1
|
Namireddy SR, Gill SS, Peerbhai A, Kamath AG, Ramsay DSC, Ponniah HS, Salih A, Jankovic D, Kalasauskas D, Neuhoff J, Kramer A, Russo S, Thavarajasingam SG. Artificial intelligence in risk prediction and diagnosis of vertebral fractures. Sci Rep 2024; 14:30560. [PMID: 39702597 DOI: 10.1038/s41598-024-75628-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/07/2024] [Indexed: 12/21/2024] Open
Abstract
With the increasing prevalence of vertebral fractures, accurate diagnosis and prognostication are essential. This study assesses the effectiveness of AI in diagnosing and predicting vertebral fractures through a systematic review and meta-analysis. A comprehensive search across major databases selected studies utilizing AI for vertebral fracture diagnosis or prognosis. Out of 14,161 studies initially identified, 79 were included, with 40 undergoing meta-analysis. Diagnostic models were stratified by pathology: non-pathological vertebral fractures, osteoporotic vertebral fractures, and vertebral compression fractures. The primary outcome measure was AUROC. AI showed high accuracy in diagnosing and predicting vertebral fractures: predictive AUROC = 0.82, osteoporotic vertebral fracture diagnosis AUROC = 0.92, non-pathological vertebral fracture diagnosis AUROC = 0.85, and vertebral compression fracture diagnosis AUROC = 0.87, all significant (p < 0.001). Traditional models had the highest median AUROC (0.90) for fracture prediction, while deep learning models excelled in diagnosing all fracture types. High heterogeneity (I² > 99%, p < 0.001) indicated significant variation in model design and performance. AI technologies show considerable promise in improving the diagnosis and prognostication of vertebral fractures, with high accuracy. However, observed heterogeneity and study biases necessitate further research. Future efforts should focus on standardizing AI models and validating them across diverse datasets to ensure clinical utility.
Collapse
Affiliation(s)
- Srikar R Namireddy
- Imperial Brain & Spine Initiative, Imperial College London, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| | - Saran S Gill
- Imperial Brain & Spine Initiative, Imperial College London, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| | - Amaan Peerbhai
- Imperial Brain & Spine Initiative, Imperial College London, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| | - Abith G Kamath
- Imperial Brain & Spine Initiative, Imperial College London, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| | - Daniele S C Ramsay
- Imperial Brain & Spine Initiative, Imperial College London, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| | - Hariharan Subbiah Ponniah
- Imperial Brain & Spine Initiative, Imperial College London, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| | - Ahmed Salih
- Imperial Brain & Spine Initiative, Imperial College London, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| | - Dragan Jankovic
- Department of Neurosurgery, University Medical Center Mainz, Langenbeckstraße 1, Mainz, Germany
| | - Darius Kalasauskas
- Department of Neurosurgery, University Medical Center Mainz, Langenbeckstraße 1, Mainz, Germany
| | - Jonathan Neuhoff
- Center for Spinal Surgery and Neurotraumatology, Berufsgenossenschaftliche Unfallklinik Frankfurt am Main, Frankfurt, Germany
| | - Andreas Kramer
- Department of Neurosurgery, University Medical Center Mainz, Langenbeckstraße 1, Mainz, Germany
| | - Salvatore Russo
- Department of Neurosurgery, Imperial College Healthcare NHS Trust, London, UK
| | - Santhosh G Thavarajasingam
- Imperial Brain & Spine Initiative, Imperial College London, London, UK.
- Department of Neurosurgery, University Medical Center Mainz, Langenbeckstraße 1, Mainz, Germany.
| |
Collapse
|
2
|
Li Y, Liang Z, Li Y, Cao Y, Zhang H, Dong B. Machine learning value in the diagnosis of vertebral fractures: A systematic review and meta-analysis. Eur J Radiol 2024; 181:111714. [PMID: 39241305 DOI: 10.1016/j.ejrad.2024.111714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/28/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
PURPOSE To evaluate the diagnostic accuracy of machine learning (ML) in detecting vertebral fractures, considering varying fracture classifications, patient populations, and imaging approaches. METHOD A systematic review and meta-analysis were conducted by searching PubMed, Embase, Cochrane Library, and Web of Science up to December 31, 2023, for studies using ML for vertebral fracture diagnosis. Bias risk was assessed using QUADAS-2. A bivariate mixed-effects model was used for the meta-analysis. Meta-analyses were performed according to five task types (vertebral fractures, osteoporotic vertebral fractures, differentiation of benign and malignant vertebral fractures, differentiation of acute and chronic vertebral fractures, and prediction of vertebral fractures). Subgroup analyses were conducted by different ML models (including ML and DL) and modeling methods (including CT, X-ray, MRI, and clinical features). RESULTS Eighty-one studies were included. ML demonstrated a diagnostic sensitivity of 0.91 and specificity of 0.95 for vertebral fractures. Subgroup analysis showed that DL (SROC 0.98) and CT (SROC 0.98) performed best overall. For osteoporotic fractures, ML showed a sensitivity of 0.93 and specificity of 0.96, with DL (SROC 0.99) and X-ray (SROC 0.99) performing better. For differentiating benign from malignant fractures, ML achieved a sensitivity of 0.92 and specificity of 0.93, with DL (SROC 0.96) and MRI (SROC 0.97) performing best. For differentiating acute from chronic vertebral fractures, ML showed a sensitivity of 0.92 and specificity of 0.93, with ML (SROC 0.96) and CT (SROC 0.97) performing best. For predicting vertebral fractures, ML had a sensitivity of 0.76 and specificity of 0.87, with ML (SROC 0.80) and clinical features (SROC 0.86) performing better. CONCLUSIONS ML, especially DL models applied to CT, MRI, and X-ray, shows high diagnostic accuracy for vertebral fractures. ML also effectively predicts osteoporotic vertebral fractures, aiding in tailored prevention strategies. Further research and validation are required to confirm ML's clinical efficacy.
Collapse
Affiliation(s)
- Yue Li
- Pain Ward of Rehabilitation Department, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, PR China
| | - Zhuang Liang
- Pain Ward of Rehabilitation Department, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, PR China
| | - Yingchun Li
- Pain Ward of Rehabilitation Department, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, PR China
| | - Yang Cao
- Pain Ward of Rehabilitation Department, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, PR China
| | - Hui Zhang
- Pain Ward of Rehabilitation Department, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, PR China
| | - Bo Dong
- Pain Ward of Rehabilitation Department, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, PR China.
| |
Collapse
|
3
|
Wang H, Ying J, Liu J, Yu T, Huang D. Leveraging 3D Convolutional Neural Networks for Accurate Recognition and Localization of Ankle Fractures. Ther Clin Risk Manag 2024; 20:761-773. [PMID: 39584042 PMCID: PMC11585985 DOI: 10.2147/tcrm.s483907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024] Open
Abstract
Background Ankle fractures are common injuries with substantial implications for patient mobility and quality of life. Traditional imaging methods, while standard, have limitations in detecting subtle fractures and distinguishing them from complex bone structures. The advent of 3D Convolutional Neural Networks (3D-CNNs) offers a promising avenue for enhancing the accuracy and reliability of ankle fracture diagnoses. Methods In this study, we acquired 1453 high-resolution CT scans and processed them through three distinct 3D-CNN models: 3D-Mobilenet, 3D-Resnet101, and 3D-EfficientNetB7. Our approach involved meticulous preprocessing of images, including normalization and resampling, followed by a systematic comparative evaluation of the models based on accuracy, Area Under the Curve (AUC), and recall metrics. Additionally, the integration of Gradient-weighted Class Activation Mapping (Grad-CAM) provided visual interpretability of the models' predictive focus points. Results The 3D-EfficientNetB7 model outperformed the other models, achieving an accuracy of 0.91 and an AUC of 0.94 after 20 training epochs. It demonstrated particularly effective in the accurate detection and localization of subtle and complex fractures. Grad-CAM visualizations confirmed the model's focus on clinically relevant areas, aligning with expert assessments and enhancing trust in automated diagnostics. Spatial localization techniques were pivotal in improving interpretability, offering clear visual guidance for pinpointing fracture sites. Conclusion Our findings highlight the effectiveness of the 3D-EfficientNetB7 model in diagnosing ankle fractures, supported by robust performance metrics and enhanced visualization tools.
Collapse
Affiliation(s)
- Hua Wang
- Department of Medical Imaging, Ningbo No.6 hospital, Ningbo, People’s Republic of China
| | - Jichong Ying
- Department of Orthopedics, Ningbo No.6 hospital, Ningbo, People’s Republic of China
| | - Jianlei Liu
- Department of Orthopedics, Ningbo No.6 hospital, Ningbo, People’s Republic of China
| | - Tianming Yu
- Department of Orthopedics, Ningbo No.6 hospital, Ningbo, People’s Republic of China
| | - Dichao Huang
- Department of Orthopedics, Ningbo No.6 hospital, Ningbo, People’s Republic of China
| |
Collapse
|
4
|
Li G, Liu H, Pan Z, Cheng L, Dai J. Predicting craniofacial fibrous dysplasia growth status: an exploratory study of a hybrid radiomics and deep learning model based on computed tomography images. Oral Surg Oral Med Oral Pathol Oral Radiol 2024:S2212-4403(24)00794-6. [PMID: 39725588 DOI: 10.1016/j.oooo.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/11/2024] [Accepted: 11/02/2024] [Indexed: 12/28/2024]
Abstract
OBJECTIVE This study aimed to develop 3 models based on computed tomography (CT) images of patients with craniofacial fibrous dysplasia (CFD): a radiomics model (Model Rad), a deep learning (DL) model (Model DL), and a hybrid radiomics and DL model (Model Rad+DL), and evaluate the ability of these models to distinguish between adolescents with active lesion progression and adults with stable lesion progression. METHODS We retrospectively analyzed preoperative CT scans from 148 CFD patients treated at Shanghai Ninth People's Hospital. The images were processed using 3D-Slicer software to segment and extract regions of interest for radiomics and DL analysis. Feature selection was performed using t-tests, mutual information, correlation tests, and the least absolute shrinkage and selection operator algorithm to develop the 3 models. Model accuracy was evaluated using measurements including the area under the curve (AUC) derived from receiver operating characteristic analysis, sensitivity, specificity, and F1 score. Decision curve analysis (DCA) was conducted to evaluate clinical benefits. RESULTS In total, 1,130 radiomics features and 512 DL features were successfully extracted. Model Rad+DL demonstrated superior AUC values compared to Model Rad and Model DL in the training and validation sets. DCA revealed that Model Rad+DL offered excellent clinical benefits when the threshold probability exceeded 20%. CONCLUSIONS Model Rad+DL exhibits superior potential in evaluating CFD progression, determining the optimal surgical timing for adult CFD patients.
Collapse
Affiliation(s)
- Guozhi Li
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Hao Liu
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhiyuan Pan
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Li Cheng
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jiewen Dai
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China.
| |
Collapse
|
5
|
Wan Y, Miao L, Zhang H, Wang Y, Li X, Li M, Zhang L. Machine learning models based on CT radiomics features for distinguishing benign and malignant vertebral compression fractures in patients with malignant tumors. Acta Radiol 2024; 65:1359-1367. [PMID: 39351680 DOI: 10.1177/02841851241279896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
BACKGROUND Radiomics has become an important tool for distinguishing benign and malignant vertebral compression fractures (VCFs). It is more clinically significant to concentrate on patients who have malignant tumors and differentiate between benign and malignant VCFs. PURPOSE To explore the value of multiple machine learning (ML) models based on CT radiomics features for differentiating benign and malignant VCFs in patients with malignant tumors. MATERIAL AND METHODS This study retrospectively analyzed 78 patients with malignant tumors accompanied by VCFs, 45 patients with benign VCFs, and 33 patients with malignant VCFs. A total of 140 lesions (86 benign lesions, 54 malignant lesions) were ultimately included in this study. All patients were divided into training sets (n = 98) and validation sets (n = 42) according to the 7:3 ratio. The radiomics features were screened and dimensioned, and multiple radiomics ML models were constructed. The receiver operating characteristic (ROC) curve was performed to assess the diagnostic performance. RESULTS Five radiomics features were included in the model. All the ML models built have good diagnostic efficiency, among which the support vector machine (SVM) model performs better. The area under the curve (AUC), sensitivity, specificity, and accuracy in the training set were 0.908, 0.816, 0.883, and 0.857, respectively, while those in the validation set were 0.911, 0.647, 0.92, and 0.81, respectively. CONCLUSION A variety of ML models built based on CT radiomics features have good value for differentiating benign and malignant VCFs in malignant tumor patients, and the SVM model has a better performance.
Collapse
Affiliation(s)
- Yuan Wan
- Department of Radiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Lei Miao
- Departments of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - HuanHuan Zhang
- Departments of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - YanMei Wang
- From GE Healthcare China, Shanghai, PR China
| | - Xiao Li
- Departments of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Meng Li
- Departments of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Li Zhang
- Departments of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| |
Collapse
|
6
|
Zheng J, Liu W, Chen J, Sun Y, Chen C, Li J, Yi C, Zeng G, Chen Y, Song W. Differential diagnostic value of radiomics models in benign versus malignant vertebral compression fractures: A systematic review and meta-analysis. Eur J Radiol 2024; 178:111621. [PMID: 39018646 DOI: 10.1016/j.ejrad.2024.111621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/29/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
PURPOSE Early diagnosis of benign and malignant vertebral compression fractures by analyzing imaging data is crucial to guide treatment and assess prognosis, and the development of radiomics made it an alternative option to biopsy examination. This systematic review and meta-analysis was conducted with the purpose of quantifying the diagnostic efficacy of radiomics models in distinguishing between benign and malignant vertebral compression fractures. METHODS Searching on PubMed, Embase, Web of Science and Cochrane Library was conducted to identify eligible studies published before September 23, 2023. After evaluating for methodological quality and risk of bias using the Radiomics Quality Score (RQS) and the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2), we selected studies providing confusion matrix results to be included in random-effects meta-analysis. RESULTS A total of sixteen articles, involving 1,519 vertebrae with pathological-diagnosed tumor infiltration, were included in our meta-analysis. The combined sensitivity and specificity of the top-performing models were 0.92 (95 % CI: 0.87-0.96) and 0.93 (95 % CI: 0.88-0.96), respectively. Their AUC was 0.97 (95 % CI: 0.96-0.99). By contrast, radiologists' combined sensitivity was 0.90 (95 %CI: 0.75-0.97) and specificity was 0.92 (95 %CI: 0.67-0.98). The AUC was 0.96 (95 %CI: 0.94-0.97). Subsequent subgroup analysis and sensitivity test suggested that part of the heterogeneity might be explained by differences in imaging modality, segmentation, deep learning and cross-validation. CONCLUSION We found remarkable diagnosis potential in correctly distinguishing vertebral compression fractures in complex clinical contexts. However, the published radiomics models still have a great heterogeneity, and more large-scale clinical trials are essential to validate their generalizability.
Collapse
Affiliation(s)
- Jiayuan Zheng
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Wenzhou Liu
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Jianan Chen
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Yujun Sun
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Chen Chen
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Jiajie Li
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Chunyan Yi
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Gang Zeng
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Yanbo Chen
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Weidong Song
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
7
|
Ong W, Lee A, Tan WC, Fong KTD, Lai DD, Tan YL, Low XZ, Ge S, Makmur A, Ong SJ, Ting YH, Tan JH, Kumar N, Hallinan JTPD. Oncologic Applications of Artificial Intelligence and Deep Learning Methods in CT Spine Imaging-A Systematic Review. Cancers (Basel) 2024; 16:2988. [PMID: 39272846 PMCID: PMC11394591 DOI: 10.3390/cancers16172988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
In spinal oncology, integrating deep learning with computed tomography (CT) imaging has shown promise in enhancing diagnostic accuracy, treatment planning, and patient outcomes. This systematic review synthesizes evidence on artificial intelligence (AI) applications in CT imaging for spinal tumors. A PRISMA-guided search identified 33 studies: 12 (36.4%) focused on detecting spinal malignancies, 11 (33.3%) on classification, 6 (18.2%) on prognostication, 3 (9.1%) on treatment planning, and 1 (3.0%) on both detection and classification. Of the classification studies, 7 (21.2%) used machine learning to distinguish between benign and malignant lesions, 3 (9.1%) evaluated tumor stage or grade, and 2 (6.1%) employed radiomics for biomarker classification. Prognostic studies included three (9.1%) that predicted complications such as pathological fractures and three (9.1%) that predicted treatment outcomes. AI's potential for improving workflow efficiency, aiding decision-making, and reducing complications is discussed, along with its limitations in generalizability, interpretability, and clinical integration. Future directions for AI in spinal oncology are also explored. In conclusion, while AI technologies in CT imaging are promising, further research is necessary to validate their clinical effectiveness and optimize their integration into routine practice.
Collapse
Affiliation(s)
- Wilson Ong
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Aric Lee
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Wei Chuan Tan
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Kuan Ting Dominic Fong
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Daoyong David Lai
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Yi Liang Tan
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Xi Zhen Low
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Shuliang Ge
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Andrew Makmur
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Shao Jin Ong
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Yong Han Ting
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Jiong Hao Tan
- National University Spine Institute, Department of Orthopaedic Surgery, National University Health System, 1E, Lower Kent Ridge Road, Singapore 119228, Singapore
| | - Naresh Kumar
- National University Spine Institute, Department of Orthopaedic Surgery, National University Health System, 1E, Lower Kent Ridge Road, Singapore 119228, Singapore
| | - James Thomas Patrick Decourcy Hallinan
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| |
Collapse
|
8
|
Yu T, Yu R, Liu M, Wang X, Zhang J, Zheng Y, Lv F. Integrating intratumoral and peritumoral radiomics with deep transfer learning for DCE-MRI breast lesion differentiation: A multicenter study comparing performance with radiologists. Eur J Radiol 2024; 177:111556. [PMID: 38875748 DOI: 10.1016/j.ejrad.2024.111556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
PURPOSE To conduct the fusion of radiomics and deep transfer learning features from the intratumoral and peritumoral areas in breast DCE-MRI images to differentiate between benign and malignant breast tumors, and to compare the diagnostic accuracy of this fusion model against the assessments made by experienced radiologists. MATERIALS AND METHODS This multi-center study conducted a retrospective analysis of DCE-MRI images from 330 women diagnosed with breast cancer, with 138 cases categorized as benign and 192 as malignant. The training and internal testing sets comprised 270 patients from center 1, while the external testing cohort consisted of 60 patients from center 2. A fusion feature set consisting of radiomics features and deep transfer learning features was constructed from both intratumoral (ITR) and peritumoral (PTR) areas. The Least absolute shrinkage and selection operator (LASSO) based support vector machine was chosen as the classifier by comparing its performance with five other machine learning models. The diagnostic performance and clinical usefulness of fusion model were verified and assessed through the area under the receiver operating characteristics (ROC) and decision curve analysis. Additionally, the performance of the fusion model was compared with the diagnostic assessments of two experienced radiologists to evaluate its relative accuracy. The study strictly adhered to CLEAR and METRICS guidelines for standardization to ensure rigorous and reproducible methods. RESULTS The findings show that the fusion model, utilizing radiomics and deep transfer learning features from the ITR and PTR, exhibited exceptional performance in classifying breast tumors, achieving AUCs of 0.950 in the internal testing set and 0.921 in the external testing set. This performance significantly surpasses that of models relying on singular regional radiomics or deep transfer learning features alone. Moreover, the fusion model demonstrated superior diagnostic accuracy compared to the evaluations conducted by two experienced radiologists, thereby highlighting its potential to support and enhance clinical decision-making in the differentiation of benign and malignant breast tumors. CONCLUSION The fusion model, combining multi-regional radiomics with deep transfer learning features, not only accurately differentiates between benign and malignant breast tumors but also outperforms the diagnostic assessments made by experienced radiologists. This underscores the model's potential as a valuable tool for improving the accuracy and reliability of breast tumor diagnosis.
Collapse
Affiliation(s)
- Tao Yu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Renqiang Yu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Mengqi Liu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xingyu Wang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jichuan Zhang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Yineng Zheng
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China; Medical Data Science Academy, Chongqing Medical University, Chongqing 400016, China.
| | - Fajin Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China; Medical Data Science Academy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
9
|
Booz C, D'Angelo T. Improved Vertebral Fracture Assessment: The Game-Changing Potential of Deep Learning with Multidetector CT. Radiology 2024; 310:e240409. [PMID: 38530170 DOI: 10.1148/radiol.240409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Affiliation(s)
- Christian Booz
- From the Department of Diagnostic and Interventional Radiology, Division of Experimental Imaging, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany (C.B., T.D.); Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany (C.B.); Department of Dental and Morphological and Functional Imaging, Diagnostic and Interventional Radiology Unit, University Hospital Messina, Messina, Italy (T.D.); and Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands (T.D.)
| | - Tommaso D'Angelo
- From the Department of Diagnostic and Interventional Radiology, Division of Experimental Imaging, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany (C.B., T.D.); Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany (C.B.); Department of Dental and Morphological and Functional Imaging, Diagnostic and Interventional Radiology Unit, University Hospital Messina, Messina, Italy (T.D.); and Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands (T.D.)
| |
Collapse
|
10
|
Tong X, Wang S, Zhang J, Fan Y, Liu Y, Wei W. Automatic Osteoporosis Screening System Using Radiomics and Deep Learning from Low-Dose Chest CT Images. Bioengineering (Basel) 2024; 11:50. [PMID: 38247927 PMCID: PMC10813496 DOI: 10.3390/bioengineering11010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
OBJECTIVE Develop two fully automatic osteoporosis screening systems using deep learning (DL) and radiomics (Rad) techniques based on low-dose chest CT (LDCT) images and evaluate their diagnostic effectiveness. METHODS In total, 434 patients who underwent LDCT and bone mineral density (BMD) examination were retrospectively enrolled and divided into the development set (n = 333) and temporal validation set (n = 101). An automatic thoracic vertebra cancellous bone (TVCB) segmentation model was developed. The Dice similarity coefficient (DSC) was used to evaluate the segmentation performance. Furthermore, the three-class Rad and DL models were developed to distinguish osteoporosis, osteopenia, and normal bone mass. The diagnostic performance of these models was evaluated using the receiver operating characteristic (ROC) curve and decision curve analysis (DCA). RESULTS The automatic segmentation model achieved excellent segmentation performance, with a mean DSC of 0.96 ± 0.02 in the temporal validation set. The Rad model was used to identify osteoporosis, osteopenia, and normal BMD in the temporal validation set, with respective area under the receiver operating characteristic curve (AUC) values of 0.943, 0.801, and 0.932. The DL model achieved higher AUC values of 0.983, 0.906, and 0.969 for the same categories in the same validation set. The Delong test affirmed that both models performed similarly in BMD assessment. However, the accuracy of the DL model is 81.2%, which is better than the 73.3% accuracy of the Rad model in the temporal validation set. Additionally, DCA indicated that the DL model provided a greater net benefit compared to the Rad model across the majority of the reasonable threshold probabilities Conclusions: The automated segmentation framework we developed can accurately segment cancellous bone on low-dose chest CT images. These predictive models, which are based on deep learning and radiomics, provided comparable diagnostic performance in automatic BMD assessment. Nevertheless, it is important to highlight that the DL model demonstrates higher accuracy and precision than the Rad model.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Wei
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian 116014, China (S.W.); (Y.F.)
| |
Collapse
|
11
|
Wang X, Zhou D, Kong Y, Cheng N, Gao M, Zhang G, Ma J, Chen Y, Ge S. Value of 18F-FDG-PET/CT radiomics combined with clinical variables in the differential diagnosis of malignant and benign vertebral compression fractures. EJNMMI Res 2023; 13:89. [PMID: 37819414 PMCID: PMC10567613 DOI: 10.1186/s13550-023-01038-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Vertebral compression fractures (VCFs) are common clinical problems that arise from various reasons. The differential diagnosis of benign and malignant VCFs is challenging. This study was designed to develop and validate a radiomics model to predict benign and malignant VCFs with 18F-fluorodeoxyglucose-positron emission tomography/computed tomography (18F-FDG-PET/CT). RESULTS Twenty-six features (9 PET features and 17 CT features) and eight clinical variables (age, SUVmax, SUVpeak, SULmax, SULpeak, osteolytic destruction, fracture line, and appendices/posterior vertebrae involvement) were ultimately selected. The area under the curve (AUCs) of the radiomics and clinical-radiomics models were significantly different from that of the clinical model in both the training group (0.986, 0.987 vs. 0.884, p < 0.05) and test group (0.962, 0.948 vs. 0.858, p < 0.05), while there was no significant difference between the radiomics model and clinical-radiomics model (p > 0.05). The accuracies of the radiomics and clinical-radiomics models were 94.0% and 95.0% in the training group and 93.2% and 93.2% in the test group, respectively. The three models all showed good calibration (Hosmer-Lemeshow test, p > 0.05). According to the decision curve analysis (DCA), the radiomics model and clinical-radiomics model exhibited higher overall net benefit than the clinical model. CONCLUSIONS The PET/CT-based radiomics and clinical-radiomics models showed good performance in distinguishing between malignant and benign VCFs. The radiomics method may be valuable for treatment decision-making.
Collapse
Affiliation(s)
- Xun Wang
- Department of Medical Imaging, Affiliated Hospital of Jining Medical University, Guhuai Road, Jining, Shandong, China
| | - Dandan Zhou
- Big Data and Artificial Intelligence, Jining Polytechnic, Jinyu Road, Jining, Shandong, China
| | - Yu Kong
- Department of Medical Imaging, Affiliated Hospital of Jining Medical University, Guhuai Road, Jining, Shandong, China
| | - Nan Cheng
- Department of Medical Imaging, Affiliated Hospital of Jining Medical University, Guhuai Road, Jining, Shandong, China
| | - Ming Gao
- Department of Medical Imaging, Affiliated Hospital of Jining Medical University, Guhuai Road, Jining, Shandong, China
| | - Guqing Zhang
- Department of Medical Imaging, Affiliated Hospital of Jining Medical University, Guhuai Road, Jining, Shandong, China
| | - Junli Ma
- Department of Radiation Oncology, Affiliated Hospital of Jining Medical University, Guhuai Road, Jining, Shandong, China
| | - Yueqin Chen
- Department of Medical Imaging, Affiliated Hospital of Jining Medical University, Guhuai Road, Jining, Shandong, China.
| | - Shuang Ge
- Department of Radiation Oncology, Affiliated Hospital of Jining Medical University, Guhuai Road, Jining, Shandong, China.
| |
Collapse
|