1
|
Murugesan P, Begum H, Tangutur AD. Inhibitor of DNA binding/differentiation proteins as IDs for pancreatic cancer: Role in pancreatic cancer initiation, development and prognosis. Gene 2023; 853:147092. [PMID: 36464175 DOI: 10.1016/j.gene.2022.147092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
A family of inhibitors of cell differentiation or DNA-binding proteins, known as ID proteins (ID1-4), function as mighty transcription factors in various cellular processes, such as inhibiting differentiation, promoting cell-cycle progression, senescence, angiogenesis, tumorigenesis, and metastasis in cancer. Pancreatic cancer represents the deadliest cancer with the lowest survival rate of 10% due to the diagnosis at an advanced fatal stage and therapeutic resistance. Modestly, the only curative option for this lethal cancer is surgery but is done in less than 15-20% of patients because of the locally aggressive and early metastatic nature. Finding the earliest biomarkers and targeting the various hallmarks of pancreatic cancer can improve the treatment and survival of pancreatic cancer patients. Therefore, herein in this review, we explore in depth the potential roles of ID proteins function in hallmarks of pancreatic cancer, signaling pathways, and its oncogenic and tumor-suppressive effects. Hence, understanding the roles of dysregulated ID proteins would provide new insights into its function in pancreatic cancer tumorigenesis.
Collapse
Affiliation(s)
- Periyasamy Murugesan
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Habeebunnisa Begum
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Anjana Devi Tangutur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
2
|
Ndemazie NB, Inkoom A, Ebesoh D, Bulusu R, Frimpong E, Trevino J, Han B, Zhu X, Agyare E. Synthesis, characterization, and anticancer evaluation of 1,3-bistetrahydrofuran-2yl-5-FU as a potential agent for pancreatic cancer. BMC Cancer 2022; 22:1345. [PMID: 36550419 PMCID: PMC9773620 DOI: 10.1186/s12885-022-10449-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The failure of current chemotherapeutic agents for pancreatic cancer (PCa) makes it the most aggressive soft tissue tumor with a 5-year survival of slightly above 10% and is estimated to be the second leading cause of cancer death by 2030. OBJECTIVE The main aim was to synthesize, characterize and evaluate the anticancer activity of 1,3-bistetrahydrofuran-2yl-5FU (MFU). METHODS MFU was synthesized by using 5-fluorouracil (5-FU) and tetrahydrofuran acetate, and characterized by nuclear magnetic resonance (NMR), micro-elemental analysis, high-performance liquid chromatography (HPLC), and liquid chromatography with mass spectrophotometry (LC-MS). MFU and Gemcitabine hydrochloride (GemHCl) were tested for antiproliferative activity against MiaPaca-2 and Panc-1 cell lines. RESULTS The half-minimum inhibitory concentration (IC50) of MFU was twice lower than that of GemHCl when used in both cell lines. MiaPaca-2 cells (MFU-IC50 = 4.5 ± 1.2 μM vs. GemHCl-IC50 = 10.3 ± 1.1 μM); meanwhile similar trend was observed in Panc-1 cells (MFU-IC50 = 3.0 ± 1 μM vs. GemHCl-IC50 = 6.1 ± 1.03 μM). The MFU and GemHCl effects on 3D spheroids showed a similar trend (IC50-GemHCl = 14.3 ± 1.1 μM vs. IC50-MFU = 7.2 ± 1.1 μM) for MiaPaca-2 cells, and (IC50-GemHCl = 16.3 ± 1.1 μM vs. IC50-MFU = 9.2 ± 1.1 μM) for Panc-1 cells. MFU significantly inhibited clonogenic cell growth, and induced cell death via apoptosis. Cell cycle data showed mean PI for GemHCl (48.5-55.7) twice higher than MFU (24.7 to 27.9) for MiaPaca-2 cells, and similarly to Panc-1 cells. The in-vivo model showed intensely stained EGFR (stained brown) in all control, GemHCl and MFU-treated mice bearing subcutaneous PDX tumors, however, HER2 expression was less stained in MFU-treated tumors compared to GemHCl-treated tumors and controls. Mean tumor volume of MFU-treated mice (361 ± 33.5 mm3) was three-fold lower than GemHCl-treated mice (1074 ± 181.2 mm3) bearing pancreatic PDX tumors. CONCLUSION MFU was synthesized with high purity and may have potential anticancer activity against PCa.
Collapse
Affiliation(s)
- Nkafu Bechem Ndemazie
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, 1415 South Martin Luther King Jr Blvd, Tallahassee, FL, 32307, USA
| | - Andriana Inkoom
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, 1415 South Martin Luther King Jr Blvd, Tallahassee, FL, 32307, USA
| | - Dexter Ebesoh
- Faculty of Health Sciences, University of Buea, Buea, Cameroon
| | - Raviteja Bulusu
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, 1415 South Martin Luther King Jr Blvd, Tallahassee, FL, 32307, USA
| | - Esther Frimpong
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, 1415 South Martin Luther King Jr Blvd, Tallahassee, FL, 32307, USA
| | - Jose Trevino
- Department of Surgery, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Bo Han
- Department of Surgery, Keck School of Medicine University of South California, Los Angeles, CA, 90033, USA
| | - Xue Zhu
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, 1415 South Martin Luther King Jr Blvd, Tallahassee, FL, 32307, USA.
| | - Edward Agyare
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, 1415 South Martin Luther King Jr Blvd, Tallahassee, FL, 32307, USA.
| |
Collapse
|
3
|
Wang Y, Yang X, Li Q, Zhang Y, Chen L, Hong L, Xie Z, Yang S, Deng X, Cao M, Yi G, Fu M. Single-cell RNA sequencing reveals the Müller subtypes and inner blood-retinal barrier regulatory network in early diabetic retinopathy. Front Mol Neurosci 2022; 15:1048634. [PMID: 36533134 PMCID: PMC9754943 DOI: 10.3389/fnmol.2022.1048634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/10/2022] [Indexed: 11/30/2023] Open
Abstract
As the basic pathological changes of diabetic retinopathy (DR), the destruction of the blood-retina barrier (BRB) and vascular leakage have attracted extensive attention. Without timely intervention, BRB damage will eventually lead to serious visual impairment. However, due to the delicate structure and complex function of the BRB, the mechanism underlying damage to the BRB in DR has not been fully clarified. Here, we used single-cell RNA sequencing (RNA-seq) technology to analyze 35,910 cells from the retina of healthy and streptozotocin (STZ)-induced diabetic rats, focusing on the degeneration of the main cells constituting the rat BRB in DR and the new definition of two subpopulations of Müller cells at the cell level, Ctxn3 +Müller and Ctxn3 -Müller cells. We analyzed the characteristics and significant differences between the two groups of Müller cells and emphasized the importance of the Ctxn3 +Müller subgroup in diseases. In endothelial cells, we found possible mechanisms of self-protection and adhesion and recruitment to pericytes. In addition, we constructed a communication network between endothelial cells, pericytes, and Müller subsets and clarified the complex regulatory relationship between cells. In summary, we constructed an atlas of the iBRB in the early stage of DR and elucidate the degeneration of its constituent cells and Müller cells and the regulatory relationship between them, providing a series of potential targets for the early treatment of DR.
Collapse
Affiliation(s)
- Yan Wang
- Department of Ophthalmology, South China Hospital of Shenzhen University, Shenzhen, China
| | - Xiongyi Yang
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiumo Li
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuxi Zhang
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Lin Chen
- Department of Anesthesiology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Libing Hong
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhuohang Xie
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Siyu Yang
- Department of Ophthalmology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Xiaoqing Deng
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingzhe Cao
- Department of Ophthalmology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Guoguo Yi
- Department of Ophthalmology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Min Fu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
ID1 marks the tumorigenesis of pancreatic ductal adenocarcinoma in mouse and human. Sci Rep 2022; 12:13555. [PMID: 35941362 PMCID: PMC9359991 DOI: 10.1038/s41598-022-17827-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is a deadly disease that has an increasing death rate but no effective treatment to now. Although biological and immunological hallmarks of PDAC have been frequently reported recently, early detection and the particularly aggressive biological features are the major challenges remaining unclear. In the current study, we retrieved multiple scRNA-seq datasets and illustrated the genetic programs of PDAC development in genetically modified mouse models. Notably, the transcription levels of Id1 were elevated specifically along with the PDAC development. Pseudotime trajectory analysis revealed that Id1 was closely correlated with the malignancy of PDAC. The gene expression patterns of human PDAC cells were determined by the comparative analysis of the scRNA-seq data on human PDAC and normal pancreas tissues. ID1 levels in human PDAC cancer cells were dramatically increased compared to normal epithelial cells. ID1 deficiency in vitro significantly blunt the invasive tumor-formation related phenotypes. IPA analysis on the differentially expressed genes suggested that EIF2 signaling was the core pathway regulating the development of PDAC. Blocking EFI2 signaling remarkably decreased the expression of ID1 and attenuated the tumor-formation related phenotypes. These observations confirmed that ID1 was regulated by EIF2 signaling and was the critical determinator of PDAC development and progression. This study suggests that ID1 is a potential malignant biomarker of PDAC in both mouse models and human and detecting and targeting ID1 may be a promising strategy to treat or even rescue PDAC.
Collapse
|
5
|
Liu W, Yin B, Liang ZH, Yu Y, Lu N. Computed tomography perfusion imaging evaluation of angiogenesis in patients with pancreatic adenocarcinoma. World J Clin Cases 2022; 10:2393-2403. [PMID: 35434057 PMCID: PMC8968604 DOI: 10.12998/wjcc.v10.i8.2393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/30/2021] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pancreatic adenocarcinoma is one of the most common malignant tumors of the digestive system. More than 80% of patients with pancreatic adenocarcinoma are not diagnosed until late stage and have distant or local metastases.
AIM To investigate the value of computed tomography (CT) perfusion imaging in the evaluation of angiogenesis in pancreatic adenocarcinoma patients.
METHODS This is a retrospective cohort study. Patients with pancreatic adenocarcinoma and volunteers without pancreatic diseases underwent CT perfusion imaging from December 2014 to August 2017 in Huashan Hospital, Fudan University Shanghai, China.
RESULTS A total number of 35 pancreatic adenocarcinoma patients and 33 volunteers were enrolled. The relative blood flow (rBF), and relative blood volume (rBV) were significantly lower in patients with pancreatic adenocarcinoma than in the control group (P < 0.05). Conversely, the relative permeability in patients with pancreatic adenocarcinoma was significantly higher than that in controls (P < 0.05). In addition, rBF, rBV, and the vascular maturity index (VMI) were significantly lower in grade III-IV pancreatic adenocarcinoma than in grade I-II pancreatic adenocarcinoma (P < 0.05). Vascular endothelial growth factor (VEGF), CD105-MVD, CD34-MVD, and angiogenesis rate (AR) were significantly higher in grade III-IV pancreatic adenocarcinoma than in grade I-II pancreatic adenocarcinoma (P < 0.05). Significant correlations between rBF and VEGF, CD105-MVD, AR, and VMI (P < 0.01) were observed. Moreover, the levels of rBV were statistically significantly correlated with those of VEGF, CD105-MVD, CD34-MVD, and VMI (P < 0.01).
CONCLUSION Perfusion CT imaging may be an appropriate approach for quantitative assessment of tumor angiogenesis in pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Wen Liu
- Department of Radiology, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Bo Yin
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200000, China
- Department of Radiology, Huashan Hospital North, Fudan University, Shanghai 200000, China
| | - Zong-Hui Liang
- Department of Radiology, Shanghai Jing’an District Central Hospital, Huashan Hospital Jing’an Branch, Fudan University, Shanghai 200000, China
| | - Yang Yu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200000, China
| | - Na Lu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200000, China
- Department of Radiology, Huashan Hospital North, Fudan University, Shanghai 200000, China
| |
Collapse
|
6
|
Zhang Y, Yang J, Wang X, Li X. GNG7 and ADCY1 as diagnostic and prognostic biomarkers for pancreatic adenocarcinoma through bioinformatic-based analyses. Sci Rep 2021; 11:20441. [PMID: 34650124 PMCID: PMC8516928 DOI: 10.1038/s41598-021-99544-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 09/22/2021] [Indexed: 12/11/2022] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is one of the most lethal malignant tumors in the world. The GSE55643 and GSE15471 microarray datasets were downloaded to screen the diagnostic and prognostic biomarkers for PAAD. 143 downregulated genes and 118 upregulated genes were obtained. Next, we performed gene ontology (GO) and The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis on these genes and constructed a protein-protein interaction (PPI) network. We screened out two important clusters of genes, including 13 upregulated and 5 downregulated genes. After the survival analysis, 3 downregulated genes and 10 upregulated genes were identified as the selected key genes. The KEGG analysis on 13 selected genes showed that GNG7 and ADCY1 enriched in the Pathway in Cancer. Next, the diagnostic and prognostic value of GNG7 and ADCY1 was investigated using independent cohort of the Cancer Genome Atlas (TCGA), GSE84129 and GSE62452. We observed that the expression of the GNG7 and ADCY1 was decreased in PAAD. The diagnostic receiver operating characteristic (ROC) analysis indicated that the GNG7 and ADCY1 could serve as sensitive diagnostic markers in PAAD. Survival analysis suggested that expression of GNG7, ADCY1 were significantly associated with PAAD overall survival (OS). The multivariate cox regression analysis showed that the expression of GNG7, ADCY1 were independent risk factors for PAAD OS. Our study indicated GNG7 and ADCY1 may be potential diagnostic and prognostic biomarkers in patients with PAAD.
Collapse
Affiliation(s)
- Youfu Zhang
- Department of Organ Transplantation, Jiangxi Provincial People's Hospital Affiliated To Nanchang University, No. 92 The Aiguo Road, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Jinran Yang
- Department of Organ Transplantation, Jiangxi Provincial People's Hospital Affiliated To Nanchang University, No. 92 The Aiguo Road, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Xuyang Wang
- Department of Organ Transplantation, Jiangxi Provincial People's Hospital Affiliated To Nanchang University, No. 92 The Aiguo Road, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Xinchang Li
- Department of Organ Transplantation, Jiangxi Provincial People's Hospital Affiliated To Nanchang University, No. 92 The Aiguo Road, Nanchang, 330006, Jiangxi Province, People's Republic of China.
| |
Collapse
|
7
|
Rahmanuddin S, Korn R, Cridebring D, Borazanci E, Brase J, Boswell W, Jamil A, Cai W, Sabir A, Motarjem P, Koay E, Mitra A, Goel A, Ho J, Chung V, Von Hoff DD. Role of 3D Volumetric and Perfusion Imaging for Detecting Early Changes in Pancreatic Adenocarcinoma. Front Oncol 2021; 11:678617. [PMID: 34568010 PMCID: PMC8456995 DOI: 10.3389/fonc.2021.678617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/13/2021] [Indexed: 12/30/2022] Open
Abstract
Purpose There is a major shortage of reliable early detection methods for pancreatic cancer in high-risk groups. The focus of this preliminary study was to use Time Intensity-Density Curve (TIDC) and Marley Equation analyses, in conjunction with 3D volumetric and perfusion imaging to demonstrate their potential as imaging biomarkers to assist in the early detection of Pancreatic Ductal Adenocarcinoma (PDAC). Experimental Designs A quantitative retrospective and prospective study was done by analyzing multi-phase Computed Tomography (CT) images of 28 patients undergoing treatment at different stages of pancreatic adenocarcinoma using advanced 3D imaging software to identify the perfusion and radio density of tumors. Results TIDC and the Marley Equation proved useful in quantifying tumor aggressiveness. Perfusion delays in the venous phase can be linked to Vascular Endothelial Growth Factor (VEGF)-related activity which represents the active part of the tumor. 3D volume analysis of the multiphase CT scan of the patient showed clear changes in arterial and venous perfusion indicating the aggressive state of the tumor. Conclusion TIDC and 3D volumetric analysis can play a significant role in defining the response of the tumor to treatment and identifying early-stage aggressiveness.
Collapse
Affiliation(s)
- Syed Rahmanuddin
- National Medical Center & Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Ronald Korn
- Virginia G Piper Cancer Center, Honor Health, Scottsdale, AZ, United States
| | - Derek Cridebring
- Molecular Medicine Division, Translational Genomics Research Institute (TGEN), Phoenix, AZ, United States
| | - Erkut Borazanci
- Virginia G Piper Cancer Center, Honor Health, Scottsdale, AZ, United States
| | - Jordyn Brase
- National Medical Center & Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - William Boswell
- National Medical Center & Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Asma Jamil
- National Medical Center & Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Wenli Cai
- Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
| | - Aqsa Sabir
- National Medical Center & Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Pejman Motarjem
- National Medical Center & Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Eugene Koay
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anirban Mitra
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ajay Goel
- Molecular Diagnostic and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Monrovia, CA, United States
| | - Joyce Ho
- Molecular Diagnostic and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Monrovia, CA, United States
| | - Vincent Chung
- Molecular Diagnostic and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Monrovia, CA, United States
| | - Daniel D Von Hoff
- National Medical Center & Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States.,Virginia G Piper Cancer Center, Honor Health, Scottsdale, AZ, United States.,Molecular Medicine Division, Translational Genomics Research Institute (TGEN), Phoenix, AZ, United States
| |
Collapse
|
8
|
Chen J, Zhang F, Wang D, Yang Z, Liu S, Dong Z. Prognostic ability of DNA-binding protein inhibitor ID-1 expression in patients with oral squamous cell carcinoma. Oncol Lett 2020; 19:3917-3922. [PMID: 32382338 PMCID: PMC7202274 DOI: 10.3892/ol.2020.11506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 03/02/2020] [Indexed: 12/14/2022] Open
Abstract
DNA-binding protein inhibitor ID-1 (ID-1) plays a vital role in the development of cancer. In the present study, ID-1 expression in oral squamous cell carcinoma (OSCC), and its association with prognosis were investigated in 128 patients with OSCC, treated at the Qilu Hospital of Shandong University and followed up for an additional 10 years. Immunohistochemical analysis was performed to detect ID-1 expression, and the association between ID-1 expression and recurrence, and estimated disease-specific survival (DSS) time were subsequently analyzed using the Mann-Whitney U test and the Kaplan-Meier method, respectively. In addition, the log-rank test was implemented to compare the survival curves and multivariate Cox proportional hazards analysis was performed to assess the prognostic value of ID-1. The results demonstrated that ID-1 was highly expressed in the majority of OSCC tissues investigated, and ID-1 expression was significantly higher in cases with recurrence of local tumors and lymph node metastasis. Furthermore, higher ID-1 expression levels were associated with a shorter DSS time. Taken together, the results of the present study suggest that ID-1 may serve as an independent prognostic factor to predict DSS time in patients with OSCC.
Collapse
Affiliation(s)
- Jian Chen
- Department of Oral and Maxillofacial Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Fan Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Dong Wang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Qingdao, Shandong 266035, P.R. China
| | - Zhongjun Yang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shaohua Liu
- Department of Oral and Maxillofacial Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zuoqing Dong
- Department of Oral and Maxillofacial Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
9
|
Melief J, Pico de Coaña Y, Maas R, Fennemann FL, Wolodarski M, Hansson J, Kiessling R. High expression of ID1 in monocytes is strongly associated with phenotypic and functional MDSC markers in advanced melanoma. Cancer Immunol Immunother 2020; 69:513-522. [PMID: 31953577 PMCID: PMC7113206 DOI: 10.1007/s00262-019-02476-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 12/31/2019] [Indexed: 12/15/2022]
Abstract
The efficacy of immunotherapies for malignant melanoma is severely hampered by local and systemic immunosuppression mediated by myeloid-derived suppressor cells (MDSC). Inhibitor of differentiation 1 (ID1) is a transcriptional regulator that was shown to be centrally involved in the induction of immunosuppressive properties in myeloid cells in mice, while it was overexpressed in CD11b+ cells in the blood of late-stage melanoma patients. Therefore, we comprehensively assessed ID1 expression in PBMC from stage III and IV melanoma patients, and studied ID1 regulation in models for human monocyte differentiation towards monocyte-derived dendritic cells. A highly significant elevation of ID1 was observed in CD33+CD11b+CD14+HLA-DRlow monocytic MDSC in the blood of melanoma patients compared to their HLA-DRhigh counterparts, while expression of ID1 correlated positively with established MDSC markers S100A8/9 and iNOS. Moreover, expression of ID1 in monocytes significantly decreased in PBMC samples taken after surgical removal of melanoma metastases, compared to those taken before surgery. Finally, maturation of monocyte-derived DC coincided with a significant downregulation of ID1. Together, these data indicate that increased ID1 expression is strongly associated with expression of phenotypic and immunosuppressive markers of monocytic MDSC, while downregulation is associated with a more immunogenic myeloid phenotype. As such, ID1 may be an additional phenotypic marker for monocytic MDSC. Investigation of ID1 as a pharmacodynamic biomarker or its use as a target for modulating MDSC is warranted.
Collapse
Affiliation(s)
- Jeroen Melief
- Department of Oncology-Pathology, Karolinska Institute, Visionsgatan 4, 171 64 Solna, Stockholm, Sweden.
| | - Yago Pico de Coaña
- Department of Oncology-Pathology, Karolinska Institute, Visionsgatan 4, 171 64 Solna, Stockholm, Sweden
| | - Roeltje Maas
- Department of Oncology-Pathology, Karolinska Institute, Visionsgatan 4, 171 64 Solna, Stockholm, Sweden.,Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Felix-Lennart Fennemann
- Department of Oncology-Pathology, Karolinska Institute, Visionsgatan 4, 171 64 Solna, Stockholm, Sweden.,Department of Tumor Immunology, Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maria Wolodarski
- Department of Oncology-Pathology, Karolinska Institute, Visionsgatan 4, 171 64 Solna, Stockholm, Sweden.,Karolinska University Hospital Solna, Stockholm, Sweden
| | - Johan Hansson
- Department of Oncology-Pathology, Karolinska Institute, Visionsgatan 4, 171 64 Solna, Stockholm, Sweden
| | - Rolf Kiessling
- Department of Oncology-Pathology, Karolinska Institute, Visionsgatan 4, 171 64 Solna, Stockholm, Sweden
| |
Collapse
|
10
|
Yang HC, Wu YH, Yen WC, Liu HY, Hwang TL, Stern A, Chiu DTY. The Redox Role of G6PD in Cell Growth, Cell Death, and Cancer. Cells 2019; 8:cells8091055. [PMID: 31500396 PMCID: PMC6770671 DOI: 10.3390/cells8091055] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/02/2019] [Accepted: 09/07/2019] [Indexed: 02/07/2023] Open
Abstract
The generation of reducing equivalent NADPH via glucose-6-phosphate dehydrogenase (G6PD) is critical for the maintenance of redox homeostasis and reductive biosynthesis in cells. NADPH also plays key roles in cellular processes mediated by redox signaling. Insufficient G6PD activity predisposes cells to growth retardation and demise. Severely lacking G6PD impairs embryonic development and delays organismal growth. Altered G6PD activity is associated with pathophysiology, such as autophagy, insulin resistance, infection, inflammation, as well as diabetes and hypertension. Aberrant activation of G6PD leads to enhanced cell proliferation and adaptation in many types of cancers. The present review aims to update the existing knowledge concerning G6PD and emphasizes how G6PD modulates redox signaling and affects cell survival and demise, particularly in diseases such as cancer. Exploiting G6PD as a potential drug target against cancer is also discussed.
Collapse
Affiliation(s)
- Hung-Chi Yang
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu, Taiwan.
| | - Yi-Hsuan Wu
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| | - Wei-Chen Yen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Hui-Ya Liu
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Tsong-Long Hwang
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.
- Department of Anaesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan.
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| | - Arnold Stern
- New York University School of Medicine, New York, NY, USA.
| | - Daniel Tsun-Yee Chiu
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
- Department of Pediatric Hematology/Oncology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
11
|
CCN2-MAPK-Id-1 loop feedback amplification is involved in maintaining stemness in oxaliplatin-resistant hepatocellular carcinoma. Hepatol Int 2019; 13:440-453. [PMID: 31250351 PMCID: PMC6661033 DOI: 10.1007/s12072-019-09960-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/11/2019] [Indexed: 12/24/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is the second leading cause of cancer death worldwide. Chemotherapy is an alternative treatment for advanced HCCs, but chemo-resistance prevents cancer therapies from achieving stable and complete responses. Understanding the underlying mechanisms in chemo-resistance is critical to improve the efficacy of HCC. Methods The expression levels of Id-1 and CCN2 were detected in large cohorts of HCCs, and functional analyses of Id-1 and CCN2 were performed both in vitro and in vivo. cDNA microarrays were performed to evaluate the alterations of expression profiling of HCC cells with overexpression of CCN2. Finally, the role of downstream signaling of MAPK/Id-1 signaling pathway in oxaliplatin resistance were also explored. Results The increased expression of Id-1 and CCN2 were closely related to oxaliplatin resistance in HCC. Upregulation of CCN2 and Id-1 was independently associated with shorter survival and increased recurrence in HCC patients, and significantly enhanced oxaliplatin resistance and promoted lung metastasis in vivo, whereas knock-down of their expression significantly reversed the chemo-resistance and inhibited HCC cell stemness. cDNA microarrays and PCR revealed that Id-1 and MAPK pathway were the downstream signaling of CCN2. CCN2 significantly enhanced oxaliplatin resistance by activating the MAPK/Id-1 signaling pathway, and Id-1 could upregulate CCN2 in a positive feedback manner. Conclusions CCN2/MAPK/Id-1 loop feedback amplification is involved in oxaliplatin resistance, and the combination of oxaliplatin with inhibitor of CCN2 or MAPK signaling could provide a promising approach to ameliorating oxaliplatin resistance in HCC. Electronic supplementary material The online version of this article (10.1007/s12072-019-09960-5) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
Fendiline Enhances the Cytotoxic Effects of Therapeutic Agents on PDAC Cells by Inhibiting Tumor-Promoting Signaling Events: A Potential Strategy to Combat PDAC. Int J Mol Sci 2019; 20:ijms20102423. [PMID: 31100813 PMCID: PMC6567171 DOI: 10.3390/ijms20102423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/10/2019] [Accepted: 05/12/2019] [Indexed: 02/07/2023] Open
Abstract
The L-type calcium channel blocker fendiline has been shown to interfere with Ras-dependent signaling in K-Ras mutant cancer cells. Earlier studies from our lab had shown that treatment of pancreatic cancer cells with fendiline causes significant cytotoxicity and interferes with proliferation, survival, migration, invasion and anchorage independent growth. Currently there are no effective therapies to manage PDACs. As fendiline has been approved for treatment of patients with angina, we hypothesized that, if proven effective, combinatorial therapies using this agent would be easily translatable to clinic for testing in PDAC patients. Here we tested combinations of fendiline with gemcitabine, visudyne (a YAP1 inhibitor) or tivantinib (ARQ197, a c-Met inhibitor) for their effectiveness in overcoming growth and oncogenic characteristics of PDAC cells. The Hippo pathway component YAP1 has been shown to bypass K-Ras addiction, and allow tumor growth, in a Ras-null mouse model. Similarly, c-Met expression has been associated with poor prognosis and metastasis in PDAC patients. Our results presented here show that combinations of fendiline with these inhibitors show enhanced anti-tumor activity in Panc1, MiaPaCa2 and CD18/HPAF PDAC cells, as evident from the reduced viability, migration, anchorage-independent growth and self-renewal. Biochemical analysis shows that these agents interfere with various signaling cascades such as the activation of Akt and ERK, as well as the expression of c-Myc and CD44 that are altered in PDACs. These results imply that inclusion of fendiline may improve the efficacy of various chemotherapeutic agents that could potentially benefit PDAC patients.
Collapse
|
13
|
Ntellas P, Dadouli K, Perivoliotis K, Sogka E, Pentheroudakis G, Ioannou M, Hadjichristodoulou C, Tepetes K, Mauri D. Microvessel Density and Impact of Angiogenesis on Survival of Resected Pancreatic Cancer Patients: A Systematic Review and Meta-analysis. Pancreas 2019; 48:233-241. [PMID: 30629030 DOI: 10.1097/mpa.0000000000001237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Angiogenesis plays a major role in tumor progression and metastasis; however, its role in pancreatic cancer (PC) remains unclear. The aim of the study was to explore the cumulative evidence concerning the impact of microvessel density (MVD), an estimator of angiogenesis, on resected PC patients. METHODS A systematic review of literature and a meta-analysis of relevant reports were performed. Overall survival and disease-free survival were scrutinized. RESULTS One thousand five hundred patients were analyzed. Overall survival (hazard ratio, 2.0; 95% confidence interval, 1.57-2.54; P < 0.001) and disease-free survival (hazard ratio, 1.99; 95% confidence interval, 1.24-3.2; P = 0.004) were in favor of the low-MVD group. Use of CD105 antibody and of a computerized image analysis system was found to significantly reduce the heterogeneity. Disease staging, tumor location, and grading showed significant effect on survival. CONCLUSIONS High-MVD expression was strongly associated with poorer survival and recurrence among resected PC patients, demonstrating a negative prognostic value. Use of CD105 antibody and of a computerized image analysis system is recommended in future studies because they reduce heterogeneity of results. The potential role of MVD as a marker to select PC patients who would benefit from antiangiogenetic treatment should be further explored in clinical trials.
Collapse
Affiliation(s)
| | - Katerina Dadouli
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, Larissa
| | | | - Eleni Sogka
- Medical Oncology, University Hospital of Larissa, Larissa
| | | | - Maria Ioannou
- Department of Pathology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | | | | | | |
Collapse
|
14
|
Zhang SR, Yao L, Wang WQ, Xu JZ, Xu HX, Jin W, Gao HL, Wu CT, Qi ZH, Li H, Li S, Ni QX, Yu XJ, Fu DL, Liu L. Tumor-Infiltrating Platelets Predict Postsurgical Survival in Patients with Pancreatic Ductal Adenocarcinoma. Ann Surg Oncol 2018; 25:3984-3993. [PMID: 30171511 DOI: 10.1245/s10434-018-6727-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Platelets are believed to promote tumor growth and metastasis in several tumor types. The prognostic role of blood platelets in pancreatic ductal adenocarcinoma (PDAC) remains controversial, and the prognostic value of tumor-infiltrating platelets (TIPs) remains unknown. METHODS A total of 303 patients who underwent curative pancreatectomy for PDAC were enrolled from two independent centers in China and divided into three cohorts. Paired preoperative blood samples and surgical specimens from all patients were analyzed. The correlations between patient outcomes and preoperative blood platelet counts and the presence of TIPs, respectively, were analyzed. TIPs were identified by immunohistochemical staining of CD42b. Prognostic accuracy was estimated by concordance index (C-index) and Akaike information criterion (AIC). RESULTS TIPs, but not preoperative blood platelet counts, were associated with overall survival (OS; all P < 0.001) and recurrence-free survival (RFS; all P < 0.001) in the training, testing, and validation sets. Positive CD42b expression predicted poor postsurgical survival. Incorporation of TIPs improved the predictive accuracy of the 8th edition American Joint Committee on Cancer (AJCC) tumor-node-metastasis (TNM) staging system for OS in each of the three cohorts (C-index: 0.7164, 0.7569, and 0.7050, respectively; AIC: 472, 386, and 1019, respectively). The new predictor system was validated by incorporating TIPs with the 7th edition AJCC TNM staging system (C-index: 0.7052, 0.7623, and 0.7157; AIC: 476, 386, and 1015). CONCLUSION TIPs were an independent prognostic factor that could be incorporated into the AJCC TNM staging system to refine risk stratification and predict surgical outcomes of patients with PDAC.
Collapse
Affiliation(s)
- Shi-Rong Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - Lie Yao
- Department of Pancreatic Surgery, Huashan Hospital, Shanghai Medical College, Pancreatic Disease Institute, Fudan University, Shanghai, People's Republic of China
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - Jin-Zhi Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - Hua-Xiang Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - Wei Jin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - He-Li Gao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - Chun-Tao Wu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - Zi-Hao Qi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - Hao Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - Shuo Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - Quan-Xing Ni
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China. .,Shanghai Pancreatic Cancer Institute, Shanghai, People's Republic of China. .,Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China.
| | - De-Liang Fu
- Department of Pancreatic Surgery, Huashan Hospital, Shanghai Medical College, Pancreatic Disease Institute, Fudan University, Shanghai, People's Republic of China.
| | - Liang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China. .,Shanghai Pancreatic Cancer Institute, Shanghai, People's Republic of China. .,Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
15
|
Guo S, Gao S, Liu R, Shen J, Shi X, Bai S, Wang H, Zheng K, Shao Z, Liang C, Peng S, Jin G. Oncological and genetic factors impacting PDX model construction with NSG mice in pancreatic cancer. FASEB J 2018; 33:873-884. [PMID: 30091943 DOI: 10.1096/fj.201800617r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A patient-derived xenograft (PDX) approach, which relies on direct transplantation of tumor specimens into an immunocompromised animal, is a commonly used method for investigating tumor therapy predictions in vivo. This study evaluated influencing factors, including clinical, oncological, and genetic variables, for a pancreatic PDX model in mice. Tumor specimens were obtained from 121 patients with pancreatic ductal adenocarcinoma who underwent surgical resection at the Changhai Pancreatic Surgery Medical Center (Shanghai, China) between April 2016 and February 2017. Pancreatic cancer (PC) samples <3 mm3 were subcutaneously implanted into the NOD/Shi-scid/IL-2Rγnull (NSG) mice. Once the xenograft reached 300-500 mm3 or reached 180 d after cell inoculation, the tumor was excised. Part of the tumor was subsequently transplanted to next-generation mice, and another part was analyzed by using immunohistochemistry. Among the 121 patients with PC, tumor xenograft was successfully generated in 86 patients (71.1%). Primary tumor >3.5 cm in size was independently associated with xenograft formation rate. In addition, several enriched mutated genes within the VEGF pathway and higher microvessel density were found in the positive group (with xenograft) compared with the negative group (without xenograft). We concluded that tumor size and mutated VEGF pathway in PC are important factors affecting PDX model construction with NSG mice.-Guo, S., Gao, S., Liu, R., Shen, J., Shi, X., Bai, S., Wang, H., Zheng, K., Shao, Z., Liang, C., Peng, S., Jin, G. Oncological and genetic factors impacting PDX model construction with NSG mice in pancreatic cancer.
Collapse
Affiliation(s)
- Shiwei Guo
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China; and
| | - Suizhi Gao
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China; and
| | - Rendong Liu
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China; and
| | - Jing Shen
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China; and
| | - Xiaohan Shi
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China; and
| | - Sijia Bai
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China; and
| | - Huan Wang
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China; and
| | - Kailian Zheng
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China; and
| | - Zhuo Shao
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China; and
| | | | - Siying Peng
- Beijing IDMO Company Limited, Beijing, China
| | - Gang Jin
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China; and
| |
Collapse
|
16
|
Xie C, Xu X, Wang X, Wei S, Shao L, Chen J, Cai J, Jia L. Cyclooxygenase-2 induces angiogenesis in pancreatic cancer mediated by prostaglandin E 2. Oncol Lett 2018; 16:940-948. [PMID: 29963167 PMCID: PMC6019925 DOI: 10.3892/ol.2018.8786] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/26/2018] [Indexed: 12/29/2022] Open
Abstract
The purpose of the present study was to elucidate the effects of cyclooxygenase 2 (COX-2) on the expression of vascular endothelial growth factor (VEGF) and prostaglandin E2 (PGE2) in pancreatic cancer in vitro and in vivo, and to clarify the potential mechanism of COX-2-induced angiogenesis of pancreatic cancer. The study analysis was conducted in the pancreatic cancer PC-3 cell line. The expression of COX-2 and VEGF in human pancreatic cancer tissue was analyzed by immunohistochemistry. Angiogenesis was detected using immunohistochemistry with anti-collagen IV antibodies, and was calculated according to the microvascular density (MVD). In vitro analysis was performed using ELISA or radioimmunoassay (RIA). The effect of exogenous PGE2 on the downregulation of VEGF by Celebrex was also assessed. In vivo analysis was performed using western blotting or RIA. Concurrently, MVD was also investigated in nude mice using immunohistochemistry with anti-collagen IV antibodies. COX-2 was overexpressed in pancreatic cancer tissues, with an overall positive rate of 87.5%. There was a positive association between the expression of COX-2 and MVD. The in vitro study indicated that Celebrex suppressed the expression of VEGF and PGE2 in PC-3 cells in a dose- and time-dependent manner, while exogenous PGE2 rescued the expression of VEGF, which was suppressed by Celebrex, in a dose-dependent manner. The in vivo study revealed that the administration of Celebrex to xenograft nude mice significantly inhibited the expression of VEGF and PGE2. These data provide evidence that PGE2 may be an important mediator between COX-2 and VEGF expression in the process of angiogenesis in pancreatic cancer.
Collapse
Affiliation(s)
- Chuangao Xie
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Xuanfu Xu
- Department of Gastroenterology, The Tenth People's Hospital of Tongji University, Shanghai 200072, P.R. China
| | - Xingpeng Wang
- Department of Gastroenterology, The First Affiliated Hospital of Shanghai Jiaotong University, Shanghai 201620, P.R. China
| | - Shumei Wei
- Department of Pathology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Liming Shao
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Jiamin Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Jianting Cai
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Litao Jia
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
17
|
Yin X, Tang B, Li JH, Wang Y, Zhang L, Xie XY, Zhang BH, Qiu SJ, Wu WZ, Ren ZG. ID1 promotes hepatocellular carcinoma proliferation and confers chemoresistance to oxaliplatin by activating pentose phosphate pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:166. [PMID: 29169374 PMCID: PMC5701377 DOI: 10.1186/s13046-017-0637-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/15/2017] [Indexed: 12/18/2022]
Abstract
Background Drug resistance is one of the major concerns in the treatment of hepatocellular carcinoma (HCC). The aim of the present study was to determine whether aberrant high expression of the inhibitor of differentiation 1(ID1) confers oxaliplatin-resistance to HCC by activating the pentose phosphate pathway (PPP). Methods Aberrant high expression of ID1 was detected in two oxaliplatin-resistant cell lines MHCC97H–OXA(97H–OXA) and Hep3B–OXA(3B–OXA). The lentiviral shRNA or control shRNA was introduced into the two oxaliplatin-resistant cell lines. The effects of ID1 on cell proliferation, apoptosis and chemoresistance were evaluated in vitro and vivo. The molecular signaling mechanism underlying the induction of HCC proliferation and oxaliplatin resistance by ID1 was explored. The prognostic value of ID1/G6PD signaling in HCC patients was assessed using the Cancer Genome Atlas (TCGA) database. Results ID1 was upregulated in oxaliplaitin-resistant HCC cells and promoted HCC cell proliferation and oxaliplatin resistance. Silencing ID1 expression in oxaliplaitin-resistant HCC cell lines inhibited cell proliferation and sensitized oxaliplaitin-resistant cells to death. ID1 knockdown significantly decreased the expression of glucose-6-phosphate dehydrogenase (G6PD), a key enzyme of the PPP. Silencing ID1 expression blocked the activation of G6PD, decreased the production of PPP NADPH, and augmented reactive oxygen and species (ROS), thus inducing cell apoptosis. Study of the molecular mechanism showed that ID1 induced G6PD promoter transcription and activated PPP through Wnt/β-catenin/c-MYC signaling. In addition, ID1/G6PD signaling predicted unfavorable prognosis of HCC patients on the basis of TCGA. Conclusions Our study provided the first evidence that ID1 conferred oxaliplatin resistance in HCC by activating the PPP. This newly defined pathway may have important implications in the research and development of new more effective anti-cancer drugs. Electronic supplementary material The online version of this article (10.1186/s13046-017-0637-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin Yin
- Liver Cancer Institute & Zhong Shan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Bei Tang
- Liver Cancer Institute & Zhong Shan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Jing-Huan Li
- Liver Cancer Institute & Zhong Shan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Yan Wang
- Liver Cancer Institute & Zhong Shan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Lan Zhang
- Liver Cancer Institute & Zhong Shan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Xiao-Ying Xie
- Liver Cancer Institute & Zhong Shan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Bo-Heng Zhang
- Liver Cancer Institute & Zhong Shan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Shuang-Jian Qiu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Wei-Zhong Wu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Zheng-Gang Ren
- Liver Cancer Institute & Zhong Shan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China.
| |
Collapse
|
18
|
Mustafa S, Pan L, Marzoq A, Fawaz M, Sander L, Rückert F, Schrenk A, Hartl C, Uhler R, Yildirim A, Strobel O, Hackert T, Giese N, Büchler MW, Hoheisel JD, Alhamdani MSS. Comparison of the tumor cell secretome and patient sera for an accurate serum-based diagnosis of pancreatic ductal adenocarcinoma. Oncotarget 2017; 8:11963-11976. [PMID: 28060763 PMCID: PMC5355318 DOI: 10.18632/oncotarget.14449] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 12/25/2016] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer is the currently most lethal malignancy. Toward an accurate diagnosis of the disease in body liquids, we studied the protein composition of the secretomes of 16 primary and established cell lines of pancreatic ductal adenocarcinoma (PDAC). Compared to the secretome of non-tumorous cells, 112 proteins exhibited significantly different abundances. Functionally, the proteins were associated with PDAC features, such as decreased apoptosis, better cell survival and immune cell regulation. The result was compared to profiles obtained from 164 serum samples from two independent cohorts - a training and a test set - of patients with PDAC or chronic pancreatitis and healthy donors. Eight of the 112 secretome proteins exhibited similar variations in their abundance in the serum profile specific for PDAC patients, which was composed of altogether 189 proteins. The 8 markers shared by secretome and serum yielded a 95.1% accuracy of distinguishing PDAC from healthy in a Receiver Operating Characteristic curve analysis, while any number of serum-only markers produced substantially less accurate results. Utility of the identified markers was confirmed by classical enzyme linked immunosorbent assays (ELISAs). The study highlights the value of cell secretome analysis as a means of defining reliable serum biomarkers.
Collapse
Affiliation(s)
- Shakhawan Mustafa
- Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany.,Kurdistan Institution for Strategic Studies and Scientific Research, Kurdistan Region, Iraq
| | - Longqiang Pan
- Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Aseel Marzoq
- Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Malak Fawaz
- Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Laureen Sander
- Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Felix Rückert
- Chirurgische Klinik, Universitätsmedizin Mannheim, Theodor-Kutzer-Ufer 1-3, Mannheim, Germany
| | - Andrea Schrenk
- Chirurgische Klinik, Universitätsmedizin Mannheim, Theodor-Kutzer-Ufer 1-3, Mannheim, Germany
| | - Christina Hartl
- Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Rico Uhler
- Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Adem Yildirim
- Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Oliver Strobel
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Nathalia Giese
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Markus W Büchler
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Jörg D Hoheisel
- Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | | |
Collapse
|
19
|
Alshamsan A, Khan S, Imran A, Aljuffali IA, Alsaleh K. Prediction of Chlamydia pneumoniae protein localization in host mitochondria and cytoplasm and possible involvements in lung cancer etiology: a computational approach. Saudi Pharm J 2017; 25:1151-1157. [PMID: 30166903 PMCID: PMC6111117 DOI: 10.1016/j.jsps.2017.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/30/2017] [Indexed: 01/22/2023] Open
Abstract
Collecting evidence suggests that the intercellular infection of Chlamydia pneumoniae in lungs contributes to the etiology of lung cancer. Many proteins of Chlamydia pneumoniae outmanoeuvre the various system of the host. The infection may regulate various factors, which can influence the growth of lung cancer in affected persons. In this in-silico study, we predict potential targeting of Chlamydia pneumoniae proteins in mitochondrial and cytoplasmic comportments of host cell and their possible involvement in growth and development of lung cancer. Various cellular activities are controlled in mitochondria and cytoplasm, where the localization of Chlamydia pneumoniae proteins may alter the normal functioning of host cells. The rationale of this study is to find out and explain the connection between Chlamydia pneumoniae infection and lung cancer. A sum of 183 and 513 proteins were predicted to target in mitochondria and cytoplasm of host cell out of total 1112 proteins of Chlamydia pneumoniae. In particular, many targeted proteins may interfere with normal growth behaviour of host cells, thereby altering the decision of program cell death. Present article provides a potential connection of Chlamydia pneumoniae protein targeting and proposed that various targeted proteins may play crucial role in lung cancer etiology through diverse mechanisms.
Collapse
Affiliation(s)
- Aws Alshamsan
- Nanomedicine Research Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Shahanavaj Khan
- Nanomedicine Research Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahamad Imran
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Ibrahim A Aljuffali
- Nanomedicine Research Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid Alsaleh
- Oncology Center, King Saud Medical City, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
20
|
Inflammatory cytokines and angiogenic factors as potential biomarkers in South African pancreatic ductal adenocarcinoma patients: A preliminary report. Pancreatology 2017; 17:438-444. [PMID: 28377069 DOI: 10.1016/j.pan.2017.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND/OBJECTIVES Several studies have investigated the association of differentially expressed cytokines with pancreatic ductal adenocarcinoma (PDAC), but none in African countries. This study aimed at investigating T-helper (Th) cell and angiogenic markers as diagnostic or prognostic biomarkers for PDAC in Black South Africans. METHODS We conducted a prospective, case-control study comprising of 34 PDAC patients and 27 control participants with either critical limb ischemia, abdominal aortic aneurysm or other abdominal pathology from causes other than pancreatic disease. Plasma levels of IL-2, IL-4, IL-6, IL-10, TNF, IFN-γ, IL-17A, VEGF, sVEGF-R1, FGF, PIGF, PDGF and P-selectin were measured using commercially available cytometric bead array, ELISA and multi-analyte Luminex kits. RESULTS Significantly higher levels of IFN-γ (p < 0.001), TNF (p < 0.001), IL-2 (p = 0.001), IL-4 (p < 0.01), IL-10 (p < 0.01), IL-17A (p < 0.01), PlGF (p < 0.0001) and basic FGF (p < 0.0001) were found in cases compared to control participants. PDAC patients with irresectable tumours had higher levels of VEGF (p = 0.02) and IL-6 (p = 0.01). A univariate analysis showed significant associations between IFN-γ, TNF, IL-10, -4, -2, basic FGF, PlGF and PDAC. In a multivariate logistic regression model, basic FGF (p = 0.002) and PlGF (p = 0.007) were independent risk factors for PDAC with a combined sensitivity of 71% and specificity of 100%. CONCLUSION Our preliminary data suggests a potential role for basic FGF and PlGF as diagnostic, and VEGF and IL-6 as prognostic biomarkers of PDAC in Black South African patients.
Collapse
|
21
|
Abstract
Tumor neovascularization acquires their vessels through a number of processes including angiogenesis, vasculogenesis, vascular remodeling, intussusception, and possibly vascular mimicry in certain tumors. The end result of the tumor vasculature has been quantified by counting the number of immunohistochemically identified microvessels in areas of maximal vascularity, so-called hot spot. Other techniques have been developed such as Chalkley counting and the use of image analysis systems that are robust and reproducible as well as being more objective. Many of the molecular pathways that govern tumor neovascularization have been identified and many reagents are now available to study these tissue sections. These include angiogenic growth factors and their receptors and cell adhesion molecules, proteases, and markers of activated, proliferating, cytokine-stimulated, or angiogenic vessels, such as CD105. It is also possible to differentiate quiescent from active vessels. Other reagents that can identify proteins involved in microenvironmental influences such as hypoxia have also been generated. Although the histological assessment of tumor vascularity is used mostly in the research context, it may also have clinical applications if appropriate methodology and trained observers perform the studies.
Collapse
Affiliation(s)
- Jia-Min Pang
- Department of Pathology, Peter MacCallum Cancer Centre, 2 St Andrews Place, Melbourne, 3002, Australia
| | - Nicholas Jene
- Department of Pathology, Peter MacCallum Cancer Centre, 2 St Andrews Place, Melbourne, 3002, Australia
| | - Stephen B Fox
- Department of Pathology, Peter MacCallum Cancer Centre, 2 St Andrews Place, Melbourne, 3002, Australia.
| |
Collapse
|
22
|
Dhayat SA, Abdeen B, Köhler G, Senninger N, Haier J, Mardin WA. MicroRNA-100 and microRNA-21 as markers of survival and chemotherapy response in pancreatic ductal adenocarcinoma UICC stage II. Clin Epigenetics 2015; 7:132. [PMID: 26705427 PMCID: PMC4690288 DOI: 10.1186/s13148-015-0166-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 12/16/2015] [Indexed: 12/11/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) remains a highly chemoresistant tumor entity for which no reliable molecular targets exist to predict or influence the success of chemotherapy. Recently, we identified a panel of microRNAs associated with induced gemcitabine chemoresistance in human PDAC cell lines. This clinical study evaluates these microRNAs and associated molecular markers as prognostic markers of outcome in 98 PDAC patients Union Internationale Contre le Cancer (UICC) stage II undergoing curative surgery with adjuvant gemcitabine chemotherapy. The primary end points of this study are recurrence-free survival and overall survival. Results Poor response to chemotherapy was significantly correlated to overexpression of microRNA-21 (p = 0.029), microRNA-99a (p = 0.037), microRNA-100 (p = 0.028), and microRNA-210 (p = 0.021) in tissue samples of PDAC patients UICC stage II. Upregulation of these microRNAs was associated with a significantly shorter overall survival and recurrence-free survival (p < 0.05). Overexpression of phosphatase and tensin homolog (PTEN) (p = 0.039) and low expression of multidrug resistance (MDR)-1 (p = 0.043) and breast cancer resistance protein (BCRP)-1 (p = 0.038) were significantly correlated to improved response to adjuvant chemotherapy. Adjuvant gemcitabine treatment (p < 0.0001) and low tumor grading (p = 0.047) were correlated to better outcome. MicroRNA-100, microRNA-21, and its targets PTEN and MDR-1 were independent factors of survival in multivariate analysis. Conclusions Multivariate survival analyses identified microRNA-21 and microRNA-100 as unfavorable prognostic factors in resected and adjuvant treated PDAC UICC stage II patients.
Collapse
Affiliation(s)
- Sameer Abdallah Dhayat
- Department of General and Visceral Surgery, University Hospital Muenster, Albert-Schweitzer-Campus 1 (W1), 48149 Muenster, Germany
| | - Baha Abdeen
- Department of General and Visceral Surgery, University Hospital Muenster, Albert-Schweitzer-Campus 1 (W1), 48149 Muenster, Germany
| | - Gabriele Köhler
- Department of Pathology, University Hospital Muenster, Albert-Schweitzer-Campus 1 (D17), 48149 Muenster, Germany
| | - Norbert Senninger
- Department of General and Visceral Surgery, University Hospital Muenster, Albert-Schweitzer-Campus 1 (W1), 48149 Muenster, Germany
| | - Jörg Haier
- Comprehensive Cancer Center Muenster, University Hospital Muenster, Albert-Schweitzer-Campus 1 (W1), 48149 Muenster, Germany
| | - Wolf Arif Mardin
- Department of General and Visceral Surgery, University Hospital Muenster, Albert-Schweitzer-Campus 1 (W1), 48149 Muenster, Germany
| |
Collapse
|
23
|
Bergmann L, Maute L, Heil G, Rüssel J, Weidmann E, Köberle D, Fuxius S, Weigang-Köhler K, Aulitzky WE, Wörmann B, Hartung G, Moritz B, Edler L, Burkholder I, Scheulen ME, Richly H. A prospective randomised phase-II trial with gemcitabine versus gemcitabine plus sunitinib in advanced pancreatic cancer: a study of the CESAR Central European Society for Anticancer Drug Research-EWIV. Eur J Cancer 2014; 51:27-36. [PMID: 25459392 DOI: 10.1016/j.ejca.2014.10.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/02/2014] [Accepted: 10/03/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the most common malignant tumours and is still associated with a poor prognosis in advanced disease. To improve the standard therapy with gemcitabine, we initiated a prospective randomised phase-II trial with gemcitabine (GEM) versus gemcitabine plus sunitinib (SUNGEM) based on data of in vitro trials and phase-I data for the combination treatment. The rational of adding sunitinib was its putative antiangiogenic mechanism of action. METHODS A total of 106 eligible patients with locally advanced, unresectable or metastatic PDAC without previous system therapy were randomised to receive GEM at a dosage of 1.000mg/m(2) d1, 8, 15 q28 versus a combination of SUNGEM at a dosage of GEM 1.000mg/m(2) d1+8 and sunitinib 50mg p.o. d1-14, q21d. The primary end-point was progression free survival (PFS), secondary end-points were overall survival (OS), toxicity and overall response rate (ORR). RESULTS The confirmatory analysis of PFS was based on the intend-to-treat (ITT) population (N=106). The median PFS was 13.3 weeks (95% confidence interval (95%-CI): 10.4-18.1 weeks) for GEM and 11.6 weeks for SUNGEM (95%-CI: 7.0-18.0 weeks; p=0.78 one-sided log-rank). The ORR was 6.1% (95%-CI: 0.7-20.2%) for GEM and for 7.1% (95%-CI: 0.9-23.5%) for SUNGEM (p=0.87). The median time to progression (TTP) was 14.0 weeks (95%-CI: 12.4-22.3 weeks) for GEM and 18.0 weeks (95%-CI: 11.3-19.3 weeks) for SUNGEM (p=0.60; two-sided log-rank). The median OS was 36.7 weeks (95%-CI: 20.6-49.0 weeks) for the GEM arm and 30.4 weeks (95%-CI: 18.1-37.6 weeks) for the SUNGEM (p=0.78, one-sided log-rank). In regard to toxicities, suspected SAEs were reported in 53.7% in the GEM arm and 71.2% in the SUNGEM arm. Grade 3 and 4 neutropenia was statistically significantly higher in the SUNGEM arm with 48.1% versus 27.8% in the GEM arm (p=0.045, two sided log-rank). CONCLUSIONS The combination SUNGEM was not sufficient superior in locally advanced or metastatic PDAC compared to GEM alone in regard to efficacy but was associated with more toxicity.
Collapse
Affiliation(s)
- L Bergmann
- Medical Clinic II, University Hospital Frankfurt, Frankfurt/Main, Germany.
| | - L Maute
- Medical Clinic II, University Hospital Frankfurt, Frankfurt/Main, Germany
| | - G Heil
- Klinik für Hämatologie und Onkologie, Märkische Kliniken Lüdenscheid, Lüdenscheid, Germany
| | - J Rüssel
- Department of Oncology and Hematology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - E Weidmann
- Krankenhaus Nordwest, UCT-University Cancer Center, Frankfurt/Main, Germany
| | - D Köberle
- Department of Medical Oncology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - S Fuxius
- Onkologische Schwerpunktpraxis, Heidelberg, Germany
| | | | - W E Aulitzky
- Hämatologie, Onkologie, Klinische Immunologie, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - B Wörmann
- Medizinisches Versorgungszentrum Onkologie, Charité - Campus Virchow-Klinikum, Berlin, Germany
| | - G Hartung
- Onkologische Schwerpunktpraxis, Groß-Gerau, Germany
| | - B Moritz
- CESAR Central European Society for Anticancer Drug Research-EWIV, Vienna, Austria
| | - L Edler
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - I Burkholder
- Department of Nursing and Health, University of Applied Sciences of the Saarland, Saarbruecken, Germany
| | - M E Scheulen
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - H Richly
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|