1
|
Mori Y, Isobe T, Ide Y, Uematsu S, Tomita T, Nagai Y, Iizumi T, Takei H, Sakurai H, Sakae T. Visualization of spatial dose distribution for effective radiation protection education in interventional radiology: obtaining high-accuracy spatial doses. Phys Eng Sci Med 2024; 47:1665-1676. [PMID: 39249663 PMCID: PMC11666685 DOI: 10.1007/s13246-024-01479-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/16/2024] [Indexed: 09/10/2024]
Abstract
In recent years, eye lens exposure among radiation workers has become a serious concern in medical X-ray fluoroscopy and interventional radiology (IVR), highlighting the need for radiation protection education and training. This study presents a method that can maintain high accuracy when calculating spatial dose distributions obtained via Monte Carlo simulation and establishes another method to three-dimensionally visualize radiation using the obtained calculation results for contributing to effective radiation-protection education in X-ray fluoroscopy and IVR. The Monte Carlo particle and heavy ion transport code system (PHITS, Ver. 3.24) was used for calculating the spatial dose distribution generated by an angiography device. We determined the peak X-ray tube voltage and half value layer using Raysafe X2 to define the X-ray spectrum from the source and calculated the X-ray spectrum from the measured results using an approximation formula developed by Tucker et al. Further, we performed measurements using the "jungle-gym" method under the same conditions as the Monte Carlo calculations for verifying the accuracy of the latter. An optically stimulated luminescence dosimeter (nanoDot dosimeter) was used as the measuring instrument. In addition, we attempted to visualize radiation using ParaView (version 5.12.0-RC2) using the spatial dose distribution confirmed by the above calculations. A comparison of the measured and Monte Carlo calculated spatial dose distributions revealed that some areas showed large errors (12.3 and 24.2%) between the two values. These errors could be attributed to the scattering and absorption of X-rays caused by the jungle gym method, which led to uncertain measurements, and (2) the angular and energy dependencies of the nanoDot dosimetry. These two causes explain the errors in the actual values, and thus, the Monte Carlo calculations proposed in this study can be considered to have high-quality X-ray spectra and high accuracy. We successfully visualized the three-dimensional spatial dose distribution for direct and scattered X-rays separately using the obtained spatial dose distribution. We established a method to verify the accuracy of Monte Carlo calculations performed through the procedures considered in this study. Various three-dimensional spatial dose distributions were obtained with assured accuracy by applying the Monte Carlo calculation (e.g., changing the irradiation angle and adding a protective plate). Effective radiation-protection education can be realized by combining the present method with highly reliable software to visualize dose distributions.
Collapse
Affiliation(s)
- Yutaro Mori
- Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Graduate School of Comprehensive Human Sciences, Degree Programs in Comprehensive Human Sciences, Doctoral Program in Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Graduate School of Comprehensive Human Sciences, Degree Programs in Comprehensive Human Sciences, Master's Program in Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Department of Radiation Oncology and Proton Medical Research Centre, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Tomonori Isobe
- Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
- Graduate School of Comprehensive Human Sciences, Degree Programs in Comprehensive Human Sciences, Doctoral Program in Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
- Graduate School of Comprehensive Human Sciences, Degree Programs in Comprehensive Human Sciences, Master's Program in Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
- Department of Radiation Oncology and Proton Medical Research Centre, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, 305-8576, Japan.
| | - Yasuwo Ide
- Graduate School of Comprehensive Human Sciences, Degree Programs in Comprehensive Human Sciences, Doctoral Program in Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Department of Radiological Technology, Tsukuba International University, 6-20-1 Manabe, Tsuchiura, Ibaraki, 300-0051, Japan
| | - Shuto Uematsu
- Graduate School of Comprehensive Human Sciences, Degree Programs in Comprehensive Human Sciences, Master's Program in Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Tetsuya Tomita
- Department of Radiology, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Yoshiaki Nagai
- Department of Radiological Technology, Tsukuba International University, 6-20-1 Manabe, Tsuchiura, Ibaraki, 300-0051, Japan
| | - Takashi Iizumi
- Department of Radiation Oncology and Proton Medical Research Centre, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Hideyuki Takei
- Quantum Life and Medical Science Directorate, National Institute for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Hideyuki Sakurai
- Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Graduate School of Comprehensive Human Sciences, Degree Programs in Comprehensive Human Sciences, Doctoral Program in Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Graduate School of Comprehensive Human Sciences, Degree Programs in Comprehensive Human Sciences, Master's Program in Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Department of Radiation Oncology and Proton Medical Research Centre, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Takeji Sakae
- Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Graduate School of Comprehensive Human Sciences, Degree Programs in Comprehensive Human Sciences, Doctoral Program in Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Graduate School of Comprehensive Human Sciences, Degree Programs in Comprehensive Human Sciences, Master's Program in Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Department of Radiation Oncology and Proton Medical Research Centre, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| |
Collapse
|
2
|
Nessipkhan A, Matsuda N, Takamura N, Oriuchi N, Ito H, Kiguchi M, Nishihara K, Tamaru T, Awai K, Kudo T. Occupational radiation exposure among medical personnel in university and general hospitals in Japan. Jpn J Radiol 2024; 42:1067-1079. [PMID: 38705937 DOI: 10.1007/s11604-024-01579-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/20/2024] [Indexed: 05/07/2024]
Abstract
OBJECTIVE This study aimed to compare the occupational radiation exposure of medical workers between general hospitals and university hospitals. METHODS Radiation exposure data from three hospitals in Hiroshima city, including one university hospital and two general hospitals, were collected using personal dosimeters. Monthly radiation doses were analyzed, and the annual sum of radiation exposure dose was calculated for 538 subjects in general hospitals and 1224 subjects in the university hospital. To assess the impact of locality, additional data from Nagasaki University Hospital and Fukushima Medical University Hospital were included for comparative analysis. Professional affiliations, such as doctors, nurses, and radiological technologists, were considered in the evaluation. RESULTS The study revealed slight but significant differences in radiation doses between general and university hospitals. In general hospitals, except for radiological technologists, a slightly higher radiation dose was observed compared to university hospitals. Despite the annual increase in the use of medical radiation, the majority of hospital workers in both settings adhered to safety guidelines, with occupational radiation exposure remaining below the limit of detection (LOD). Workers who involved in fluoroscopic procedure, whether at university or general hospitals, had higher radiation doses than those who did not. CONCLUSION The study's primary conclusion is that workers in general hospitals experience a slight but significantly higher radiation dose and a lower percentage below the LOD compared to university hospitals. The observed difference is attributed to the greater workload at general hospitals than at university hospitals, and also may be due to the different nature of university hospital and general hospital. University hospitals, characterized by greater academic orientation, tend to benefit from comprehensive support systems, specialized expertise, and advanced technology, leading to more structured and regulated radiation control. These findings provide a basis for targeted interventions, improved safety protocols.
Collapse
Affiliation(s)
- Arman Nessipkhan
- Department of Radioisotope Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan.
| | - Naoki Matsuda
- Department of Radiation Biology and Protection, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Noboru Takamura
- Department of Global Health, Medicine and Welfare, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Noboru Oriuchi
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, Japan
| | - Hiroshi Ito
- Department of Radiology, Faculty of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Masao Kiguchi
- Department of Clinical Support, Hiroshima University Hospital, Hiroshima, Japan
| | - Kiyoto Nishihara
- Department of Radiological Technology, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Takayuki Tamaru
- Department of Radiology, JA Hiroshima General Hospital, Hiroshima, Japan
| | - Kazuo Awai
- Department of Diagnostic Radiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takashi Kudo
- Department of Radioisotope Medicine, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
3
|
Ohno S, Konta S, Shindo R, Yamamoto K, Isobe R, Inaba Y, Suzuki M, Zuguchi M, Chida K. Effect of backscatter radiation on the occupational eye-lens dose. JOURNAL OF RADIATION RESEARCH 2024; 65:450-458. [PMID: 38818635 PMCID: PMC11262866 DOI: 10.1093/jrr/rrae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/21/2024] [Indexed: 06/01/2024]
Abstract
We quantified the level of backscatter radiation generated from physicians' heads using a phantom. We also evaluated the shielding rate of the protective eyewear and optimal placement of the eye-dedicated dosimeter (skin surface or behind the Pb-eyewear). We performed diagnostic X-rays of two head phantoms: Styrofoam (negligible backscatter radiation) and anthropomorphic (included backscatter radiation). Radiophotoluminescence glass dosimeters were used to measure the eye-lens dose, with or without 0.07-mm Pb-equivalent protective eyewear. We used tube voltages of 50, 65 and 80 kV because the scattered radiation has a lower mean energy than the primary X-ray beam. The backscatter radiation accounted for 17.3-22.3% of the eye-lens dose, with the percentage increasing with increasing tube voltage. Furthermore, the shielding rate of the protective eyewear was overestimated, and the eye-lens dose was underestimated when the eye-dedicated dosimeter was placed behind the protective eyewear. We quantified the backscatter radiation generated from physicians' heads. To account for the effect of backscatter radiation, an anthropomorphic, rather than Styrofoam, phantom should be used. Close contact of the dosimeter with the skin surface is essential for accurate evaluation of backscatter radiation from physician's own heads. To assess the eye-lens dose accurately, the dosimeter should be placed near the eye. If the dosimeter is placed behind the lens of the protective eyewear, we recommend using a backscatter radiation calibration factor of 1.2-1.3.
Collapse
Affiliation(s)
- Saya Ohno
- Department of Radiological Technology, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba, Sendai 980-8575, Japan
| | - Satoe Konta
- Department of Radiological Technology, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba, Sendai 980-8575, Japan
| | - Ryota Shindo
- Department of Radiological Technology, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba, Sendai 980-8575, Japan
| | - Keisuke Yamamoto
- Department of Radiological Technology, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba, Sendai 980-8575, Japan
| | - Rio Isobe
- Department of Radiological Technology, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba, Sendai 980-8575, Japan
| | - Yohei Inaba
- Department of Radiological Technology, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba, Sendai 980-8575, Japan
- Division of Radiological Disasters and Medical Science, Department of Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, 6-6-4, Aoba, Sendai 980-8579, Japan
| | - Masatoshi Suzuki
- Department of Radiological Technology, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba, Sendai 980-8575, Japan
- Division of Radiological Disasters and Medical Science, Department of Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, 6-6-4, Aoba, Sendai 980-8579, Japan
| | - Masayuki Zuguchi
- Department of Radiological Technology, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba, Sendai 980-8575, Japan
| | - Koichi Chida
- Department of Radiological Technology, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba, Sendai 980-8575, Japan
- Division of Radiological Disasters and Medical Science, Department of Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, 6-6-4, Aoba, Sendai 980-8579, Japan
| |
Collapse
|
4
|
Yamamoto K, Shindo R, Ohno S, Konta S, Isobe R, Inaba Y, Suzuki M, Hosoi Y, Chida K. Basic Performance Evaluation of a Radiation Survey Meter That Uses a Plastic-Scintillation Sensor. SENSORS (BASEL, SWITZERLAND) 2024; 24:2973. [PMID: 38793828 PMCID: PMC11125092 DOI: 10.3390/s24102973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
After the Fukushima nuclear power plant accident in 2011, many types of survey meters were used, including Geiger-Müller (GM) survey meters, which have long been used to measure β-rays. Recently, however, a novel radiation survey meter that uses a plastic-scintillation sensor has been developed. Although manufacturers' catalog data are available for these survey meters, there have been no user reports on performance. In addition, the performance of commercial plastic-scintillation survey meters has not been evaluated. In this study, we experimentally compared the performance of a plastic-scintillation survey meter with that of a GM survey meter. The results show that the two instruments performed very similarly in most respects. The GM survey meter exhibited count losses when the radiation count rate was high, whereas the plastic-scintillation survey meter remained accurate under such circumstances, with almost no count loss at high radiation rates. For measurements at background rates (i.e., low counting rates), the counting rates of the plastic-scintillation and GM survey meters were similar. Therefore, an advantage of plastic-scintillation survey meters is that they are less affected by count loss than GM survey meters. We conclude that the plastic-scintillation survey meter is a useful β-ray measuring/monitoring instrument.
Collapse
Affiliation(s)
- Keisuke Yamamoto
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan; (K.Y.); (R.S.); (S.O.); (S.K.); (R.I.); (Y.I.); (M.S.)
- Department of Radiation Biology, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8574, Japan;
| | - Ryota Shindo
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan; (K.Y.); (R.S.); (S.O.); (S.K.); (R.I.); (Y.I.); (M.S.)
| | - Saya Ohno
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan; (K.Y.); (R.S.); (S.O.); (S.K.); (R.I.); (Y.I.); (M.S.)
| | - Satoe Konta
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan; (K.Y.); (R.S.); (S.O.); (S.K.); (R.I.); (Y.I.); (M.S.)
| | - Rio Isobe
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan; (K.Y.); (R.S.); (S.O.); (S.K.); (R.I.); (Y.I.); (M.S.)
- Department of Radiation Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, 468-1 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Yohei Inaba
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan; (K.Y.); (R.S.); (S.O.); (S.K.); (R.I.); (Y.I.); (M.S.)
- Department of Radiation Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, 468-1 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Masatoshi Suzuki
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan; (K.Y.); (R.S.); (S.O.); (S.K.); (R.I.); (Y.I.); (M.S.)
- Department of Radiation Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, 468-1 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Yoshio Hosoi
- Department of Radiation Biology, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8574, Japan;
| | - Koichi Chida
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan; (K.Y.); (R.S.); (S.O.); (S.K.); (R.I.); (Y.I.); (M.S.)
- Department of Radiation Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, 468-1 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| |
Collapse
|
5
|
Yamada A, Haga Y, Sota M, Abe M, Kaga Y, Inaba Y, Suzuki M, Tada N, Zuguchi M, Chida K. Eye Lens Radiation Dose to Nurses during Cardiac Interventional Radiology: An Initial Study. Diagnostics (Basel) 2023; 13:3003. [PMID: 37761370 PMCID: PMC10528633 DOI: 10.3390/diagnostics13183003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Although interventional radiology (IVR) is preferred over surgical procedures because it is less invasive, it results in increased radiation exposure due to long fluoroscopy times and the need for frequent imaging. Nurses engaged in cardiac IVR receive the highest lens radiation doses among medical workers, after physicians. Hence, it is important to measure the lens exposure of IVR nurses accurately. Very few studies have evaluated IVR nurse lens doses using direct dosimeters. This study was conducted using direct eye dosimeters to determine the occupational eye dose of nurses engaged in cardiac IVR, and to identify simple and accurate methods to evaluate the lens dose received by nurses. Over 6 months, in a catheterization laboratory, we measured the occupational dose to the eyes (3 mm dose equivalent) and neck (0.07 mm dose equivalent) of nurses on the right and left sides. We investigated the relationship between lens and neck doses, and found a significant correlation. Hence, it may be possible to estimate the lens dose from the neck badge dose. We also evaluated the appropriate position (left or right) of eye dosimeters for IVR nurses. Although there was little difference between the mean doses to the right and left eyes, that to the right eye was slightly higher. In addition, we investigated whether it is possible to estimate doses received by IVR nurses from patient dose parameters. There were significant correlations between the measured doses to the neck and lens, and the patient dose parameters (fluoroscopy time and air kerma), implying that these parameters could be used to estimate the lens dose. However, it may be difficult to determine the lens dose of IVR nurses accurately from neck badges or patient dose parameters because of variation in the behaviors of nurses and the procedure type. Therefore, neck doses and patient dose parameters do not correlate well with the radiation eye doses of individual IVR nurses measured by personal eye dosimeters. For IVR nurses with higher eye doses, more accurate measurement of the radiation doses is required. We recommend that a lens dosimeter be worn near the eyes to measure the lens dose to IVR nurses accurately, especially those exposed to relatively high doses.
Collapse
Affiliation(s)
- Ayumi Yamada
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan; (A.Y.); (Y.H.); (M.S.); (Y.I.); (M.S.); (M.Z.)
| | - Yoshihiro Haga
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan; (A.Y.); (Y.H.); (M.S.); (Y.I.); (M.S.); (M.Z.)
- Department of Radiology, Sendai Kousei Hospital, 4-5 Hirose-machi, Aoba-ku, Sendai 980-0873, Japan; (M.A.); (Y.K.)
| | - Masahiro Sota
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan; (A.Y.); (Y.H.); (M.S.); (Y.I.); (M.S.); (M.Z.)
- Department of Radiology, Sendai Kousei Hospital, 4-5 Hirose-machi, Aoba-ku, Sendai 980-0873, Japan; (M.A.); (Y.K.)
| | - Mitsuya Abe
- Department of Radiology, Sendai Kousei Hospital, 4-5 Hirose-machi, Aoba-ku, Sendai 980-0873, Japan; (M.A.); (Y.K.)
| | - Yuji Kaga
- Department of Radiology, Sendai Kousei Hospital, 4-5 Hirose-machi, Aoba-ku, Sendai 980-0873, Japan; (M.A.); (Y.K.)
| | - Yohei Inaba
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan; (A.Y.); (Y.H.); (M.S.); (Y.I.); (M.S.); (M.Z.)
- Department of Radiation Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, 468-1 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Masatoshi Suzuki
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan; (A.Y.); (Y.H.); (M.S.); (Y.I.); (M.S.); (M.Z.)
- Department of Radiation Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, 468-1 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Norio Tada
- Department of Cardiovascular Medicine, Sendai Kousei Hospital, 4-5 Hirose-machi, Aoba-ku, Sendai 980-0873, Japan;
| | - Masayuki Zuguchi
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan; (A.Y.); (Y.H.); (M.S.); (Y.I.); (M.S.); (M.Z.)
| | - Koichi Chida
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan; (A.Y.); (Y.H.); (M.S.); (Y.I.); (M.S.); (M.Z.)
- Department of Radiation Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, 468-1 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| |
Collapse
|
6
|
Tam SY, Fung YY, Lau SY, Lam WN, Wong ETH. Scatter Radiation Distribution to Radiographers, Nearby Patients and Caretakers during Portable and Pediatric Radiography Examinations. Bioengineering (Basel) 2023; 10:779. [PMID: 37508806 PMCID: PMC10376625 DOI: 10.3390/bioengineering10070779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Scatter radiation from portable and pediatric X-rays could pose a risk to radiographers, nearby patients, and caretakers. We aim to evaluate the spatial scatter radiation distribution to the radiographers, nearby patients, and caretakers during common projections in portable and pediatric X-rays. We evaluated the three-dimensional scatter dose profiles of four and three commonly used portable and pediatric X-ray projections, respectively, by anthropomorphic phantoms and scatter probes. For portable X-ray, the AP abdomen had the highest scatter radiation dose recorded. Radiographer scatter radiation doses were 177 ± 8 nGy (longest cord extension) and 14 ± 0 nGy (hiding behind the portable X-ray machine). Nearby patient scatter radiation doses were 3323 ± 28 nGy (40 cm bed distance), 1785 ± 50 nGy (80 cm bed distance), and 580 ± 42 nGy (160 cm bed distance). The AP chest and abdomen had the highest scatter radiation dose in pediatric X-rays. Caretaker scatter radiation doses were 33 ± 1 nGy (50 cm height) and 659 ± 7 nGy (140 cm height). Although the estimated lens doses were all within safe levels, the use of shielding and caution on dose estimation by inverse square law is suggested to achieve the ALARA principle and dose optimization.
Collapse
Affiliation(s)
- Shing-Yau Tam
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Yuen-Ying Fung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Sum-Yi Lau
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Wang-Ngai Lam
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Edward Ting-Hei Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
7
|
Otomo K, Inaba Y, Abe K, Onodera M, Suzuki T, Sota M, Haga Y, Suzuki M, Zuguchi M, Chida K. Spatial Scattering Radiation to the Radiological Technologist during Medical Mobile Radiography. Bioengineering (Basel) 2023; 10:bioengineering10020259. [PMID: 36829753 PMCID: PMC9952711 DOI: 10.3390/bioengineering10020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Mobile radiography allows for the diagnostic imaging of patients who cannot move to the X-ray examination room. Therefore, mobile X-ray equipment is useful for patients who have difficulty with movement. However, staff are exposed to scattered radiation from the patient, and they can receive potentially harmful radiation doses during radiography. We estimated occupational exposure during mobile radiography using phantom measurements. Scattered radiation distribution during mobile radiography was investigated using a radiation survey meter. The efficacy of radiation-reducing methods for mobile radiography was also evaluated. The dose decreased as the distance from the X-ray center increased. When the distance was more than 150 cm, the dose decreased to less than 1 μSv. It is extremely important for radiological technologists (RTs) to maintain a sufficient distance from the patient to reduce radiation exposure. The spatial dose at eye-lens height increases when the bed height is high, and when the RT is short in stature and abdominal imaging is performed. Maintaining sufficient distance from the patient is also particularly effective in limiting radiation exposure of the eye lens. Our results suggest that the doses of radiation received by staff during mobile radiography are not significant when appropriate radiation protection is used. To reduce exposure, it is important to maintain a sufficient distance from the patient. Therefore, RTs should bear this is mind during mobile radiography.
Collapse
Affiliation(s)
- Kazuki Otomo
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan
- Department of Radiology, Tohoku University Hospital, 1-1 Seiryo, Aoba-ku, Sendai 980-8574, Japan
| | - Yohei Inaba
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan
- Department of Radiation Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, 468-1 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Keisuke Abe
- Department of Radiology, Tohoku University Hospital, 1-1 Seiryo, Aoba-ku, Sendai 980-8574, Japan
| | - Mana Onodera
- Department of Radiology, Tohoku University Hospital, 1-1 Seiryo, Aoba-ku, Sendai 980-8574, Japan
| | - Tomohiro Suzuki
- Department of Radiology, Tohoku University Hospital, 1-1 Seiryo, Aoba-ku, Sendai 980-8574, Japan
| | - Masahiro Sota
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan
- Department of Radiology, Sendai Kousei Hospital, 4-5 Hirose-machi, Aoba-ku, Sendai, 980-0873, Japan
| | - Yoshihiro Haga
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan
- Department of Radiology, Sendai Kousei Hospital, 4-5 Hirose-machi, Aoba-ku, Sendai, 980-0873, Japan
| | - Masatoshi Suzuki
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan
- Department of Radiation Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, 468-1 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Masayuki Zuguchi
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan
| | - Koichi Chida
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan
- Department of Radiation Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, 468-1 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
- Correspondence: ; Tel.: +81-22-717-7943
| |
Collapse
|
8
|
Hattori K, Inaba Y, Kato T, Fujisawa M, Yasuno H, Yamada A, Haga Y, Suzuki M, Zuguchi M, Chida K. Evaluation of a New Real-Time Dosimeter Sensor for Interventional Radiology Staff. SENSORS (BASEL, SWITZERLAND) 2023; 23:512. [PMID: 36617110 PMCID: PMC9823962 DOI: 10.3390/s23010512] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 06/01/2023]
Abstract
In 2011, the International Commission on Radiological Protection (ICRP) recommended a significant reduction in the lens-equivalent radiation dose limit, thus from an average of 150 to 20 mSv/year over 5 years. In recent years, the occupational dose has been rising with the increased sophistication of interventional radiology (IVR); management of IVR staff radiation doses has become more important, making real-time radiation monitoring of such staff desirable. Recently, the i3 real-time occupational exposure monitoring system (based on RaySafeTM) has replaced the conventional i2 system. Here, we compared the i2 and i3 systems in terms of sensitivity (batch uniformity), tube-voltage dependency, dose linearity, dose-rate dependency, and angle dependency. The sensitivity difference (batch uniformity) was approximately 5%, and the tube-voltage dependency was <±20% between 50 and 110 kV. Dose linearity was good (R2 = 1.00); a slight dose-rate dependency (~20%) was evident at very high dose rates (250 mGy/h). The i3 dosimeter showed better performance for the lower radiation detection limit compared with the i2 system. The horizontal and vertical angle dependencies of i3 were superior to those of i2. Thus, i3 sensitivity was higher over a wider angle range compared with i2, aiding the measurement of scattered radiation. Unlike the i2 sensor, the influence of backscattered radiation (i.e., radiation from an angle of 180°) was negligible. Therefore, the i3 system may be more appropriate in areas affected by backscatter. In the future, i3 will facilitate real-time dosimetry and dose management during IVR and other applications.
Collapse
Affiliation(s)
- Kenshin Hattori
- Course of Radiological Technology, Health Sciences, Graduate School of Medicine, Tohoku University, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan
| | - Yohei Inaba
- Course of Radiological Technology, Health Sciences, Graduate School of Medicine, Tohoku University, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan
- Department of Radiation Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, 468-1 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Toshiki Kato
- Course of Radiological Technology, Health Sciences, Graduate School of Medicine, Tohoku University, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan
| | - Masaki Fujisawa
- Course of Radiological Technology, Health Sciences, Graduate School of Medicine, Tohoku University, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan
| | - Hikaru Yasuno
- Course of Radiological Technology, Health Sciences, Graduate School of Medicine, Tohoku University, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan
| | - Ayumi Yamada
- Course of Radiological Technology, Health Sciences, Graduate School of Medicine, Tohoku University, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan
| | - Yoshihiro Haga
- Course of Radiological Technology, Health Sciences, Graduate School of Medicine, Tohoku University, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan
- Department of Radiology, Sendai Kousei Hospital, 4-5 Hirose-machi, Aoba-ku, Sendai 980-0873, Japan
| | - Masatoshi Suzuki
- Course of Radiological Technology, Health Sciences, Graduate School of Medicine, Tohoku University, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan
- Department of Radiation Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, 468-1 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Masayuki Zuguchi
- Course of Radiological Technology, Health Sciences, Graduate School of Medicine, Tohoku University, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan
| | - Koichi Chida
- Course of Radiological Technology, Health Sciences, Graduate School of Medicine, Tohoku University, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan
- Department of Radiation Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, 468-1 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| |
Collapse
|
9
|
Yashima S, Chida K. Awareness of Medical Radiologic Technologists of Ionizing Radiation and Radiation Protection. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:497. [PMID: 36612833 PMCID: PMC9819470 DOI: 10.3390/ijerph20010497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 06/02/2023]
Abstract
Japanese people experienced the Hiroshima and Nagasaki atomic bombings, the Japan Nuclear Fuel Conversion Co. criticality accident, it was found that many human resources are needed to respond to residents' concerns about disaster exposure in the event of a radiation disaster. Medical radiologic technologists learn about radiation from the time of their training, and are engaged in routine radiographic work, examination explanations, medical exposure counseling, and radiation protection of staff. By learning about nuclear disasters and counseling, we believe they can address residents' concerns. In order to identify items needed for training, we examined the perceptions of medical radiologic technologists in the case of different specialties, modalities and radiation doses. In 2016, 5 years after the Fukushima Daiichi nuclear power plant accident, we conducted a survey of 57 medical radiologic technologists at two medical facilities with different specialties and work contents to investigate their attitudes toward radiation. 42 participants answered questions regarding sex, age group, presence of children, health effects of radiation exposure, radiation control, generation of X rays by diagnostic X ray equipment, and radiation related units. In a comparison of 38 items other than demographic data, 14 showed no significant differences and 24 showed significant differences. This study found that perceptions of radiation were different among radiology technologists at facilities with different specialties. The survey suggested the possibility of identifying needed training items and providing effective training.
Collapse
Affiliation(s)
- Sachiko Yashima
- Division of Radiation, Miyagi Cancer Society, Sendai 980-0011, Miyagi, Japan
- Division of Radiological Disasters and Medical Science, International Research Institute of Disaster Science (IRIDeS), Tohoku University, Sendai 980-8577, Miyagi, Japan
| | - Koichi Chida
- Division of Radiological Disasters and Medical Science, International Research Institute of Disaster Science (IRIDeS), Tohoku University, Sendai 980-8577, Miyagi, Japan
- Department of Radiological Technology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi, Japan
| |
Collapse
|
10
|
Sato T, Eguchi Y, Yamazaki C, Hino T, Saida T, Chida K. Development of a New Radiation Shield for the Face and Neck of IVR Physicians. Bioengineering (Basel) 2022; 9:354. [PMID: 36004878 PMCID: PMC9404996 DOI: 10.3390/bioengineering9080354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 11/20/2022] Open
Abstract
Interventional radiology (IVR) procedures are associated with increased radiation exposure and injury risk. Furthermore, radiation eye injury (i.e., cataract) in IVR staff have also been reported. It is crucial to protect the eyes of IVR physicians from X-ray radiation exposure. Many IVR physicians use protective Pb eyeglasses to reduce occupational eye exposure. However, the shielding effects of Pb eyeglasses are inadequate. We developed a novel shield for the face (including eyes) of IVR physicians. The novel shield consists of a neck and face guard (0.25 mm Pb-equivalent rubber sheet, nonlead protective sheet). The face shield is positioned on the left side of the IVR physician. We assessed the shielding effects of the novel shield using a phantom in the IVR X-ray system; a radiophotoluminescence dosimeter was used to measure the radiation exposure. In this phantom study, the effectiveness of the novel device for protecting against radiation was greater than 80% in almost all measurement situations, including in terms of eye lens exposure. A large amount of scattered radiation reaches the left side of IVR physicians. The novel radiation shield effectively protects the left side of the physician from this scattered radiation. Thus, the device can be used to protect the face and eyes of IVR physicians from occupational radiation exposure. The novel device will be useful for protecting the face (including eyes) of IVR physicians from radiation, and thus could reduce the rate of radiation injury. Based on the positive results of this phantom study, we plan to perform a clinical experiment to further test the utility of this novel radiation shield for IVR physicians.
Collapse
Affiliation(s)
- Toshimitsu Sato
- Department of Radiology, Yamagata University Hospital, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan; (T.S.); (C.Y.); (T.H.)
| | - Yoichi Eguchi
- Course of Radiological Technology, Health Sciences, Graduate School of Medicine, Tohoku University, 2-1 Seiryo, Sendai 980-8575, Japan;
| | - Chika Yamazaki
- Department of Radiology, Yamagata University Hospital, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan; (T.S.); (C.Y.); (T.H.)
| | - Takanobu Hino
- Department of Radiology, Yamagata University Hospital, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan; (T.S.); (C.Y.); (T.H.)
| | - Toshikazu Saida
- Department of Central Radiology, Nara Prefecture Seiwa Medical Center, 1-14-16 Mimuro, Nara 636-0802, Japan;
| | - Koichi Chida
- Course of Radiological Technology, Health Sciences, Graduate School of Medicine, Tohoku University, 2-1 Seiryo, Sendai 980-8575, Japan;
- Department of Radiation Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, 468-1 Aramaki Aza-Aoba, Sendai 980-0845, Japan
| |
Collapse
|
11
|
Chida K. What are useful methods to reduce occupational radiation exposure among radiological medical workers, especially for interventional radiology personnel? Radiol Phys Technol 2022; 15:101-115. [PMID: 35608759 DOI: 10.1007/s12194-022-00660-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022]
Abstract
Protection against occupational radiation exposure in clinical settings is important. This paper clarifies the present status of medical occupational exposure protection and possible additional safety measures. Radiation injuries, such as cataracts, have been reported in physicians and staff who perform interventional radiology (IVR), thus, it is important that they use shielding devices (e.g., lead glasses and ceiling-suspended shields). Currently, there is no single perfect radiation shield; combinations of radiation shields are required. Radiological medical workers must be appropriately educated in terms of reducing radiation exposure among both patients and staff. They also need to be aware of the various methods available for estimating/reducing patient dose and occupational exposure. When the optimizing the dose to the patient, such as eliminating a patient dose that is higher than necessary, is applied, exposure of radiological medical workers also decreases without any loss of diagnostic benefit. Thus, decreasing the patient dose also reduces occupational exposure. We propose a novel four-point policy for protecting medical staff from radiation: patient dose Optimization, Distance, Shielding, and Time (pdO-DST). Patient dose optimization means that the patient never receives a higher dose than is necessary, which also reduces the dose received by the staff. The patient dose must be optimized: shielding is critical, but it is only one component of protection from radiation used in medical procedures. Here, we review the radiation protection/reduction basics for radiological medical workers, especially for IVR staff.
Collapse
Affiliation(s)
- Koichi Chida
- Department of Radiological Technology, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai, 980-8575, Japan. .,Division of Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, 980-8572, Japan.
| |
Collapse
|
12
|
Liu X, Zhang Q, Li J, Chen R, Xu W, Li Y, Yang W, Zhou Y. Lead borate@polydopamine core–shell particles chemically bonded with silicone rubber for neutron and γ‐rays shielding. J Appl Polym Sci 2022. [DOI: 10.1002/app.51914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Xue Liu
- State Key Laboratory of Environment‐Friendly Energy Materials, School of Materials Science and Engineering Southwest University of Science and Technology Mianyang China
| | - Quan‐Ping Zhang
- State Key Laboratory of Environment‐Friendly Energy Materials, School of Materials Science and Engineering Southwest University of Science and Technology Mianyang China
| | - Jia‐Le Li
- State Key Laboratory of Environment‐Friendly Energy Materials, School of Materials Science and Engineering Southwest University of Science and Technology Mianyang China
| | - Rui‐Chao Chen
- State Key Laboratory of Environment‐Friendly Energy Materials, School of Materials Science and Engineering Southwest University of Science and Technology Mianyang China
| | - Wei‐Di Xu
- State Key Laboratory of Environment‐Friendly Energy Materials, School of Materials Science and Engineering Southwest University of Science and Technology Mianyang China
| | - Yin‐Tao Li
- State Key Laboratory of Environment‐Friendly Energy Materials, School of Materials Science and Engineering Southwest University of Science and Technology Mianyang China
| | - Wen‐Bin Yang
- State Key Laboratory of Environment‐Friendly Energy Materials, School of Materials Science and Engineering Southwest University of Science and Technology Mianyang China
| | - Yuan‐Lin Zhou
- State Key Laboratory of Environment‐Friendly Energy Materials, School of Materials Science and Engineering Southwest University of Science and Technology Mianyang China
| |
Collapse
|
13
|
Bhat KG, Guleria VS, Singla M, Bohra V, Kumar J R, Bharadwaj P, Datta R, Hasija PK. Minimizing Scattered Radiation dose in Cardiac Catheterization laboratory during interventional procedures using Lead free Drape – MILD Study. Indian Heart J 2022; 74:201-205. [PMID: 35427629 PMCID: PMC9243615 DOI: 10.1016/j.ihj.2022.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/01/2022] [Accepted: 04/08/2022] [Indexed: 10/26/2022] Open
|
14
|
Kato M, Chida K, Munehisa M, Sato T, Inaba Y, Suzuki M, Zuguchi M. Non-Lead Protective Aprons for the Protection of Interventional Radiology Physicians from Radiation Exposure in Clinical Settings: An Initial Study. Diagnostics (Basel) 2021; 11:1613. [PMID: 34573955 PMCID: PMC8469807 DOI: 10.3390/diagnostics11091613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 01/08/2023] Open
Abstract
Radiation protection/evaluation during interventional radiology (IVR) poses a very important problem. Although IVR physicians should wear protective aprons, the IVR physician may not tolerate wearing one for long procedures because protective aprons are generally heavy. In fact, orthopedic problems are increasingly reported in IVR physicians due to the strain of wearing heavy protective aprons during IVR. In recent years, non-Pb protective aprons (lighter weight, composite materials) have been developed. Although non-Pb protective aprons are more expensive than Pb protective aprons, the former aprons weigh less. However, whether the protective performance of non-Pb aprons is sufficient in the IVR clinical setting is unclear. This study compared the ability of non-Pb and Pb protective aprons (0.25- and 0.35-mm Pb-equivalents) to protect physicians from scatter radiation in a clinical setting (IVR, cardiac catheterizations, including percutaneous coronary intervention) using an electric personal dosimeter (EPD). For radiation measurements, physicians wore EPDs: One inside a personal protective apron at the chest, and one outside a personal protective apron at the chest. Physician comfort levels in each apron during procedures were also evaluated. As a result, performance (both the shielding effect (98.5%) and comfort (good)) of the non-Pb 0.35-mm-Pb-equivalent protective apron was good in the clinical setting. The radiation-shielding effects of the non-Pb 0.35-mm and Pb 0.35-mm-Pb-equivalent protective aprons were very similar. Therefore, non-Pb 0.35-mm Pb-equivalent protective aprons may be more suitable for providing radiation protection for IVR physicians because the shielding effect and comfort are both good in the clinical IVR setting. As non-Pb protective aprons are nontoxic and weigh less than Pb protective aprons, non-Pb protective aprons will be the preferred type for radiation protection of IVR staff, especially physicians.
Collapse
Affiliation(s)
- Mamoru Kato
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan; (M.K.); (Y.I.); (M.S.); (M.Z.)
- Akita Cerebrospinal and Cardiovascular Center (Akita Medical Center), 6–10 Senshu-Kubota Machi, Akita 010-0874, Japan; (M.M.); (T.S.)
| | - Koichi Chida
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan; (M.K.); (Y.I.); (M.S.); (M.Z.)
- Department of Radiation Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, 468-1 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Masato Munehisa
- Akita Cerebrospinal and Cardiovascular Center (Akita Medical Center), 6–10 Senshu-Kubota Machi, Akita 010-0874, Japan; (M.M.); (T.S.)
- Department of Cardiovascular Medicine, Senseki Hospital, 53-7 Akai, Aza Dai, Higashi Matsushima 981-0501, Japan
| | - Tadaya Sato
- Akita Cerebrospinal and Cardiovascular Center (Akita Medical Center), 6–10 Senshu-Kubota Machi, Akita 010-0874, Japan; (M.M.); (T.S.)
- Department of Cardiovascular Medicine, Saka General Hospital, 16-5 Nishiki-machi, Shiogama 985-8506, Japan
| | - Yohei Inaba
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan; (M.K.); (Y.I.); (M.S.); (M.Z.)
- Department of Radiation Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, 468-1 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Masatoshi Suzuki
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan; (M.K.); (Y.I.); (M.S.); (M.Z.)
- Department of Radiation Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, 468-1 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Masayuki Zuguchi
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan; (M.K.); (Y.I.); (M.S.); (M.Z.)
| |
Collapse
|
15
|
Li J, Zhang Q, Liu X, Chen R, Xu W, Sun N, Li Y, Yang W, Xu D, Zhou Y. High loading boron nitride chemically bonded with silicone rubber to enhance thermal neutron shielding and flexibility of polymer nanocomposites. J Appl Polym Sci 2021. [DOI: 10.1002/app.50774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jia‐Le Li
- State Key Laboratory of Environment‐friendly Energy Materials Southwest University of Science and Technology Mianyang China
| | - Quan‐Ping Zhang
- State Key Laboratory of Environment‐friendly Energy Materials Southwest University of Science and Technology Mianyang China
| | - Xue Liu
- State Key Laboratory of Environment‐friendly Energy Materials Southwest University of Science and Technology Mianyang China
| | - Rui‐Chao Chen
- State Key Laboratory of Environment‐friendly Energy Materials Southwest University of Science and Technology Mianyang China
| | - Wei‐Di Xu
- State Key Laboratory of Environment‐friendly Energy Materials Southwest University of Science and Technology Mianyang China
| | - Nan Sun
- State Key Laboratory of Environment‐friendly Energy Materials Southwest University of Science and Technology Mianyang China
- Institute of Materials China Academy of Engineering Physics Jiangyou China
| | - Yin‐Tao Li
- State Key Laboratory of Environment‐friendly Energy Materials Southwest University of Science and Technology Mianyang China
| | - Wen‐Bin Yang
- State Key Laboratory of Environment‐friendly Energy Materials Southwest University of Science and Technology Mianyang China
| | - Dui‐Gong Xu
- Institute of Materials China Academy of Engineering Physics Jiangyou China
| | - Yuan‐Lin Zhou
- State Key Laboratory of Environment‐friendly Energy Materials Southwest University of Science and Technology Mianyang China
| |
Collapse
|
16
|
Endo M, Haga Y, Sota M, Tanaka A, Otomo K, Murabayashi Y, Abe M, Kaga Y, Inaba Y, Suzuki M, Meguro T, Chida K. Evaluation of novel X-ray protective eyewear in reducing the eye dose to interventional radiology physicians. JOURNAL OF RADIATION RESEARCH 2021; 62:414-419. [PMID: 33839782 PMCID: PMC8127654 DOI: 10.1093/jrr/rrab014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/17/2020] [Indexed: 05/28/2023]
Abstract
The new recommendation of the International Commission on Radiological Protection for occupational eye dose is an equivalent dose limit to the eye of 20 mSv year-1, averaged over a 5-year period. This recommendation is a drastic reduction from the previous limit of 150 mSv year-1. Hence, it is important to protect physicians' eyes from X-ray radiation. Particularly in interventional radiology (IVR) procedures, many physicians use protective lead (Pb) glasses to reduce their occupational exposure. This study assessed the shielding effects of novel 0.07 mm Pb glasses. The novel glasses (XR-700) have Pb-acrylic lens molded in three dimensions. We studied the novel type of 0.07 mm Pb glasses over a period of seven consecutive months. The eye dose occupational radiation exposure of seven IVR physicians was evaluated during various procedures. All IVR physicians wore eye dosimeters (DOSIRIS™) close to the left side of the left eye. To calculate the shielding effects of the glasses, this same type of eye dosimeter was worn both inside and outside of the Pb lenses. The average shielding effect of the novel glasses across the seven physicians was 61.4%. Our results suggest an improved shielding effect for IVR physicians that use these glasses. No physician complained that the new glasses were uncomfortable; therefore comfort is not a problem. The lightweight glasses were acceptable to IVR physicians, who often must perform long procedures. Thus, the novel glasses are comfortable and reasonably protective. Based on the results of this study, we recommend that IVR physicians use these novel 0.07 mm Pb glasses to reduce their exposure.
Collapse
Affiliation(s)
- Mime Endo
- Department of Radiological Technology, Tohoku University Graduate
School of Medicine , 2-1 Seiryo, Aoba, Sendai 980-8575, Japan
| | - Yoshihiro Haga
- Department of Radiological Technology, Tohoku University Graduate
School of Medicine , 2-1 Seiryo, Aoba, Sendai 980-8575, Japan
- Department of Radiology, Sendai Kousei Hospital ,
Hirosemachi 4-15, Aobaku, Sendai 980-0873, Japan
| | - Masahiro Sota
- Department of Radiological Technology, Tohoku University Graduate
School of Medicine , 2-1 Seiryo, Aoba, Sendai 980-8575, Japan
- Department of Radiology, Sendai Kousei Hospital ,
Hirosemachi 4-15, Aobaku, Sendai 980-0873, Japan
| | - Akiko Tanaka
- Department of Cardiovascular Medicine, Sendai Kousei
Hospital , Hirosemachi 4-15, Aobaku, Sendai 980-0873, Japan
| | - Kazuki Otomo
- Department of Radiological Technology, Tohoku University Graduate
School of Medicine , 2-1 Seiryo, Aoba, Sendai 980-8575, Japan
| | - Yuuki Murabayashi
- Division of Disaster Medicine, International Research Institute of
Disaster Science, Tohoku University , 6-6-4 Aoba, Sendai 980-8579,
Japan
| | - Mitsuya Abe
- Department of Radiology, Sendai Kousei Hospital ,
Hirosemachi 4-15, Aobaku, Sendai 980-0873, Japan
| | - Yuji Kaga
- Department of Radiology, Sendai Kousei Hospital ,
Hirosemachi 4-15, Aobaku, Sendai 980-0873, Japan
| | - Yohei Inaba
- Department of Radiological Technology, Tohoku University Graduate
School of Medicine , 2-1 Seiryo, Aoba, Sendai 980-8575, Japan
- Division of Disaster Medicine, International Research Institute of
Disaster Science, Tohoku University , 6-6-4 Aoba, Sendai 980-8579,
Japan
| | - Msatoshi Suzuki
- Department of Radiological Technology, Tohoku University Graduate
School of Medicine , 2-1 Seiryo, Aoba, Sendai 980-8575, Japan
- Division of Disaster Medicine, International Research Institute of
Disaster Science, Tohoku University , 6-6-4 Aoba, Sendai 980-8579,
Japan
| | - Taiichiro Meguro
- Department of Cardiovascular Medicine, Sendai Kousei
Hospital , Hirosemachi 4-15, Aobaku, Sendai 980-0873, Japan
| | - Koichi Chida
- Department of Radiological Technology, Tohoku University Graduate
School of Medicine , 2-1 Seiryo, Aoba, Sendai 980-8575, Japan
- Division of Disaster Medicine, International Research Institute of
Disaster Science, Tohoku University , 6-6-4 Aoba, Sendai 980-8579,
Japan
| |
Collapse
|