of a radiomics study consists of lesion segmentation, feature extraction, consistency analysis of features, feature selection, and model building. Manual segmentation is one of the most critical parts of radiomics. It can be time-consuming and suffers from variability in tumor delineation, which leads to the reproducibility problem of calculating parameters and assessing spatial tumor heterogeneity, particularly in large or multiple tumors. Radiomic features provides data on tumor phenotype as well as cancer microenvironment. Radiomics derived parameters, when associated with other pertinent data and correlated with outcomes data, can produce accurate robust evidence based clinical decision support systems. The principal challenge is the optimal collection and integration of diverse multimodal data sources in a quantitative manner that delivers unambiguous clinical predictions that accurately and robustly enable outcome prediction as a function of the impending decisions. Methods The search covered the years from January 2010 to January 2021. The inclusion criterion was: clinical study evaluating radiomics of liver colorectal metastases. Exclusion criteria were studies with no sufficient reported data, case report, review or editorial letter. Results We recognized 38 studies that assessed radiomics in mCRC from January 2010 to January 2021. Twenty were on different tpics, 5 corresponded to most criteria; 3 are review, or letter to editors; so 10 articles were included. Conclusions In colorectal liver metastases radiomics should be a valid tool for the characterization of lesions, in the stratification of patients based on the risk of relapse after surgical treatment and in the prediction of response to chemotherapy treatment.
Collapse
Affiliation(s)
- Vincenza Granata
- Radiology Division, "ISTITUTO NAZIONALE TUMORI - IRCCS - FONDAZIONE G. PASCALE, Napoli, Italy", Via Mariano Semmola, Naples, Italy
| | - Roberta Fusco
- Radiology Division, "ISTITUTO NAZIONALE TUMORI - IRCCS - FONDAZIONE G. PASCALE, Napoli, Italy", Via Mariano Semmola, Naples, Italy.
| | - Maria Luisa Barretta
- Radiology Division, "ISTITUTO NAZIONALE TUMORI - IRCCS - FONDAZIONE G. PASCALE, Napoli, Italy", Via Mariano Semmola, Naples, Italy
| | - Carmine Picone
- Radiology Division, "ISTITUTO NAZIONALE TUMORI - IRCCS - FONDAZIONE G. PASCALE, Napoli, Italy", Via Mariano Semmola, Naples, Italy
| | - Antonio Avallone
- Abdominal Oncology Division, "ISTITUTO NAZIONALE TUMORI - IRCCS - FONDAZIONE G. PASCALE, NAPOLI, ITALIA", Via Mariano Semmola, Naples, Italy
| | - Andrea Belli
- Hepatobiliary Surgical Oncology Division, "ISTITUTO NAZIONALE TUMORI - IRCCS - FONDAZIONE G. PASCALE, NAPOLI, ITALIA", Via Mariano Semmola, Naples, Italy
| | - Renato Patrone
- Hepatobiliary Surgical Oncology Division, "ISTITUTO NAZIONALE TUMORI - IRCCS - FONDAZIONE G. PASCALE, NAPOLI, ITALIA", Via Mariano Semmola, Naples, Italy
| | - Marilina Ferrante
- Division of Radiology, "Università degli Studi della Campania Luigi Vanvitelli", Naples, Italy
| | - Diletta Cozzi
- Division of Radiology, "Azienda Ospedaliera Universitaria Careggi", Florence, Italy
| | - Roberta Grassi
- Division of Radiology, "Università degli Studi della Campania Luigi Vanvitelli", Naples, Italy
| | - Roberto Grassi
- Division of Radiology, "Università degli Studi della Campania Luigi Vanvitelli", Naples, Italy.,Italian Society of Medical and Interventional Radiology SIRM, SIRM Foundation, Via della Signora 2, 20122, Milan, Italy
| | - Francesco Izzo
- Hepatobiliary Surgical Oncology Division, "ISTITUTO NAZIONALE TUMORI - IRCCS - FONDAZIONE G. PASCALE, NAPOLI, ITALIA", Via Mariano Semmola, Naples, Italy
| | - Antonella Petrillo
- Radiology Division, "ISTITUTO NAZIONALE TUMORI - IRCCS - FONDAZIONE G. PASCALE, Napoli, Italy", Via Mariano Semmola, Naples, Italy
| |
Collapse
|
19
|
Baltzer PAT. Supplemental screening using breast MRI in women with mammographically dense breasts. Eur J Radiol 2020; 136:109513. [PMID: 33422397 DOI: 10.1016/j.ejrad.2020.109513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Pascal A T Baltzer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| |
Collapse
|