1
|
Li X, Liu G, Wu W. Progress in Biological Research and Treatment of Pseudomyxoma Peritonei. Cancers (Basel) 2024; 16:1406. [PMID: 38611084 PMCID: PMC11010892 DOI: 10.3390/cancers16071406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Pseudomyxoma peritonei (PMP) is a rare disease characterized by extensive peritoneal implantation and mass secretion of mucus after primary mucinous tumors of the appendix or other organ ruptures. Cytoreductive surgery (CRS) combined with hyperthermic intraperitoneal chemotherapy (HIPEC) is currently the preferred treatment, with excellent efficacy and safety, and is associated with breakthrough progress in long-term disease control and prolonged survival. However, the high recurrence rate of PMP is the key challenge in its treatment, which limits the clinical application of multiple rounds of CRS-HIPEC and does not benefit from conventional systemic chemotherapy. Therefore, the development of alternative therapies for patients with refractory or relapsing PMP is critical. The literature related to PMP research progress and treatment was searched in the Web of Science, PubMed, and Google Scholar databases, and a literature review was conducted. The overview of the biological research, treatment status, potential therapeutic strategies, current research limitations, and future directions associated with PMP are presented, focuses on CRS-HIPEC therapy and alternative or combination therapy strategies, and emphasizes the clinical transformation prospects of potential therapeutic strategies such as mucolytic agents and targeted therapy. It provides a theoretical reference for the treatment of PMP and the main directions for future research.
Collapse
Affiliation(s)
- Xi Li
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha 410008, China;
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Guodong Liu
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha 410008, China;
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wei Wu
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha 410008, China;
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
2
|
Xia W, Geng Y, Hu W. Peritoneal Metastasis: A Dilemma and Challenge in the Treatment of Metastatic Colorectal Cancer. Cancers (Basel) 2023; 15:5641. [PMID: 38067347 PMCID: PMC10705712 DOI: 10.3390/cancers15235641] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 10/25/2024] Open
Abstract
Peritoneal metastasis (PM) is a common mode of distant metastasis in colorectal cancer (CRC) and has a poorer prognosis compared to other metastatic sites. The formation of PM foci depends on the synergistic effect of multiple molecules and the modulation of various components of the tumor microenvironment. The current treatment of CRC-PM is based on systemic chemotherapy. However, recent developments in local therapeutic modalities, such as cytoreductive surgery (CRS) and intraperitoneal chemotherapy (IPC), have improved the survival of these patients. This article reviews the research progress on the mechanism, characteristics, diagnosis, and treatment strategies of CRC-PM, and discusses the current challenges, so as to deepen the understanding of CRC-PM among clinicians.
Collapse
Affiliation(s)
- Wei Xia
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou 213003, China;
| | - Yiting Geng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou 213003, China;
| | - Wenwei Hu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou 213003, China;
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| |
Collapse
|
3
|
Gsottberger F, Meier C, Ammon A, Parker S, Wendland K, George R, Petkovic S, Mellenthin L, Emmerich C, Lutzny-Geier G, Metzler M, Mackensen A, Chandramohan V, Müller F. Targeted inhibition of protein synthesis renders cancer cells vulnerable to apoptosis by unfolded protein response. Cell Death Dis 2023; 14:561. [PMID: 37626037 PMCID: PMC10457359 DOI: 10.1038/s41419-023-06055-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
Cellular stress responses including the unfolded protein response (UPR) decide over the fate of an individual cell to ensure survival of the entire organism. During physiologic UPR counter-regulation, protective proteins are upregulated to prevent cell death. A similar strategy induces resistance to UPR in cancer. Therefore, we hypothesized that blocking protein synthesis following induction of UPR substantially enhances drug-induced apoptosis of malignant cells. In line, upregulation of the chaperone BiP was prevented by simultaneous arrest of protein synthesis in B cell malignancies. Cytotoxicity by immunotoxins-approved inhibitors of protein synthesis-was synergistically enhanced in combination with UPR-inducers in seven distinct hematologic and three solid tumor entities in vitro. Synergistic cell death depended on mitochondrial outer membrane permeabilization via BAK/BAX, which correlated with synergistic, IRE1α-dependent reduction of BID, accompanied by an additive fall of MCL-1. The strong synergy was reproduced in vivo against xenograft mouse models of mantle cell lymphoma, Burkitt's lymphoma, and patient-derived acute lymphoblastic leukemia. In contrast, synergy was absent in blood cells of healthy donors suggesting a tumor-specific vulnerability. Together, these data support clinical evaluation of blocking stress response counter-regulation using inhibitors of protein synthesis as a novel therapeutic strategy.
Collapse
Affiliation(s)
- Franziska Gsottberger
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Christina Meier
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Anna Ammon
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Scott Parker
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Kerstin Wendland
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Rebekka George
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Srdjan Petkovic
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Lisa Mellenthin
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Charlotte Emmerich
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Gloria Lutzny-Geier
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Markus Metzler
- Deptartment of Pediatrics and Adolescent Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | | | - Fabian Müller
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany.
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany.
| |
Collapse
|
4
|
Ornella MSC, Badrinath N, Kim KA, Kim JH, Cho E, Hwang TH, Kim JJ. Immunotherapy for Peritoneal Carcinomatosis: Challenges and Prospective Outcomes. Cancers (Basel) 2023; 15:cancers15082383. [PMID: 37190310 DOI: 10.3390/cancers15082383] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Peritoneal metastasis, also known as peritoneal carcinomatosis (PC), is a refractory cancer that is typically resistant to conventional therapies. The typical treatment for PC is a combination of cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC). Recently, research in this area has seen significant advances, particularly in immunotherapy as an alternative therapy for PC, which is very encouraging. Catumaxomab is a trifunctional antibody intraperitoneal (IP) immunotherapy authorized in Europe that can be used to diminish malignant ascites by targeting EpCAM. Intraperitoneal (IP) immunotherapy breaks immunological tolerance to treat peritoneal illness. Increasing T-cell responses and vaccination against tumor-associated antigens are two methods of treatment. CAR-T cells, vaccine-based therapeutics, dendritic cells (DCs) in combination with pro-inflammatory cytokines and NKs, adoptive cell transfer, and immune checkpoint inhibitors are promising treatments for PC. Carcinoembryonic antigen-expressing tumors are suppressed by IP administration of CAR-T cells. This reaction was strengthened by anti-PD-L1 or anti-Gr1. When paired with CD137 co-stimulatory signaling, CAR-T cells for folate receptor cancers made it easier for T-cell tumors to find their way to and stay alive in the body.
Collapse
Affiliation(s)
- Mefotse Saha Cyrelle Ornella
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
- Bionoxx Inc., Parkview Tower #1905, 248 Jeongjail-ro, Bundang-gu, Seongnam 13554, Republic of Korea
| | - Narayanasamy Badrinath
- Bionoxx Inc., Parkview Tower #1905, 248 Jeongjail-ro, Bundang-gu, Seongnam 13554, Republic of Korea
| | - Kyeong-Ae Kim
- Bionoxx Inc., Parkview Tower #1905, 248 Jeongjail-ro, Bundang-gu, Seongnam 13554, Republic of Korea
| | - Jung Hee Kim
- Bionoxx Inc., Parkview Tower #1905, 248 Jeongjail-ro, Bundang-gu, Seongnam 13554, Republic of Korea
| | - Euna Cho
- Bionoxx Inc., Parkview Tower #1905, 248 Jeongjail-ro, Bundang-gu, Seongnam 13554, Republic of Korea
| | - Tae-Ho Hwang
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
- Bionoxx Inc., Parkview Tower #1905, 248 Jeongjail-ro, Bundang-gu, Seongnam 13554, Republic of Korea
| | - Jae-Joon Kim
- Division of Hematology & Oncology, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| |
Collapse
|
5
|
Xu T, Schulga A, Konovalova E, Rinne SS, Zhang H, Vorontsova O, Orlova A, Deyev SM, Tolmachev V, Vorobyeva A. Feasibility of Co-Targeting HER3 and EpCAM Using Seribantumab and DARPin-Toxin Fusion in a Pancreatic Cancer Xenograft Model. Int J Mol Sci 2023; 24:ijms24032838. [PMID: 36769161 PMCID: PMC9917732 DOI: 10.3390/ijms24032838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most aggressive malignancies. A combination of targeted therapies could increase the therapeutic efficacy in tumors with heterogeneous target expression. Overexpression of the human epidermal growth factor receptor type 3 (HER3) and the epithelial cell adhesion molecule (EpCAM) in up to 40% and 30% of PCs, respectively, is associated with poor prognosis and highlights the relevance of these targets. Designed ankyrin repeat protein (DARPin) Ec1 fused with the low immunogenic bacterial toxin LoPE provides specific and potent cytotoxicity against EpCAM-expressing cancer cells. Here, we investigated whether the co-targeting of HER3 using the monoclonal antibody seribantumab (MM-121) and of EpCAM using Ec1-LoPE would improve the therapeutic efficacy in comparison to the individual agents. Radiolabeled 99mTc(CO)3-Ec1-LoPE showed specific binding with rapid internalization in EpCAM-expressing PC cells. MM-121 did not interfere with the binding of Ec1-LoPE to EpCAM. Evaluation of cytotoxicity indicated synergism between Ec1-LoPE and MM-121 in vitro. An experimental therapy study using Ec1-LoPE and MM-121 in mice bearing EpCAM- and HER3-expressing BxPC3 xenografts demonstrated the feasibility of the therapy. Further development of the co-targeting approach using HER3 and EpCAM could therefore be justified.
Collapse
Affiliation(s)
- Tianqi Xu
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Alexey Schulga
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
- Molecular Immunology Laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Elena Konovalova
- Molecular Immunology Laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Sara S. Rinne
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden
| | - Hongchao Zhang
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Olga Vorontsova
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Anna Orlova
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, 751 23 Uppsala, Sweden
| | - Sergey M. Deyev
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
- Molecular Immunology Laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
- Bio-Nanophotonic Laboratory, Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University ‘MEPhI’, Moscow 115409, Russia
- Center of Biomedical Engineering, Sechenov University, Moscow 119991, Russia
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
- Correspondence:
| |
Collapse
|
6
|
Demuytere J, Ernst S, van Ovost J, Cosyns S, Ceelen W. The tumor immune microenvironment in peritoneal carcinomatosis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 371:63-95. [PMID: 35965001 DOI: 10.1016/bs.ircmb.2022.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
One in four patients with colorectal cancer, 40% of gastric cancer patients, and 60% of ovarian cancer patients will develop peritoneal metastases (PM) in the course of their disease. The outcome of patients with widespread PM remains poor with currently available treatments. Despite the relatively common occurrence of PM, little is known on the pathophysiology that drives the peritoneal metastatic cascade. It is increasingly recognized that the stromal components of the peritoneal microenvironment play an essential role in tumor progression. However, little is known about the specific interactions and components of the peritoneal tumor microenvironment, particularly with respect the immune cell population. We summarize the current knowledge of the tumor immune microenvironment (TIME) in peritoneal metastases originating from the three most common origins: ovarian, gastric, and colorectal cancer. Clearly, the TIME is highly heterogeneous and its composition and functional activity differ according to tumor type and, within the same patient, according to anatomical location. The TIME in PM remains to be explored in detail, and further elucidation of their immune contexture may allow biology driven design of novel immune modulating or immune targeting therapies.
Collapse
Affiliation(s)
- Jesse Demuytere
- Experimental Surgery Lab, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Sam Ernst
- Experimental Surgery Lab, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Judith van Ovost
- Experimental Surgery Lab, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Sarah Cosyns
- Experimental Surgery Lab, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Wim Ceelen
- Experimental Surgery Lab, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
7
|
Li M, Mei S, Yang Y, Shen Y, Chen L. Strategies to mitigate the on- and off-target toxicities of recombinant immunotoxins: an antibody engineering perspective. Antib Ther 2022; 5:164-176. [PMID: 35928456 PMCID: PMC9344849 DOI: 10.1093/abt/tbac014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/14/2021] [Accepted: 06/14/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Targeted cancer therapies using immunotoxins has achieved remarkable efficacies in hematological malignancies. However, the clinical development of immunotoxins is also faced with many challenges like anti-drug antibodies and dose-limiting toxicity issues. Such a poor efficacy/safety ratio is also the major hurdle in the research and development of antibody-drug conjugates. From an antibody engineering perspective, various strategies were summarized/proposed to tackle the notorious on target off tumor toxicity issues, including passive strategy (XTENylation of immunotoxins) and active strategies (modulating the affinity and valency of the targeting moiety of immunotoxins, conditionally activating immunotoxins in the tumor microenvironments and reconstituting split toxin to reduce systemic toxicity etc.). By modulating the functional characteristics of the targeting moiety and the toxic moiety of immunotoxins, selective tumor targeting can be augmented while sparing the healthy cells in normal tissues expressing the same target of interest. If successful, the improved therapeutic index will likely help to address the dose-limiting toxicities commonly observed in the clinical trials of various immunotoxins.
Collapse
Affiliation(s)
- Mengyu Li
- Department of Postgraduate , Jiangxi University of Traditional Chinese Medicine, Nanchang, P.R. China
- Joint Graduate School , Yangtze Delta Drug Advanced Research Institute, Nantong, P.R. China
- Joint Graduate School , Yangtze Delta Pharmaceutical College, Nantong, P.R. China
| | - Sen Mei
- Biotherapeutics , Biocytogen Jiangsu Co. Ltd, Nantong, P.R. China
| | - Yi Yang
- Joint Graduate School , Yangtze Delta Drug Advanced Research Institute, Nantong, P.R. China
- Joint Graduate School , Yangtze Delta Pharmaceutical College, Nantong, P.R. China
- Institute of Innovative Medicine , Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing, P.R. China
| | - Yuelei Shen
- Joint Graduate School , Yangtze Delta Drug Advanced Research Institute, Nantong, P.R. China
- Joint Graduate School , Yangtze Delta Pharmaceutical College, Nantong, P.R. China
- Biotherapeutics , Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing, P.R. China
- Institute of Innovative Medicine , Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing, P.R. China
| | - Lei Chen
- Biotherapeutics , Biocytogen Jiangsu Co. Ltd, Nantong, P.R. China
- Biotherapeutics , Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing, P.R. China
| |
Collapse
|
8
|
Current Trends in Cytoreductive Surgery (CRS) and Hyperthermic Intraperitoneal Chemotherapy (HIPEC) for Peritoneal Disease from Appendiceal and Colorectal Malignancies. J Clin Med 2022; 11:jcm11102840. [PMID: 35628966 PMCID: PMC9143396 DOI: 10.3390/jcm11102840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/10/2022] Open
Abstract
Peritoneal carcinomatosis (PC) is a poor prognostic factor for all malignancies. This extent of metastatic disease progression remains difficult to treat with systemic therapies due to poor peritoneal vascularization resulting in limited drug delivery and penetration into tissues. Cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) are surgical interventions that directly target peritoneal tumors and have improved outcomes for PC resulting from appendiceal and colorectal cancer (CRC). Despite these radical therapies, long-term survival remains infrequent, and recurrence is common. The reasons for these outcomes are multifactorial and signal the need for the continued development of novel therapeutics, techniques, and approaches to improve outcomes for these patients. Here, we review landmark historical studies that serve as the foundation for current recommendations, recent discoveries, clinical trials, active research, and areas of future interest in CRS/HIPEC to treat PC originating from appendiceal and colorectal malignancies.
Collapse
|
9
|
Ye S, Zheng S. Comprehensive Understanding and Evolutional Therapeutic Schemes for Pseudomyxoma Peritonei: A Literature Review. Am J Clin Oncol 2022; 45:223-231. [PMID: 35446281 PMCID: PMC9028300 DOI: 10.1097/coc.0000000000000911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Pseudomyxoma peritonei is an infrequent solid tumor in clinical practice. The low morbidity and deficient understanding of this mucus-secreting malignant disease increase the risks of delayed identification or uncontrollable deterioration. In quite a lot cases, patients go through complete cytoreduction surgery and hyperthermic intraperitoneal chemotherapy could receive a long time survival over 5 years. But the recurrence rate is also hard to overlook. Unlike other types of cancer, the standard treatment for this considerable groups has not been confirmed yet. With the advanced medical progression, studies have been carrying out based on pathogenesis, biological characters, and mutated gene location. All but a few get statistical survival benefits, let alone the breaking progress on research or therapeutic practice in the field. We try to give a comprehensive exposition of pseudomyxoma peritonei around the epidemiology, radiologic features, clinical manifestation, present treatment and promising schemes, hoping to arise much attention and reflection on the feasible solutions, especially for the recrudescent part.
Collapse
Affiliation(s)
- Suiting Ye
- Fourth School of Clinical Medicine, Zhejiang Chinese Medical University
| | - Song Zheng
- Department of Oncology, Affiliated Hangzhou First People’s Hospital
- Department of Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine
- Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
10
|
Novel Perspectives in Pseudomyxoma Peritonei Treatment. Cancers (Basel) 2021; 13:cancers13235965. [PMID: 34885075 PMCID: PMC8656832 DOI: 10.3390/cancers13235965] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/11/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Pseudomyxoma Peritonei (PMP) represents a rare entity which greatly benefits from Cytoreductive Surgery (CRS) associated with Hyperthermic Intraperitoneal Chemotherapy (HIPEC). In fact, CRS-HIPEC represents the treatment with potential chances of cure and long-term disease control of patients affected by PMP. This therapeutic strategy should be performed in referral centers, where a consolidated know-how of this locoregional treatment and a multidisciplinary approach are available. CRS-HIPEC provides excellent results for PMP patients in terms of postoperative outcome, overall and disease-free survival, and quality of life. However, in patients with an extensive or recurrent disease, few therapeutic opportunities are available. This review is focused on the most recent clinical evidence and provides a better understanding of the molecular prognostic factors and potential therapeutic targets in this rare malignancy. Abstract Pseudomyxoma Peritonei (PMP) is an anatomo-clinical condition characterized by the implantation of neoplastic cells on peritoneal surfaces with the production of a large amount of mucin. The rarity of the disease precludes the evaluation of treatment strategies within randomized controlled trials. Cytoreductive Surgery (CRS) combined with Hyperthermic Intraperitoneal Chemotherapy (HIPEC) has proven to be the only therapeutic option with potential chances of cure and long-term disease control. The present review discusses the epidemiology, pathogenesis, clinical presentation and treatment of PMP, focusing on the molecular factors involved in tumor progression and mucin production that could be used, in the upcoming future, to improve patient selection for surgery and to expand the therapeutic armamentarium.
Collapse
|
11
|
Sanz L, Ibáñez-Pérez R, Guerrero-Ochoa P, Lacadena J, Anel A. Antibody-Based Immunotoxins for Colorectal Cancer Therapy. Biomedicines 2021; 9:1729. [PMID: 34829955 PMCID: PMC8615520 DOI: 10.3390/biomedicines9111729] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 01/21/2023] Open
Abstract
Monoclonal antibodies (mAbs) are included among the treatment options for advanced colorectal cancer (CRC). However, while these mAbs effectively target cancer cells, they may have limited clinical activity. A strategy to improve their therapeutic potential is arming them with a toxic payload. Immunotoxins (ITX) combining the cell-killing ability of a toxin with the specificity of a mAb constitute a promising strategy for CRC therapy. However, several important challenges in optimizing ITX remain, including suboptimal pharmacokinetics and especially the immunogenicity of the toxin moiety. Nonetheless, ongoing research is working to solve these limitations and expand CRC patients' therapeutic armory. In this review, we provide a comprehensive overview of targets and toxins employed in the design of ITX for CRC and highlight a wide selection of ITX tested in CRC patients as well as preclinical candidates.
Collapse
Affiliation(s)
- Laura Sanz
- Molecular Immunology Unit, Biomedical Research Institute, Hospital Universitario Puerta de Hierro, 28222 Madrid, Spain
| | - Raquel Ibáñez-Pérez
- Apoptosis, Immunity and Cancer Group, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, 50009 Zaragoza, Spain; (R.I.-P.); (P.G.-O.)
| | - Patricia Guerrero-Ochoa
- Apoptosis, Immunity and Cancer Group, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, 50009 Zaragoza, Spain; (R.I.-P.); (P.G.-O.)
| | - Javier Lacadena
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University, 28040 Madrid, Spain
| | - Alberto Anel
- Apoptosis, Immunity and Cancer Group, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, 50009 Zaragoza, Spain; (R.I.-P.); (P.G.-O.)
| |
Collapse
|
12
|
Determination of the Protein-Protein Interactions within Acyl Carrier Protein (MmcB)-Dependent Modifications in the Biosynthesis of Mitomycin. Molecules 2021; 26:molecules26226791. [PMID: 34833880 PMCID: PMC8621148 DOI: 10.3390/molecules26226791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022] Open
Abstract
Mitomycin has a unique chemical structure and contains densely assembled functionalities with extraordinary antitumor activity. The previously proposed mitomycin C biosynthetic pathway has caused great attention to decipher the enzymatic mechanisms for assembling the pharmaceutically unprecedented chemical scaffold. Herein, we focused on the determination of acyl carrier protein (ACP)-dependent modification steps and identification of the protein–protein interactions between MmcB (ACP) with the partners in the early-stage biosynthesis of mitomycin C. Based on the initial genetic manipulation consisting of gene disruption and complementation experiments, genes mitE, mmcB, mitB, and mitF were identified as the essential functional genes in the mitomycin C biosynthesis, respectively. Further integration of biochemical analysis elucidated that MitE catalyzed CoA ligation of 3-amino-5-hydroxy-bezonic acid (AHBA), MmcB-tethered AHBA triggered the biosynthesis of mitomycin C, and both MitB and MitF were MmcB-dependent tailoring enzymes involved in the assembly of mitosane. Aiming at understanding the poorly characterized protein–protein interactions, the in vitro pull-down assay was carried out by monitoring MmcB individually with MitB and MitF. The observed results displayed the clear interactions between MmcB and MitB and MitF. The surface plasmon resonance (SPR) biosensor analysis further confirmed the protein–protein interactions of MmcB with MitB and MitF, respectively. Taken together, the current genetic and biochemical analysis will facilitate the investigations of the unusual enzymatic mechanisms for the structurally unique compound assembly and inspire attempts to modify the chemical scaffold of mitomycin family antibiotics.
Collapse
|
13
|
Thorgersen EB, Asvall J, Frøysnes IS, Schjalm C, Larsen SG, Dueland S, Andersson Y, Fodstad Ø, Mollnes TE, Flatmark K. Increased Local Inflammatory Response to MOC31PE Immunotoxin After Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy. Ann Surg Oncol 2021; 28:5252-5262. [PMID: 34019185 PMCID: PMC8349350 DOI: 10.1245/s10434-021-10022-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/26/2021] [Indexed: 11/18/2022]
Abstract
Background Despite extensive cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (CRS-HIPEC), most patients with resectable peritoneal metastases from colorectal cancer experience disease relapse. MOC31PE immunotoxin is being explored as a novel treatment option for these patients. MOC31PE targets the cancer-associated epithelial cell adhesion molecule, and kills cancer cells by distinct mechanisms, simultaneously causing immune activation by induction of immunogenic cell death (ICD). Methods Systemic and local cytokine responses were analyzed in serum and intraperitoneal fluid samples collected the first three postoperative days from clinically comparable patients undergoing CRS-HIPEC with (n = 12) or without (n = 26) intraperitoneal instillation of MOC31PE. A broad panel of 27 pro- and antiinflammatory interleukins, chemokines, interferons, and growth factors was analyzed using multiplex technology. Results The time course and magnitude of the systemic and local postoperative cytokine response after CRS-HIPEC were highly compartmentalized, with modest systemic responses contrasting substantial intraperitoneal responses. Administration of MOC31PE resulted in changes that were broader and of higher magnitude compared with CRS-HIPEC alone. Significantly increased levels of innate proinflammatory cytokines, such as interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF) as well as an interesting time response curve for the strong T-cell stimulator interferon (IFN)-γ and its associated chemokine interferon gamma-induced protein/chemokine (C-X-C motif) ligand 10 (IP-10) were detected, all associated with ICD. Conclusions Our study revealed a predominately local rather than systemic inflammatory response to CRS-HIPEC, which was strongly enhanced by MOC31PE treatment. The MOC31PE-induced intraperitoneal inflammatory reaction could contribute to improve remnant cancer cell killing, but the mechanisms remain to be elucidated in future studies. Supplementary Information The online version contains supplementary material available at 10.1245/s10434-021-10022-0.
Collapse
Affiliation(s)
- Ebbe Billmann Thorgersen
- Department of Gastroenterological Surgery, Oslo University Hospital The Radium Hospital, Oslo, Norway. .,Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway.
| | - Jørund Asvall
- Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ida Storhaug Frøysnes
- Department of Tumor Biology, Oslo University Hospital The Radium Hospital, Oslo, Norway
| | - Camilla Schjalm
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Stein Gunnar Larsen
- Department of Gastroenterological Surgery, Oslo University Hospital The Radium Hospital, Oslo, Norway
| | - Svein Dueland
- Department of Oncology, Oslo University Hospital The Radium Hospital, Oslo, Norway
| | - Yvonne Andersson
- Department of Tumor Biology, Oslo University Hospital The Radium Hospital, Oslo, Norway
| | - Øystein Fodstad
- Department of Tumor Biology, Oslo University Hospital The Radium Hospital, Oslo, Norway
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway.,Research Laboratory, Nordland Hospital, Bodø, and Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kjersti Flatmark
- Department of Gastroenterological Surgery, Oslo University Hospital The Radium Hospital, Oslo, Norway.,Department of Tumor Biology, Oslo University Hospital The Radium Hospital, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
14
|
Ceelen W. Intraperitoneal EpCAM-Targeted Immunotoxin: A First Step Towards Engineering the Immune Environment in Colorectal Peritoneal Metastases? Ann Surg Oncol 2021; 28:4772-4774. [PMID: 33993377 DOI: 10.1245/s10434-021-10147-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/01/2021] [Indexed: 11/18/2022]
Affiliation(s)
- Wim Ceelen
- Department of GI Surgery, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| |
Collapse
|
15
|
Zhao L, Pang Y, Luo Z, Fu K, Yang T, Zhao L, Sun L, Wu H, Lin Q, Chen H. Role of [ 68Ga]Ga-DOTA-FAPI-04 PET/CT in the evaluation of peritoneal carcinomatosis and comparison with [ 18F]-FDG PET/CT. Eur J Nucl Med Mol Imaging 2021; 48:1944-1955. [PMID: 33415432 DOI: 10.1007/s00259-020-05146-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/01/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE The aim of this study was to explore the role of [68Ga]Ga-DOTA-FAPI-04 positron emission tomography/computed tomography (PET/CT), compared with 18F-fluorodeoxyglucose [18F]-FDG PET/CT, for evaluating peritoneal carcinomatosis in patients with various types of cancer. METHODS Patients with suspected peritoneal malignancy, who underwent both [18F]-FDG and [68Ga]Ga-DOTA-FAPI-04 PET/CT between October 2019 and August 2020, were retrospectively analysed. The radiotracer uptake, peritoneal cancer index (PCI) score, and diagnostic performance of [18F]-FDG and [68Ga]Ga-DOTA-FAPI-04 PET/CT were evaluated and compared. RESULTS Our cohort consisted of 46 patients, including 16 patients with diffuse-type peritoneal carcinomatosis, 27 with nodular-type peritoneal carcinomatosis, and 3 true-negative patients. A significant difference in standard uptake values (SUV) of lesions between [18F]-FDG and [68Ga]Ga-DOTA-FAPI-04 PET/CT examination was observed (median SUV: 3.48 vs. 9.82; P < 0.001), particularly in peritoneal carcinomatosis from gastric cancer (median SUV: 3.44 vs. 8.05; P = 0.001). Moreover, [68Ga]Ga-DOTA-FAPI-04 PET/CT showed a higher PCI score and better sensitivity than [18F]-FDG PET/CT for the detection of peritoneal carcinomatosis (6 vs. 18; P < 0.001; 72.09% vs. 97.67%; P = 0.002). CONCLUSION [68Ga]Ga-DOTA-FAPI-04 PET/CT demonstrated superior sensitivity over [18F]-FDG PET/CT for the detection of peritoneal carcinomatosis in patients with various types of cancer, particularly gastric cancer. Furthermore, the uptake of [68Ga]Ga-DOTA-FAPI-04 in peritoneal carcinomatosis was significantly higher than that of [18F]-FDG, demonstrating a larger extent of the lesions and yielding a higher PCI score. This could help enhance the image contrast, improve physicians' diagnostic confidence, and reduce the proportion of missed diagnoses.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Nuclear Medicine & Minnan PET Center, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Department of Radiation Oncology, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yizhen Pang
- Department of Nuclear Medicine & Minnan PET Center, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Zuoming Luo
- Department of Nuclear Medicine & Minnan PET Center, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Kaili Fu
- Department of Radiation Oncology, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Tingting Yang
- Department of Radiation Oncology, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Long Zhao
- Department of Nuclear Medicine & Minnan PET Center, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Long Sun
- Department of Nuclear Medicine & Minnan PET Center, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Hua Wu
- Department of Nuclear Medicine & Minnan PET Center, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Qin Lin
- Department of Radiation Oncology, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, China.
| | - Haojun Chen
- Department of Nuclear Medicine & Minnan PET Center, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, China.
| |
Collapse
|
16
|
Vorobyeva A, Konovalova E, Xu T, Schulga A, Altai M, Garousi J, Rinne SS, Orlova A, Tolmachev V, Deyev S. Feasibility of Imaging EpCAM Expression in Ovarian Cancer Using Radiolabeled DARPin Ec1. Int J Mol Sci 2020; 21:ijms21093310. [PMID: 32392820 PMCID: PMC7246691 DOI: 10.3390/ijms21093310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) is overexpressed in 55%–75% of ovarian carcinomas (OC). EpCAM might be used as a target for a treatment of disseminated OC. Designed ankyrin repeats protein (DARPin) Ec1 is a small (18 kDa) protein, which binds to EpCAM with subnanomolar affinity. We tested a hypothesis that Ec1 labeled with a non-residualizing label might serve as a companion imaging diagnostic for stratification of patients for EpCAM-targeting therapy. Ec1 was labeled with 125I using N-succinimidyl-para-iodobenzoate. Binding affinity, specificity, and cellular processing of [125I]I-PIB-Ec1 were evaluated using SKOV-3 and OVCAR-3 ovarian carcinoma cell lines. Biodistribution and tumor-targeting properties of [125I]I-PIB-Ec1 were studied in Balb/c nu/nu mice bearing SKOV-3 and OVCAR-3 xenografts. EpCAM-negative Ramos lymphoma xenografts served as specificity control. Binding of [125I]I-PIB-Ec1 to ovarian carcinoma cell lines was highly specific and had affinity in picomolar range. Slow internalization of [125I]I-PIB-Ec1 by OC cells confirmed utility of non-residualizing label for in vivo imaging. [125I]I-PIB-Ec1 provided 6 h after injection tumor-to-blood ratios of 30 ± 11 and 48 ± 12 for OVCAR-3 and SKOV-3 xenografts, respectively, and high contrast to other organs. Tumor targeting was highly specific. Saturation of tumor uptake at a high dose of Ec1 in SKOV-3 model provided a rationale for dose selection in further studies using therapeutic conjugates of Ec1 for targeted therapy. In conclusion, [125I]I-PIB-Ec1 is a promising agent for visualizing EpCAM expression in OC.
Collapse
Affiliation(s)
- Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (M.A.); (J.G.); (V.T.)
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia; (A.S.); (A.O.)
- Correspondence: ; Tel.: +46-18-471-3868
| | - Elena Konovalova
- Molecular Immunology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.K.); (S.D.)
| | - Tianqi Xu
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (M.A.); (J.G.); (V.T.)
| | - Alexey Schulga
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia; (A.S.); (A.O.)
- Molecular Immunology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.K.); (S.D.)
| | - Mohamed Altai
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (M.A.); (J.G.); (V.T.)
| | - Javad Garousi
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (M.A.); (J.G.); (V.T.)
| | - Sara S. Rinne
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden;
| | - Anna Orlova
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia; (A.S.); (A.O.)
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden;
- Science for Life Laboratory, Uppsala University, 751 23 Uppsala, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (M.A.); (J.G.); (V.T.)
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia; (A.S.); (A.O.)
| | - Sergey Deyev
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia; (A.S.); (A.O.)
- Molecular Immunology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.K.); (S.D.)
- Bio-Nanophotonic Lab, Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University ‘MEPhI’, 115409 Moscow, Russia
- Center of Biomedical Engineering, Sechenov University, 119991 Moscow, Russia
| |
Collapse
|
17
|
Ceelen W, Braet H, van Ramshorst G, Willaert W, Remaut K. Intraperitoneal chemotherapy for peritoneal metastases: an expert opinion. Expert Opin Drug Deliv 2020; 17:511-522. [PMID: 32142389 DOI: 10.1080/17425247.2020.1736551] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: The rationale for intraperitoneal (IP) drug delivery for patients with peritoneal metastases (PM) is based on the pharmacokinetic advantage resulting from the peritoneal-plasma barrier, and on the potential to adequately treat small, poorly vascularized PM. Despite a history of more than three decades, many aspects of IP drug delivery remain poorly studied.Areas covered: We outline the anatomy and physiology of the peritoneal cavity, including the pharmacokinetics of IP drug delivery. We discuss transport mechanisms governing tissue penetration of IP chemotherapy, and how these are affected by the biomechanical properties of the tumor stroma. We provide an overview of the current clinical evidence on IP chemotherapy in ovarian, colorectal, and gastric cancer. We discuss the current limitations of IP drug delivery and propose several potential areas of progress.Expert opinion: The potential of IP drug delivery is hampered by off-label use of drugs developed for systemic therapy. The efficacy of IP chemotherapy for PM depends on cancer type, disease extent, and mode of drug delivery. Results from ongoing randomized trials will allow to better delineate the potential of IP chemotherapy. Promising approaches include IP aerosol therapy, prolonged delivery platforms such as gels or biomaterials, and the use of nanomedicine.
Collapse
Affiliation(s)
- Wim Ceelen
- Department of GI Surgery, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Belgium
| | - Helena Braet
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | | | - Wouter Willaert
- Department of GI Surgery, Ghent University Hospital, Ghent, Belgium
| | - Katrien Remaut
- Cancer Research Institute Ghent (CRIG), Belgium.,Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| |
Collapse
|
18
|
Ceelen W, Ramsay RG, Narasimhan V, Heriot AG, De Wever O. Targeting the Tumor Microenvironment in Colorectal Peritoneal Metastases. Trends Cancer 2020; 6:236-246. [PMID: 32101726 DOI: 10.1016/j.trecan.2019.12.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/13/2019] [Accepted: 12/19/2019] [Indexed: 02/01/2023]
Abstract
Peritoneal metastasis (PM) occurs in approximately one in four colorectal cancer (CRC) patients. The pathophysiology of colorectal PM remains poorly characterized. Also, the efficacy of current treatment modalities, including surgery and intraperitoneal (IP) delivery of chemotherapy, is limited. Increasingly, therefore, efforts are being developed to unravel the PM cascade and at understanding the PM-associated tumor microenvironment (TME) and peritoneal ecosystem as potential therapeutic targets. Here, we review recent insights in the structure and components of the TME in colorectal PM, and discuss how these may translate into novel therapeutic approaches aimed at re-engineering the metastasis-promoting activity of the stroma.
Collapse
Affiliation(s)
- Wim Ceelen
- Department of Human Structure and Repair, Ghent University, B-9000 Ghent, Belgium; Department of GI Surgery, Ghent University Hospital, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.
| | - Robert G Ramsay
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Vignesh Narasimhan
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia; Department of Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Alexander G Heriot
- Department of Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Olivier De Wever
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium; Laboratory for Experimental Cancer Research, Ghent University, Ghent, Belgium
| |
Collapse
|