1
|
Chu X, Liu S, Dai X, Chen W, Qi G, Jiang X, Wu Z, Zhou Y, Shi X. Systematic analysis of the occurrence characteristics and impact on hospitalization costs of trauma complications. Am J Surg 2024; 237:115936. [PMID: 39241624 DOI: 10.1016/j.amjsurg.2024.115936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/11/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Trauma complications increase the burden of disease and hospitalization costs for patients. More research evidence is needed on how to more effectively prevent these complications and reduce hospitalization costs based on the characteristics of trauma patients. Therefore, this study will systematically analyze the characteristics of trauma complications and their specific impact on hospitalization costs. METHODS This is a multi-center retrospective study of trauma hospitalizations from 2018 to 2023. Associations between population characteristics, trauma features, and each complication occurrence were investigated using multiple correspondence analysis. Logistic regression analysis assessed factors influencing trauma complications. Additionally, a generalized linear model analyzed the relative increase in hospital costs for each complication. RESULTS A total of 48,032 trauma patients were included, with 22.0% experiencing at least one complication. Thrombosis is more prevalent among elderly women (aged ≥65) with pelvic and extremity trauma. In men aged 18-44 years, respiratory insufficiency and post-traumatic anemia primarily occurred in cases of head injuries and multiple injuries. Chest and multiple injuries predispose people aged 45-64 to pneumonia and electrolyte disorders. Body surface injuries are prone to surgical site infections. Complications resulted in an average relative increase in overall hospitalization costs of 1.32-fold, with thrombosis (1.58-fold), respiratory insufficiency (1.11-fold), post-traumatic anemia (0.58-fold), surgical site infection (0.48-fold), pneumonia (0.53-fold), electrolyte disorders (0.47-fold). CONCLUSIONS This study systematically analyzed the occurrence characteristics of trauma complications and the burden trends of hospitalization costs due to complications, providing a reference for the formulation of trauma classification and management strategies.
Collapse
Affiliation(s)
- Xiangyuan Chu
- Department of Epidemiology and Health Statistics, School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shifang Liu
- Department of Medical Record Management, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiu Dai
- Department of Epidemiology and Health Statistics, School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Weihang Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Guojia Qi
- Department of Epidemiology and Health Statistics, School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xuheng Jiang
- Emergency Department, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhaoyue Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yanna Zhou
- Department of Epidemiology and Health Statistics, School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiuquan Shi
- Department of Epidemiology and Health Statistics, School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi, Guizhou, China; Center for Pediatric Trauma Research & Center for Injury Research and Policy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
2
|
Crosier R, Lopez Laporte MA, Unni RR, Coutinho T. Female-Specific Considerations in Aortic Health and Disease. CJC Open 2024; 6:391-406. [PMID: 38487044 PMCID: PMC10935703 DOI: 10.1016/j.cjco.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/06/2023] [Indexed: 03/17/2024] Open
Abstract
The aorta plays a central role in the modulation of blood flow to supply end organs and to optimize the workload of the left ventricle. The constant interaction of the arterial wall with protective and deleterious circulating factors, and the cumulative exposure to ventriculoarterial pulsatile load, with its associated intimal-medial changes, are important players in the complex process of vascular aging. Vascular aging is also modulated by biomolecular processes such as oxidative stress, genomic instability, and cellular senescence. Concomitantly with well-established cardiometabolic and sex-specific risk factors and environmental stressors, arterial stiffness is associated with cardiovascular disease, which remains the leading cause of morbidity and mortality in women worldwide. Sexual dimorphisms in aortic health and disease are increasingly recognized and explain-at least in part-some of the observable sex differences in cardiovascular disease, which will be explored in this review. Specifically, we will discuss how biological sex affects arterial health and vascular aging and the implications this has for development of certain cardiovascular diseases uniquely or predominantly affecting women. We will then expand on sex differences in thoracic and abdominal aortic aneurysms, with special considerations for aortopathies in pregnancy.
Collapse
Affiliation(s)
- Rebecca Crosier
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | | | - Rudy R. Unni
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Thais Coutinho
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
3
|
Gasser TC, Miller C, Polzer S, Roy J. A quarter of a century biomechanical rupture risk assessment of abdominal aortic aneurysms. Achievements, clinical relevance, and ongoing developments. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3587. [PMID: 35347895 DOI: 10.1002/cnm.3587] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/28/2022] [Accepted: 03/03/2022] [Indexed: 05/12/2023]
Abstract
Abdominal aortic aneurysm (AAA) disease, the local enlargement of the infrarenal aorta, is a serious condition that causes many deaths, especially in men exceeding 65 years of age. Over the past quarter of a century, computational biomechanical models have been developed towards the assessment of AAA risk of rupture, technology that is now on the verge of being integrated within the clinical decision-making process. The modeling of AAA requires a holistic understanding of the clinical problem, in order to set appropriate modeling assumptions and to draw sound conclusions from the simulation results. In this article we summarize and critically discuss the proposed modeling approaches and report the outcome of clinical validation studies for a number of biomechanics-based rupture risk indices. Whilst most of the aspects concerning computational mechanics have already been settled, it is the exploration of the failure properties of the AAA wall and the acquisition of robust input data for simulations that has the greatest potential for the further improvement of this technology.
Collapse
Affiliation(s)
- T Christian Gasser
- Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
- Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Christopher Miller
- Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Stanislav Polzer
- Department of Applied Mechanics, VSB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic
| | - Joy Roy
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Vascular Surgery, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
4
|
Hanger M, Baker DM. Infective Native Extracranial Carotid Artery Aneurysms: A Systematic Review. Ann Vasc Surg 2023; 91:275-286. [PMID: 36549478 DOI: 10.1016/j.avsg.2022.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 11/16/2022] [Accepted: 11/26/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Infective native extracranial carotid artery aneurysms are rare, and their management is variable due to a lack of evidence assessing outcomes. METHODS We performed a systematic literature review following PRISMA guidelines to identify all reported cases of infective native extracranial carotid artery aneurysms between January 1970 and March 2021. RESULTS This study identified 193 infective native aneurysms of the extracranial carotid artery from 154 sources. Patients were predominantly male (71.4%), and age ranged from 6 months to 89 years old. The most common presenting features were a neck mass and fever, but also included hemorrhage, respiratory distress, and neurological symptoms. Most aneurysms were located in the internal carotid artery (47.4%). Staphylococcus (23.3%) was the most commonly identified causative pathogen, followed by Mycobacterium tuberculosis (20.9%). Most appeared to become infected by direct local spread. Treatment strategies involved open surgical methods in 101 cases and an endovascular approach in 41 cases. In 4 cases, a hybrid method involving concurrent endovascular and open surgical management was undertaken. In 5 cases, there was antibiotic treatment alone. In the open surgery-treated group, the complication rate was 20.8% compared to 13.2% in the endovascular group. Mortality rate was 5.6%. CONCLUSIONS Our review identified 193 cases of infective native extracranial carotid artery aneurysms. Direct local spread of a staphylococcus infection was the commonest cause. Endovascular management was associated with fewer early complications than open surgical management.
Collapse
Affiliation(s)
- Melissa Hanger
- UCL Division of Medicine, Royal Free Campus, University College London, London, UK
| | - Daryll M Baker
- UCL Division of Medicine, Royal Free Campus, University College London, London, UK.
| |
Collapse
|
5
|
Tan X, Jung G, Herrmann E, Derwich W, Grundmann R, Schmitz-Rixen T, Gray D. Sex difference in early mortality after abdominal aortic aneurysm repair. J Vasc Surg 2023; 77:1658-1668.e2. [PMID: 36773666 DOI: 10.1016/j.jvs.2023.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023]
Abstract
OBJECTIVE Although female patients have a lower prevalence of abdominal aortic aneurysm (AAA), they seem to have a worse treatment outcome compared with male patients. Both maximum aneurysm diameter and aortic size index (ASI) are important indicators of the risk of AAA rupture, among which ASI has been shown capable of equalizing sex-related anatomical differences. Our study aimed to investigate whether sex is an independent risk factor for early postoperative mortality and how the diameter or ASI affects the association between sex and mortality. METHODS We performed a retrospective analysis of patients who enrolled in the AAA registry of the German Society of Vascular Surgery from 2013 to 2019. The patients were treated by either open surgical repair (OSR) or endovascular aneurysm repair (EVAR). The association between sex and 30-day mortality was investigated using logistic regression analysis. The interaction and mediating effects of maximum aneurysm diameter and ASI were investigated to verify their roles in the effect of sex on mortality. The relationships between the diameter (or ASI) and the risk of 30-day mortality in different sexes were demonstrated by the restricted cubic spline. RESULTS Overall, 23,275 cases were included in our analysis, with 20,130 male (86.5%) and 3139 female (13.5%) patients. Female patients had a smaller maximum aneurysm diameter (OSR, 55.23 ± 10.29 mm vs 58.05 ± 11.28 mm [P < .001]; EVAR, 54.06 ± 9.08 mm vs 56.11 ± 9.38 mm [P < .001]), but a higher ASI (OSR, 3.16 ± 0.71 vs 2.92 ± 0.69 [P < .001]; EVAR, 3.05 ± 0.66 vs 2.80 ± 0.59 [P < .001]) compared with male patients. The 30-day mortality rate was higher for female patients in both OSR (6.6% vs 4.2%; P = .002) and EVAR groups (1.8% vs 0.8%; P < .001). Logistic regression confirmed a significantly higher risk of 30-day mortality for female patients compared with male patients (odds ratio, 1.55; 95% confidence interval, 1.21-1.99; P = .001). No interaction was found between sex and diameter or ASI, but there were mediating effects for diameter and ASI in the effect of sex on 30-day mortality. For female patients, the risk of 30-day mortality linearly increased with the increase of diameter (PNonlinear = .089) or ASI (PNonlinear = .888), whereas the risk for male patients was U-shaped (for diameter, PNonlinear < .001; for ASI, PNonlinear = .020). CONCLUSIONS Sex is an independent risk factor for 30-day mortality after AAA repair. Both diameter and ASI are mediating factors for the effect of sex on 30-day mortality. The relationship between diameter or ASI and the risk of 30-day mortality is different for male and female patients.
Collapse
Affiliation(s)
- Xinji Tan
- Department of Vascular and Endovascular Surgery, University Hospital of Goethe University Frankfurt, Frankfurt, Germany
| | - Georg Jung
- Department of Vascular Surgery, Luzern, Switzerland
| | - Eva Herrmann
- Institute of Biostatistics and Mathematical Modelling, Goethe University Frankfurt, Frankfurt, Germany
| | - Wojciech Derwich
- Department of Vascular and Endovascular Surgery, University Hospital of Goethe University Frankfurt, Frankfurt, Germany
| | - Reinhart Grundmann
- Department of Vascular Medicine, University Heart Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Schmitz-Rixen
- Department of Vascular and Endovascular Surgery, University Hospital of Goethe University Frankfurt, Frankfurt, Germany
| | - Daphne Gray
- Department of Vascular and Endovascular Surgery, University Hospital of Goethe University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
6
|
Xu X, Zhang Z, Abudupataer M, Yang F, Wang C, Zhu K, Tong J. Mechanical characterization and material modeling of ascending aortic aneurysm with different bicuspid aortic cusp fusion morphologies. J Mech Behav Biomed Mater 2022; 132:105295. [DOI: 10.1016/j.jmbbm.2022.105295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/27/2022] [Accepted: 05/21/2022] [Indexed: 10/18/2022]
|
7
|
Li Z, Luo T, Wang S, Jia H, Gong Q, Liu X, Sutcliffe MPF, Zhu H, Liu Q, Chen D, Xiong J, Teng Z. Mechanical and histological characteristics of aortic dissection tissues. Acta Biomater 2022; 146:284-294. [PMID: 35367380 DOI: 10.1016/j.actbio.2022.03.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/14/2022]
Abstract
AIMS This study investigated the association between the macroscopic mechanical response of aortic dissection (AoD) flap, its fibre features, and patient physiological features and clinical presentations. METHODS Uniaxial test was performed with tissue strips in both circumferential and longitudinal directions from 35 patients with (AoD:CC) and without (AoD:w/oCC) cerebral/coronary complications, and 19 patients with rheumatic or valve-related heart diseases (RH). A Bayesian inference framework was used to estimate the expectation of material constants (C1, D1, and D2) of the modified Mooney-Rivlin strain energy density function. Histological examination was used to visualise the elastin and collagen in the tissue strips and image processing was performed to quantify their area percentages, fibre misalignment and waviness. RESULTS The elastin area percentage was negatively associated with age (p = 0.008), while collagen increased about 6% from age 40 to 70 (p = 0.03). Elastin fibre was less dispersed and wavier in old patients and no significant association was found between patient age and collagen fibre dispersion or waviness. Features of fibrous microstructures, either elastin or collagen, were comparable between AoD:CC and AoD:w/oCC group. Elastin and collagen area percentages were positively correlated with C1 and D2, respectively, while the elastin and collagen waviness were negatively correlated with C1 and D2, respectively. Elastin dispersion was negatively correlated to D2. Multivariate analysis showed that D2 was an effective parameter which could differentiate patient groups with different age and clinical presentations, as well as the direction of tissue strip. CONCLUSION Fibre dispersion and waviness in the aortic dissection flap changed with patient age and clinical presentations, and these can be captured by the material constants in the strain energy density function. STATEMENT OF SIGNIFICANCE Aortic dissection (AoD) is a severe cardiovascular disease. Understanding the mechanical property of intimal flap is essential for its risk evaluation. In this study, mechanical testing and histology examination were combined to quantify the relationship between mechanical presentations and microstructure features. A Bayesian inference framework was employed to estimate the expectation of the material constants in the modified Mooney-Rivlin constitutive equation. It was found that fibre dispersion and waviness in the AoD flap changed with patient age and clinical presentations, and these could be captured by the material constants. This study firstly demonstrated that the expectation of material constants can be used to characterise tissue microstructures and differentiate patients with different clinical presentations.
Collapse
|
8
|
Lisický O, Hrubanová A, Staffa R, Vlachovský R, Burša J. Constitutive models and failure properties of fibrous tissues of carotid artery atheroma based on their uniaxial testing. J Biomech 2021; 129:110861. [PMID: 34775341 DOI: 10.1016/j.jbiomech.2021.110861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/07/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022]
Abstract
To obtain an experimental background for the description of mechanical properties of fibrous tissues of carotid atheroma, a cohort of 141 specimens harvested from 44 patients during endarterectomies, were tested. Uniaxial stress-strain curves and ultimate stress and strain at rupture were recorded. With this cohort, the impact of the direction of load, presence of calcifications, specimen location, patient's age and sex were investigated. A significant impact of sex was revealed for the stress-strain curves and ultimate strains. The response was significantly stiffer for females than for males but, in contrast to ultimate strain, the strength was not significantly different. The differences in strength between calcified and non-calcified atheromas have reached statistical significance in the female group. At most of the analysed stress levels, the loading direction was found significant for the male cohort which was also confirmed by large differences in ultimate strains. The representative uniaxial stress-strain curves (given by median values of strains at chosen stress levels) were fitted with an isotropic hyperelastic model for different groups specified by the investigated factors while the observed differences between circumferential and longitudinal direction were captured by an anisotropic hyperelastic model. The obtained results should be valid also for the tissue of the fibrous cap, the rupture of which is to be predicted in clinics using computational modelling because it may induce arterial thrombosis and consequently a brain stroke.
Collapse
Affiliation(s)
- Ondřej Lisický
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Brno University of Technology, Czech Republic.
| | - Anna Hrubanová
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Brno University of Technology, Czech Republic
| | - Robert Staffa
- 2(nd) Department of Surgery, St. Anne's University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Robert Vlachovský
- 2(nd) Department of Surgery, St. Anne's University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiří Burša
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Brno University of Technology, Czech Republic
| |
Collapse
|
9
|
Canciello G, Mancusi C, Izzo R, Morisco C, Strisciuglio T, Barbato E, Trimarco B, Luca ND, de Simone G, Losi MA. Determinants of aortic root dilatation over time in patients with essential hypertension: The Campania Salute Network. Eur J Prev Cardiol 2021; 28:1508-1514. [PMID: 32529944 DOI: 10.1177/2047487320931630] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/13/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND Determinants of changes of aortic root dimension over time are not well defined. DESIGN We investigated whether specific phenotype and treatment exist predicting changes in aortic root dimension in hypertensive patients from the Campania Salute Network. METHODS N = 4856 participants (age 53 ± 11 years, 44% women) were included. At first and last available echocardiograms, we measured aortic root and a z-score of aortic root (AOz) was generated as the difference between measured and predicted aortic root, derived from a healthy reference population. Aortic root dilatation (ARD) was defined as AOz >75th percentile of distribution. RESULTS At baseline, 3642 patients (75%) exhibited normal aortic root, and 1214 (25%) ARD. After a follow-up of 6.1 years (interquartile range 3.0-8.8 years), 366 (11%) patients with initial normal aortic root exhibited ARD, whereas 457(38%) with initial ARD exhibited normal aortic root. At multivariate analysis patients with incident ARD were most likely to be women, obese, with left ventricular hypertrophy, lower systolic but higher diastolic blood pressure and stroke volume index at baseline, and higher average value of diastolic blood pressure during follow-up (p < 0.05); whereas patients normalizing their ARD were non-obese women with lower baseline systolic blood pressure, stroke volume index, average diastolic blood pressure during follow-up and longer follow-up time (p < 0.05). Anti-renin-angiotensin system (anti-RAS) was associated with 45% greater probability to normalize aortic root dimension. CONCLUSIONS Volume (stroke volume index) and pressure loads (diastolic blood pressure) influence aortic root dimension over time. Aortic root normalization, reflecting a more favourable haemodynamic load, is predictable in non-obese women with lower diastolic blood pressure, taking more anti-RAS therapy. This suggest that sex elicits a different response in aortic walls to pathological stimuli.
Collapse
Affiliation(s)
- Grazia Canciello
- Hypertension Research Center and Department of Advanced Biomedical Sciences, Federico II University of Naples, Italy
| | - Costantino Mancusi
- Hypertension Research Center and Department of Advanced Biomedical Sciences, Federico II University of Naples, Italy
| | - Raffaele Izzo
- Hypertension Research Center and Department of Advanced Biomedical Sciences, Federico II University of Naples, Italy
| | - Carmine Morisco
- Hypertension Research Center and Department of Advanced Biomedical Sciences, Federico II University of Naples, Italy
| | - Teresa Strisciuglio
- Hypertension Research Center and Department of Advanced Biomedical Sciences, Federico II University of Naples, Italy
| | - Emanuele Barbato
- Hypertension Research Center and Department of Advanced Biomedical Sciences, Federico II University of Naples, Italy
| | - Bruno Trimarco
- Hypertension Research Center and Department of Advanced Biomedical Sciences, Federico II University of Naples, Italy
| | - Nicola De Luca
- Hypertension Research Center and Department of Advanced Biomedical Sciences, Federico II University of Naples, Italy
| | - Giovanni de Simone
- Hypertension Research Center and Department of Advanced Biomedical Sciences, Federico II University of Naples, Italy
| | - Maria Angela Losi
- Hypertension Research Center and Department of Advanced Biomedical Sciences, Federico II University of Naples, Italy
| |
Collapse
|
10
|
Nagaraja S, Leichsenring K, Ambati M, De Lorenzis L, Böl M. On a phase-field approach to model fracture of small intestine walls. Acta Biomater 2021; 130:317-331. [PMID: 34119714 DOI: 10.1016/j.actbio.2021.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022]
Abstract
We address anisotropic elasticity and fracture in small intestine walls (SIWs) with both experimental and computational methods. Uniaxial tension experiments are performed on porcine SIW samples with varying alignments and quantify their nonlinear elastic anisotropic behavior. Fracture experiments on notched SIW strips reveal a high sensitivity of the crack propagation direction and the failure stress on the tissue orientation. From a modeling point of view, the observed anisotropic elastic response is studied with a continuum mechanical model stemming from a strain energy density with a neo-Hookean component and an anisotropic component with four families of fibers. Fracture is addressed with the phase-field approach, featuring two-fold anisotropy in the fracture toughness. Elastic and fracture model parameters are calibrated based on the experimental data, using the maximum and minimum limits of the experimental stress-stretch data set. A very good agreement between experimental data and computational results is obtained, the role of anisotropy being effectively captured by the proposed model in both the elastic and the fracture behavior. STATEMENT OF SIGNIFICANCE: This article reports a comprehensive experimental data set on the mechanical failure behavior of small intestinal tissue, and presents the corresponding protocols for preparing and testing the samples. On the one hand, the results of this study contribute to the understanding of small intestine mechanics and thus to understanding of load transfer mechanisms inside the tissue. On the other hand, these results are used as input for a phase-field modelling approach, presented in this article. The presented model can reproduce the mechanical failure behavior of the small intestine in an excellent way and is thus a promising tool for the future mechanical description of diseased small intestinal tissue.
Collapse
|
11
|
Sipos M, Gerszi D, Dalloul H, Bányai B, Sziva RE, Kollarics R, Magyar P, Török M, Ács N, Szekeres M, Nádasy GL, Hadjadj L, Horváth EM, Várbíró S. Vitamin D Deficiency and Gender Alter Vasoconstrictor and Vasodilator Reactivity in Rat Carotid Artery. Int J Mol Sci 2021; 22:ijms22158029. [PMID: 34360792 PMCID: PMC8347553 DOI: 10.3390/ijms22158029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 01/07/2023] Open
Abstract
The vitamin-D-sensitivity of the cardiovascular system may show gender differences. The prevalence of vitamin D (VD) deficiency (VDD) is high, and it alters cardiovascular function and increases the risk of stroke. Our aim was to investigate the vascular reactivity and histological changes of isolated carotid artery of female and male rats in response to different VD supplies. A total of 48 male and female Wistar rats were divided into four groups: female VD supplemented, female VDD, male VD supplemented, male VDD. The vascular function of isolated carotid artery segments was examined by wire myography. Both vitamin D deficiency and male gender resulted in increased phenylephrine-induced contraction. Acetylcholine-induced relaxation decreased in male rats independently from VD status. Inhibition of prostanoid signaling by indomethacin reduced contraction in females, but increased relaxation ability in male rats. Functional changes were accompanied by VDD and gender-specific histological alterations. Elastic fiber density was significantly decreased by VDD in female rats, but not in males. Smooth muscle actin and endothelial nitric oxide synthase levels were significantly lowered, but the thromboxane receptor was elevated in VDD males. Decreased nitrative stress was detected in both male groups independently from VD supply. The observed interactions between vitamin D deficiency and sex may play a role in the gender difference of cardiovascular risk.
Collapse
Affiliation(s)
- Miklós Sipos
- Department of Obstetrics and Gynecology, Faculty of Medicine, Semmelweis University, Üllői Street 78/a, 1083 Budapest, Hungary; (M.S.); (D.G.); (H.D.); (R.K.); (M.T.); (N.Á.); (S.V.)
| | - Dóra Gerszi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Semmelweis University, Üllői Street 78/a, 1083 Budapest, Hungary; (M.S.); (D.G.); (H.D.); (R.K.); (M.T.); (N.Á.); (S.V.)
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó Street 37-47, 1094 Budapest, Hungary; (B.B.); (M.S.); (G.L.N.); (E.M.H.)
| | - Hicham Dalloul
- Department of Obstetrics and Gynecology, Faculty of Medicine, Semmelweis University, Üllői Street 78/a, 1083 Budapest, Hungary; (M.S.); (D.G.); (H.D.); (R.K.); (M.T.); (N.Á.); (S.V.)
| | - Bálint Bányai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó Street 37-47, 1094 Budapest, Hungary; (B.B.); (M.S.); (G.L.N.); (E.M.H.)
| | - Réka Eszter Sziva
- Department of Obstetrics and Gynecology, Faculty of Medicine, Semmelweis University, Üllői Street 78/a, 1083 Budapest, Hungary; (M.S.); (D.G.); (H.D.); (R.K.); (M.T.); (N.Á.); (S.V.)
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó Street 37-47, 1094 Budapest, Hungary; (B.B.); (M.S.); (G.L.N.); (E.M.H.)
- Workgroup for Science Management, Doctoral School, Semmelweis University, Üllői Street 22, 1085 Budapest, Hungary
- Correspondence:
| | - Réka Kollarics
- Department of Obstetrics and Gynecology, Faculty of Medicine, Semmelweis University, Üllői Street 78/a, 1083 Budapest, Hungary; (M.S.); (D.G.); (H.D.); (R.K.); (M.T.); (N.Á.); (S.V.)
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó Street 37-47, 1094 Budapest, Hungary; (B.B.); (M.S.); (G.L.N.); (E.M.H.)
| | - Péter Magyar
- Medical Imaging Centre, Faculty of Medicine, Semmelweis University, Üllői Street 78/a, 1083 Budapest, Hungary;
| | - Marianna Török
- Department of Obstetrics and Gynecology, Faculty of Medicine, Semmelweis University, Üllői Street 78/a, 1083 Budapest, Hungary; (M.S.); (D.G.); (H.D.); (R.K.); (M.T.); (N.Á.); (S.V.)
- Workgroup for Science Management, Doctoral School, Semmelweis University, Üllői Street 22, 1085 Budapest, Hungary
| | - Nándor Ács
- Department of Obstetrics and Gynecology, Faculty of Medicine, Semmelweis University, Üllői Street 78/a, 1083 Budapest, Hungary; (M.S.); (D.G.); (H.D.); (R.K.); (M.T.); (N.Á.); (S.V.)
| | - Mária Szekeres
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó Street 37-47, 1094 Budapest, Hungary; (B.B.); (M.S.); (G.L.N.); (E.M.H.)
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Vas Street 17, 1088, Budapest, Hungary
| | - György L. Nádasy
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó Street 37-47, 1094 Budapest, Hungary; (B.B.); (M.S.); (G.L.N.); (E.M.H.)
| | - Leila Hadjadj
- Department of Translational Medicine, Faculty of Medicine, Semmelweis University, Tűzoltó Street 37-47, 1094 Budapest, Hungary;
| | - Eszter Mária Horváth
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó Street 37-47, 1094 Budapest, Hungary; (B.B.); (M.S.); (G.L.N.); (E.M.H.)
| | - Szabolcs Várbíró
- Department of Obstetrics and Gynecology, Faculty of Medicine, Semmelweis University, Üllői Street 78/a, 1083 Budapest, Hungary; (M.S.); (D.G.); (H.D.); (R.K.); (M.T.); (N.Á.); (S.V.)
- Workgroup for Science Management, Doctoral School, Semmelweis University, Üllői Street 22, 1085 Budapest, Hungary
| |
Collapse
|
12
|
Villard C, Roy J, Bogdanovic M, Eriksson P, Hultgren R. Sex Hormones in Men with Abdominal Aortic Aneurysm. J Vasc Surg 2021; 74:2023-2029. [PMID: 34182029 DOI: 10.1016/j.jvs.2021.06.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 06/13/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) primarily affects elderly men. The impact of sex on aneurysm development has been associated with an effect of sex hormones, through mechanisms that are not fully understood. This study aimed to examine the association between levels of sex hormones and the occurrence of AAA in elderly men. METHODS A prospective case-control study was conducted including 452, 65-year old men participating in screening for AAA, 2013-2019; 230 men with AAA and 222 men with an aortic diameter<30mm (controls). Questionnaires and blood samples were collected and stored consecutively. Serum levels of total testosterone, estradiol, progesterone, luteinizing hormone and sex hormone binding globulin were analyzed by electrochemiluminescent immunoassays. Multivariable logistic regression analysis was used to assess the association of sex hormones with AAA. RESULTS The median aneurysm diameter was 33mm. Men with AAA had higher estradiol and progesterone levels than controls (93pmol/L vs. 84pmol/L, p=.003 and 0.41nmol/L vs. 0.17nmol/L, p<.001). Testosterone levels were lower in men with AAA than in controls (13nmol/L vs. 14nmol/L, p=.026). AAA was associated with detectable levels of progesterone(OR 6.69, 95%CI 3.86-11.47), smoking(OR 5.26, 95%CI 3.12-8.85), coronary heart disease(OR 4.06, 95%CI 1.92-8.58) and body mass index>25(OR 2.26, 95%CI 1.34-3.82). CONCLUSION The observed higher levels of estradiol and progesterone in men with AAA, suggest an impact of sex hormones on aneurysm development. The association between progesterone levels and aortic diameter, stress the importance of focusing on the potential effect of this unconsidered female sex hormone on aneurysm formation.
Collapse
Affiliation(s)
- C Villard
- Department of Transplantation Surgery, Karolinska University, Stockholm, Sweden; Department of Medicine Huddinge, Unit of Gastroenterology and Rheumatology, Karolinska Institutet, Stockholm, Sweden.
| | - J Roy
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Vascular Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - M Bogdanovic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - P Eriksson
- Department of Medicine Solna, Unit of Cardiovascular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - R Hultgren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Vascular Surgery, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
13
|
Failure Properties of Healthy and Diabetic Rabbit Thoracic Aortas and Their Potential Correlation with Mass Fractions of Collagen. Cardiovasc Eng Technol 2021; 13:69-79. [PMID: 34142313 DOI: 10.1007/s13239-021-00554-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 06/04/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Diabetes Mellitus (DM) plays an important role in aortic remodeling and alters the wall mechanics. The purpose of this study is to investigate and compare multi-directional failure properties of healthy and diabetic thoracic aortas. METHODS Thirty adult rabbits (1.6-2.2 kg) were collected and type 1 diabetic rabbit model was induced by injection of alloxan. A total of 10 control and 20 diabetic (with different time exposure to diabetic condition) rabbit descending thoracic aortas were harvested. Uniaxial tensile (UT) and radial tension (RT) tests were performed to determine circumferential, axial and radial failure stresses of the control and diabetic aortas, which were further correlated with mass fractions (MFs) of collagen. RESULTS Throughout the UT test, there was a clear indication of anisotropic mechanical responses for some diabetic aorta specimens in the high loading domain. There was a trend towards an increase in the mean circumferential and axial failure stresses for the diabetic aortas when compared to the control aortas. However, differences were not statistically significant. The quantified failure stresses in the circumferential direction were, in general, higher than the stress values in the axial direction for both control and diabetic groups. For the RT test, the radial failure stresses of the diabetic aortas (in 8 weeks) were significantly higher than those of the control aortas (95 ± 17 vs. 63 ± 15 kPa, p = 0.01). Strong correlations were identified between the circumferential failure stresses and the MFs of collagen for both control and diabetic aortas. Nevertheless, this correlation was not present in the axial and radial directions. CONCLUSION The results suggest that there is a lower propensity of radial tear occurrence within the diabetic aortic wall. More importantly, time exposure to diabetic condition is not a factor that may change failure properties of the rabbit descending thoracic aortas in the circumferential and axial directions.
Collapse
|
14
|
Mukherjee K, Pingili AK, Singh P, Dhodi AN, Dutta SR, Gonzalez FJ, Malik KU. Testosterone Metabolite 6β-Hydroxytestosterone Contributes to Angiotensin II-Induced Abdominal Aortic Aneurysms in Apoe-/- Male Mice. J Am Heart Assoc 2021; 10:e018536. [PMID: 33719500 PMCID: PMC8174379 DOI: 10.1161/jaha.120.018536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Sex is a prominent risk factor for abdominal aortic aneurysms (AAAs), and angiotensin II (Ang II) induces AAA formation to a greater degree in male than in female mice. We previously reported that cytochrome P450 1B1 contributes to the development of hypertension, as well as AAAs, in male mice. We also found that a cytochrome P450 1B1‐generated metabolite of testosterone, 6β‐hydroxytestosterone (6β‐OHT), contributes to Ang II‐induced hypertension and associated cardiovascular and renal pathogenesis in male mice. The current study was conducted to determine the contribution of 6β‐OHT to Ang II‐induced AAA development in Apoe–/– male mice. Methods and Results Intact or castrated Apoe–/–/Cyp1b1+/+ and Apoe–/–/Cyp1b1–/– male mice were infused with Ang II or its vehicle for 28 days, and administered 6β‐OHT every third day for the duration of the experiment. Abdominal aortas were then evaluated for development of AAAs. We observed a significant increase in the incidence and severity of AAAs in intact Ang II‐infused Apoe–/–/Cyp1b1+/+ mice, compared with vehicle‐treated mice, which were minimized in castrated Apoe–/–/Cyp1b1+/+ and intact Apoe–/–/Cyp1b1–/– mice infused with Ang II. Treatment with 6β‐OHT significantly restored the incidence and severity of AAAs in Ang II‐infused castrated Apoe–/–/Cyp1b1+/+ and intact Apoe–/–/Cyp1b1–/– mice. However, administration of testosterone failed to increase AAA incidence and severity in Ang II‐infused intact Apoe–/–/Cyp1b1–/– mice. Conclusions Our results indicate that the testosterone‐cytochrome P450 1B1‐generated metabolite 6β‐OHT contributes to Ang II‐induced AAA development in Apoe–/– male mice.
Collapse
Affiliation(s)
- Kamalika Mukherjee
- Department of Pharmacology Addiction Science and Toxicology College of Medicine University of Tennessee Health Science Center Memphis TN
| | - Ajeeth K Pingili
- Department of Pharmacology Addiction Science and Toxicology College of Medicine University of Tennessee Health Science Center Memphis TN
| | - Purnima Singh
- Department of Pharmacology Addiction Science and Toxicology College of Medicine University of Tennessee Health Science Center Memphis TN
| | - Ahmad N Dhodi
- Department of Pharmacology Addiction Science and Toxicology College of Medicine University of Tennessee Health Science Center Memphis TN
| | - Shubha R Dutta
- Department of Pharmacology Addiction Science and Toxicology College of Medicine University of Tennessee Health Science Center Memphis TN
| | | | - Kafait U Malik
- Department of Pharmacology Addiction Science and Toxicology College of Medicine University of Tennessee Health Science Center Memphis TN
| |
Collapse
|
15
|
Morel S, Karol A, Graf V, Pelli G, Richter H, Sutter E, Braunersreuther V, Frösen J, Bijlenga P, Kwak BR, Nuss KM. Sex-related differences in wall remodeling and intraluminal thrombus resolution in a rat saccular aneurysm model. J Neurosurg 2021; 134:58-71. [PMID: 31881533 DOI: 10.3171/2019.9.jns191466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 09/24/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Intracranial aneurysms (IAs) are more often diagnosed in women. Hormones and vessel geometry, which influences wall shear stress, may affect pathophysiological processes of the arterial wall. Here, the authors investigated sex-related differences in the remodeling of the aneurysm wall and in intraluminal thrombus resolution. METHODS A well-characterized surgical side-wall aneurysm model was used in female, male, and ovariectomized rats. Decellularized grafts were used to model highly degenerated and decellularized IA walls and native grafts to model healthy IA walls. Aneurysm growth and thrombus composition were analyzed at 1, 7, 14, and 28 days. Sex-related differences in vessel wall remodeling were compared with human IA dome samples of men and pre- and postmenopausal women. RESULTS At 28 days, more aneurysm growth was observed in ovariectomized rats than in males or non-ovariectomized female rats. The parent artery size was larger in male rats than in female or ovariectomized rats, as expected. Wall inflammation increased over time in all groups and was most severe in the decellularized female and ovariectomized groups at 28 days compared with the male group. Likewise, in these groups the most elastin fragmentation was seen at 28 days. In female rats, on days 1, 7, and 14, the intraluminal thrombus was mainly composed of red blood cells and fibrin. On days 14 and 28, macrophage and smooth muscle cell invasion inside the thrombus was shown, leading to the removal of red blood cells and deposition of collagen and elastin. On days 14 and 28, similar profiles of thrombus reorganization were observed in male and ovariectomized female rats. However, collagen content in thrombi and vessel wall macrophage content were higher in aneurysms of male rats at 28 days than in those of female rats. On day 28, thrombus coverage by endothelial cells was lower in ovariectomized than in female or male rats. Finally, analysis of human IA domes showed that endothelial cell coverage was lower in men and postmenopausal women than in younger women. CONCLUSIONS Aneurysm growth and intraluminal thrombus resolution show sex-dependent differences. While certain processes (endothelial cell coverage and collagen deposition) point to a strong hormonal dependence, others (wall inflammation and aneurysm growth) seem to be influenced by both hormones and parent artery size.
Collapse
Affiliation(s)
- Sandrine Morel
- 1Department of Pathology and Immunology and
- 2Division of Neurosurgery, Department of Clinical Neurosciences, Faculty of Medicine, and
| | | | | | | | - Henning Richter
- 4Diagnostic Imaging Research Unit, Vetsuisse Faculty, University of Zürich, Switzerland; and
| | | | | | - Juhana Frösen
- 6Hemorrhagic Brain Pathology Research Group, Department of Neurosurgery, Kuopio University Hospital, Kuopio, Finland
| | - Philippe Bijlenga
- 2Division of Neurosurgery, Department of Clinical Neurosciences, Faculty of Medicine, and
| | - Brenda R Kwak
- 1Department of Pathology and Immunology and
- 7Department of Medical Specializations-Cardiology, Faculty of Medicine, University of Geneva
| | | |
Collapse
|
16
|
Sigaeva T, Polzer S, Vitásek R, Di Martino ES. Effect of testing conditions on the mechanical response of aortic tissues from planar biaxial experiments: Loading protocol and specimen side. J Mech Behav Biomed Mater 2020; 111:103882. [DOI: 10.1016/j.jmbbm.2020.103882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 01/15/2023]
|
17
|
Failure properties of abdominal aortic aneurysm tissue are orientation dependent. J Mech Behav Biomed Mater 2020; 114:104181. [PMID: 33153925 DOI: 10.1016/j.jmbbm.2020.104181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 08/12/2020] [Accepted: 10/23/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Biomechanical rupture risk assessment of abdominal aortic aneurysm (AAA) requires information about failure properties of aneurysmal tissue. There are large differences between reported values. Among others, studies vary in using either axially or circumferentially oriented samples. This study investigates the effect of sample orientation on failure properties. METHODS Aneurysmal tissues from 45 patients (11 females) were harvested during open AAA repair, cut into uniaxial samples (90) and tested mechanically within 3 h. If possible, the samples were cut in both axial (49 samples) and circumferential (41 samples) directions. Wall thickness, First Piola-Kirchhoff strength Pult and ultimate tension Tult were recorded. Influence of sample orientation and other clinical parameters were investigated using non parametric tests. RESULTS Medians of Pult (values 1100 kPa for circumferential vs. 715 kPa for axial direction, p < 10-4) and Tult (17.4 N/cm in circumferential vs. 11.2 N/cm in axial direction, p < 10-4) were significantly higher in circumferential direction. For paired data, the median of difference was 411 kPa (p < 10-3) in Pult and 7.4 N/cm (p < 10-4) in Tult in favor of circumferential direction. CONCLUSIONS In this first study of anisotropy in AAA wall failure properties using paired comparisons, the strength in circumferential orientation was found to be higher than in axial orientation.
Collapse
|
18
|
Reproducibility assessment of ultrasound-based aortic stiffness quantification and verification using Bi-axial tensile testing. J Mech Behav Biomed Mater 2020; 103:103571. [DOI: 10.1016/j.jmbbm.2019.103571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 09/10/2019] [Accepted: 11/29/2019] [Indexed: 01/04/2023]
|
19
|
Abstract
Abdominal aortic aneurysms (AAA) pose a considerable health burden and at present are only managed surgically since there is no proven pharmacotherapy that will retard their expansion or reduce the incidence of fatal rupture. This pathology shares several pathophysiological mechanisms with atherosclerosis, such as macrophage infiltration, inflammation, and degradation of extracellular matrix. Therefore, therapeutic targets proven effective in the treatment of atherosclerosis could also be considered for treatment of AAA. Different members of the nuclear receptor (NR) superfamily have been extensively studied as potential targets in the treatment of cardiovascular disease (CVD) and therefore might also be suited for AAA treatment. In this context, this review summarizes the role of different NRs in CVD, mostly atherosclerosis, and discusses in detail the current knowledge of their implications in AAA. From this overview it becomes apparent that NRs that were attributed a beneficial or adverse role in CVD have similar roles in AAA. Together, this overview provides compelling evidence to consider several NRs as attractive targets for future treatment of AAA.
Collapse
|
20
|
Effect of diabetes mellitus on the dissection properties of the rabbit descending thoracic aortas. J Biomech 2019; 100:109592. [PMID: 31911049 DOI: 10.1016/j.jbiomech.2019.109592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 01/02/2023]
Abstract
Effect of diabetes mellitus (DM) on the dissection properties of thoracic aortas remains largely unclear and relevant biomechanical analysis is lacking. In the present study forty adult rabbits (1.6-2.2 kg) were collected and type 1 diabetic rabbit model was induced by injection of alloxan. A total of 10 control and 30 diabetic (with different time exposure to diabetic condition) rabbit descending thoracic aortas were harvested. Peeling tests were performed to quantitatively determine force/width values and dissection energy in the control and diabetic aortas. Histological and mass fraction analyses were performed to characterize the dissected morphology and to quantify dry weight percentages of elastin and collagen. The resisting force/width values were significantly higher for the diabetic thoracic aortas (in 8 weeks) than those of the control thoracic aortas (axial: 26.1 ± 4.0 vs. 20.5 ± 3.1 mN/mm, p = 0.04; circ: 19.7 ± 2.8 vs. 15.3 ± 1.9 mN/mm, p = 0.03). There was a higher resistance to the dissection in both axial and circumferential directions for the diabetic aortas. The dissection energy generated by axial and circumferential peeling of the diabetic aortas (in 6 and 8 weeks) was statistically significantly higher than that of the control aortas (axial: 5.6 ± 0.7 vs. 4.3 ± 0.5 mJ/cm2, p = 0.02; circ: 3.9 ± 0.3 vs. 3.2 ± 0.3 mJ/cm2, p = 0.02). Histology showed that dissection mainly occurred in the aortic media and the dissected surfaces were close to external elastic lamina for some specimens. The mass fractions of collagen within the diabetic aortas increased significantly as compared to the control aortas, whereas no significant change was found for that of elastin. Our data suggest that the experimentally induced DM may lead to a lower propensity of dissection for the rabbit thoracic aortas. The dissection properties of the rabbit thoracic aortas vary with time exposed to diabetic condition.
Collapse
|
21
|
Abstract
Aortic aneurysms are a common vascular disease in Western populations that can involve virtually any portion of the aorta. Abdominal aortic aneurysms are much more common than thoracic aortic aneurysms and combined they account for >25 000 deaths in the United States annually. Although thoracic and abdominal aortic aneurysms share some common characteristics, including the gross anatomic appearance, alterations in extracellular matrix, and loss of smooth muscle cells, they are distinct diseases. In recent years, advances in genetic analysis, robust molecular tools, and increased availability of animal models have greatly enhanced our knowledge of the pathophysiology of aortic aneurysms. This review examines the various proposed cellular mechanisms responsible for aortic aneurysm formation and identifies opportunities for future studies.
Collapse
Affiliation(s)
- Raymundo Alain Quintana
- From the Division of Cardiology, Department of Medicine (R.A.Q., W.R.T.), Emory University School of Medicine, Atlanta, GA
| | - W Robert Taylor
- From the Division of Cardiology, Department of Medicine (R.A.Q., W.R.T.), Emory University School of Medicine, Atlanta, GA.,Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology (W.R.T.), Emory University School of Medicine, Atlanta, GA.,Division of Cardiology, Atlanta VA Medical Center, Decatur, GA (W.R.T.)
| |
Collapse
|
22
|
Affiliation(s)
- Ellen K Brinza
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| | | |
Collapse
|
23
|
On the influence of wall calcification and intraluminal thrombus on prediction of abdominal aortic aneurysm rupture. J Vasc Surg 2018; 67:1234-1246.e2. [DOI: 10.1016/j.jvs.2017.05.086] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/02/2017] [Indexed: 01/14/2023]
|
24
|
Schroeder F, Polzer S, Slažanský M, Man V, Skácel P. Predictive capabilities of various constitutive models for arterial tissue. J Mech Behav Biomed Mater 2018; 78:369-380. [DOI: 10.1016/j.jmbbm.2017.11.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/09/2017] [Accepted: 11/20/2017] [Indexed: 11/16/2022]
|
25
|
Boese AC, Chang L, Yin KJ, Chen YE, Lee JP, Hamblin MH. Sex differences in abdominal aortic aneurysms. Am J Physiol Heart Circ Physiol 2018; 314:H1137-H1152. [PMID: 29350999 DOI: 10.1152/ajpheart.00519.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a vascular disorder with a high case fatality rate in the instance of rupture. AAA is a multifactorial disease, and the etiology is still not fully understood. AAA is more likely to occur in men, but women have a greater risk of rupture and worse prognosis. Women are reportedly protected against AAA possibly by premenopausal levels of estrogen and are, on average, diagnosed at older ages than men. Here, we review the present body of research on AAA pathophysiology in humans, animal models, and cultured cells, with an emphasis on sex differences and sex steroid hormone signaling.
Collapse
Affiliation(s)
- Austin C Boese
- Department of Pharmacology, Tulane University School of Medicine , New Orleans, Louisiana
| | - Lin Chang
- Center for Advanced Models for Translational Sciences and Therapeutics, Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan
| | - Ke-Jie Yin
- Department of Neurology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan
| | - Jean-Pyo Lee
- Department of Physiology, Tulane University School of Medicine , New Orleans, Louisiana.,Center for Stem Cell Research and Regenerative Medicine , New Orleans, Louisiana
| | - Milton H Hamblin
- Department of Pharmacology, Tulane University School of Medicine , New Orleans, Louisiana
| |
Collapse
|
26
|
Kemmerling EMC, Peattie RA. Abdominal Aortic Aneurysm Pathomechanics: Current Understanding and Future Directions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1097:157-179. [DOI: 10.1007/978-3-319-96445-4_8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Villard C, Hultgren R. Abdominal aortic aneurysm: Sex differences. Maturitas 2017; 109:63-69. [PMID: 29452784 DOI: 10.1016/j.maturitas.2017.12.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Abdominal aortic aneurysm (AAA) predominantly affects an elderly male population. Even so, AAA appears more detrimental in women, who experience a higher risk of aneurysm rupture and a worse outcome after surgery than men. Why women are privileged from yet are worse off once affected has been attributed to an effect of sex hormones. This review summarizes the knowledge of sex differences in AAA and addresses the changes in the aneurysm wall from a gender perspective. METHOD Standard reporting guidelines set by the PRISMA Group were followed to identify studies examining AAA from a gender perspective. Relevant reports were identified using two electronic databases: PubMed and Web of Science. The systematic search was performed in two stages: firstly, using the terms AAA and gender/sex/women; and secondly, adding the terms "elastin", "collagen" and "vascular smooth muscle cells", in order to filter the search for studies relevant to our focus on the aneurysm wall. CONCLUSION Current studies support the theory that sex has an effect on aneurysm formation, yet are inconclusive about whether or not aneurysm formation is dependent on female/male sex hormones or a lack thereof. The studies in women are scarce and out of those most reports primarily address other end-points, which limit their ability to illuminate an effect of sex on aneurysm formation. The complexity of the human menstrual cycle and menopausal transition are difficult to mimic in animal models, which limit their applicability to AAA formation in humans.
Collapse
Affiliation(s)
- Christina Villard
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| | - Rebecka Hultgren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Vascular Surgery, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
28
|
Virag L, Wilson JS, Humphrey JD, Karšaj I. Potential biomechanical roles of risk factors in the evolution of thrombus-laden abdominal aortic aneurysms. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2017; 33:10.1002/cnm.2893. [PMID: 28447404 PMCID: PMC5658277 DOI: 10.1002/cnm.2893] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 02/23/2017] [Accepted: 04/23/2017] [Indexed: 05/22/2023]
Abstract
Abdominal aortic aneurysms (AAAs) typically harbour an intraluminal thrombus (ILT), yet most prior computational models neglect biochemomechanical effects of thrombus on lesion evolution. We recently proposed a growth and remodelling model of thrombus-laden AAAs that introduced a number of new constitutive relations and associated model parameters. Because values of several of these parameters have yet to be elucidated by clinical data and could vary significantly from patient to patient, the aim of this study was to investigate the possible extent to which these parameters influence AAA evolution. Given that some of these parameters model potential effects of factors that influence the risk of rupture, this study also provides insight into possible roles of common risk factors on the natural history of AAAs. Despite geometrical limitations of a cylindrical domain, findings support current thought that smoking, hypertension, and female sex likely increase the risk of rupture. Although thrombus thickness is not a reliable risk factor for rupture, the model suggests that the presence of ILT may have a destabilizing effect on AAA evolution, consistent with histological findings from human samples. Finally, simulations support two hypotheses that should be tested on patient-specific geometries in the future. First, ILT is a potential source of the staccato enlargement observed in many AAAs. Second, ILT can influence rupture risk, positively or negatively, via competing biomechanical (eg, stress shielding) and biochemical (ie, proteolytic) effects. Although further computational and experimental studies are needed, the present findings highlight the importance of considering ILT when predicting aneurysmal enlargement and rupture risk.
Collapse
Affiliation(s)
- Lana Virag
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Zagreb, Croatia
| | - John S. Wilson
- Department of Radiology, Emory University, Atlanta, GA, USA
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - Igor Karšaj
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Zagreb, Croatia
- Address for Correspondence: Igor Karšaj, Ph.D., Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, Zagreb, 10000, Croatia, Phone: +38516168125,
| |
Collapse
|
29
|
Tong J, Yang F, Li X, Xu X, Wang GX. Mechanical Characterization and Material Modeling of Diabetic Aortas in a Rabbit Model. Ann Biomed Eng 2017; 46:429-442. [PMID: 29124551 DOI: 10.1007/s10439-017-1955-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/03/2017] [Indexed: 12/21/2022]
Abstract
Diabetes has been recognized as a major risk factor to cause macrovascular diseases and plays a key role in aortic wall remodeling. However, the effects of diabetes on elastic properties of aortas remain largely unknown and quantitative mechanical data are lacking. Thirty adult rabbits (1.6-2.2 kg) were collected and the type 1 diabetic rabbit model was induced by injection of alloxan. A total of 15 control and 15 diabetic rabbit (abdominal) aortas were harvested. Uniaxial and biaxial tensile tests were performed to measure ultimate tensile strength and to characterize biaxial mechanical behaviors of the aortas. A material model was fitted to the biaxial experimental data to obtain constitutive parameters. Histological and mass fraction analyses were performed to investigate the underlying microstructure and dry weight percentages of elastin and collagen in the control and the diabetic aortas. No statistically significant difference was found in ultimate tensile strength between the control and the diabetic aortas. Regarding biaxial mechanical responses, the diabetic aortas exhibited significantly lower extensibility and significantly higher tissue stiffness than the control aortas. Notably, tissue stiffening occurred in both circumferential and axial directions for the diabetic aortas; however, mechanical anisotropy does not change significantly. The material model was able to fit biaxial experimental data very well. Histology showed that a number of isolated foam cells were embedded in the diabetic aortas and hyperplasia of collagen was identified. The dry weight percentages of collagen within the diabetic aortas increased significantly as compared to the control aortas, whereas no significant change was found for that of elastin. Our data suggest that the diabetes impairs elastic properties and alters microstructure of the aortas and consequently, these changes may further contribute to complex aortic wall remodeling.
Collapse
Affiliation(s)
- Jianhua Tong
- Shanghai East Hospital, Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Chifeng Road 67, Shanghai, 200092, People's Republic of China.
| | - F Yang
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, People's Republic of China
| | - X Li
- Shanghai East Hospital, Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Chifeng Road 67, Shanghai, 200092, People's Republic of China
| | - X Xu
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - G X Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College of Chongqing University, Chongqing, People's Republic of China
- State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, People's Republic of China
| |
Collapse
|
30
|
Alsiraj Y, Thatcher SE, Blalock E, Fleenor B, Daugherty A, Cassis LA. Sex Chromosome Complement Defines Diffuse Versus Focal Angiotensin II-Induced Aortic Pathology. Arterioscler Thromb Vasc Biol 2017; 38:143-153. [PMID: 29097367 DOI: 10.1161/atvbaha.117.310035] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/19/2017] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Aortic pathologies exhibit sexual dimorphism, with aneurysms in both the thoracic and abdominal aorta (ie, abdominal aortic aneurysm [AAA]) exhibiting higher male prevalence. Women have lower prevalence of aneurysms, but when they occur, aneurysms progress rapidly. To define mechanisms for these sex differences, we determined the role of sex chromosome complement and testosterone on the location and progression of angiotensin II (AngII)-induced aortic pathologies. APPROACH AND RESULTS We used transgenic male mice expressing Sry (sex-determining region Y) on an autosome to create Ldlr (low-density lipoprotein receptor)-deficient male mice with an XY or XX sex chromosome complement. Transcriptional profiling was performed on abdominal aortas from XY or XX males, demonstrating 1746 genes influenced by sex chromosomes or sex hormones. Males (XY or XX) were either sham-operated or orchiectomized before AngII infusions. Diffuse aortic aneurysm pathology developed in XY AngII-infused males, whereas XX males developed focal AAAs. Castration reduced all AngII-induced aortic pathologies in XY and XX males. Thoracic aortas from AngII-infused XY males exhibited adventitial thickening that was not present in XX males. We infused male XY and XX mice with either saline or AngII and quantified mRNA abundance of key genes in both thoracic and abdominal aortas. Regional differences in mRNA abundance existed before AngII infusions, which were differentially influenced by AngII between genotypes. Prolonged AngII infusions resulted in aortic wall thickening of AAAs from XY males, whereas XX males had dilated focal AAAs. CONCLUSIONS An XY sex chromosome complement mediates diffuse aortic pathology, whereas an XX sex chromosome complement contributes to focal AngII-induced AAAs.
Collapse
Affiliation(s)
- Yasir Alsiraj
- From the Department of Pharmacology and Nutritional Sciences (Y.A., S.E.T., E.B., L.A.C.), Department of Kinesiology (B.F.), Department of Physiology (A.D.), and Saha Cardiovascular Research Center (A.D.), University of Kentucky, Lexington
| | - Sean E Thatcher
- From the Department of Pharmacology and Nutritional Sciences (Y.A., S.E.T., E.B., L.A.C.), Department of Kinesiology (B.F.), Department of Physiology (A.D.), and Saha Cardiovascular Research Center (A.D.), University of Kentucky, Lexington
| | - Eric Blalock
- From the Department of Pharmacology and Nutritional Sciences (Y.A., S.E.T., E.B., L.A.C.), Department of Kinesiology (B.F.), Department of Physiology (A.D.), and Saha Cardiovascular Research Center (A.D.), University of Kentucky, Lexington
| | - Bradley Fleenor
- From the Department of Pharmacology and Nutritional Sciences (Y.A., S.E.T., E.B., L.A.C.), Department of Kinesiology (B.F.), Department of Physiology (A.D.), and Saha Cardiovascular Research Center (A.D.), University of Kentucky, Lexington
| | - Alan Daugherty
- From the Department of Pharmacology and Nutritional Sciences (Y.A., S.E.T., E.B., L.A.C.), Department of Kinesiology (B.F.), Department of Physiology (A.D.), and Saha Cardiovascular Research Center (A.D.), University of Kentucky, Lexington
| | - Lisa A Cassis
- From the Department of Pharmacology and Nutritional Sciences (Y.A., S.E.T., E.B., L.A.C.), Department of Kinesiology (B.F.), Department of Physiology (A.D.), and Saha Cardiovascular Research Center (A.D.), University of Kentucky, Lexington.
| |
Collapse
|
31
|
Li Y, Wen Y, Green M, Cabral EK, Wani P, Zhang F, Wei Y, Baer TM, Chen B. Cell sex affects extracellular matrix protein expression and proliferation of smooth muscle progenitor cells derived from human pluripotent stem cells. Stem Cell Res Ther 2017; 8:156. [PMID: 28676082 PMCID: PMC5496346 DOI: 10.1186/s13287-017-0606-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/01/2017] [Accepted: 06/07/2017] [Indexed: 12/18/2022] Open
Abstract
Background Smooth muscle progenitor cells (pSMCs) differentiated from human pluripotent stem cells (hPSCs) hold great promise for treating diseases or degenerative conditions involving smooth muscle pathologies. However, the therapeutic potential of pSMCs derived from men and women may be very different. Cell sex can exert a profound impact on the differentiation process of stem cells into somatic cells. In spite of advances in translation of stem cell technologies, the role of cell sex and the effect of sex hormones on the differentiation towards mesenchymal lineage pSMCs remain largely unexplored. Methods Using a standard differentiation protocol, two human embryonic stem cell lines (one male line and one female line) and three induced pluripotent stem cell lines (one male line and two female lines) were differentiated into pSMCs. We examined differences in the differentiation of male and female hPSCs into pSMCs, and investigated the effect of 17β-estradiol (E2) on the extracellular matrix (ECM) metabolisms and cell proliferation rates of the pSMCs. Statistical analyses were performed by using Student’s t test or two-way ANOVA, p < 0.05. Results Male and female hPSCs had similar differentiation efficiencies and generated morphologically comparable pSMCs under a standard differentiation protocol, but the derived pSMCs showed sex differences in expression of ECM proteins, such as MMP-2 and TIMP-1, and cell proliferation rates. E2 treatment induced the expression of myogenic gene markers and suppressed ECM degradation activities through reduction of MMP activity and increased expression of TIMP-1 in female pSMCs, but not in male pSMCs. Conclusions hPSC-derived pSMCs from different sexes show differential expression of ECM proteins and proliferation rates. Estrogen appears to promote maturation and ECM protein expression in female pSMCs, but not in male pSMCs. These data suggest that intrinsic cell-sex differences may influence progenitor cell biology. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0606-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanhui Li
- Department of Obstetrics/Gynecology, Stanford University School of Medicine, 300 Pasteur Drive HH-333, Stanford, CA, 94305, USA.,Department of Obstetrics/Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yan Wen
- Department of Obstetrics/Gynecology, Stanford University School of Medicine, 300 Pasteur Drive HH-333, Stanford, CA, 94305, USA.
| | - Morgaine Green
- Department of Obstetrics/Gynecology, Stanford University School of Medicine, 300 Pasteur Drive HH-333, Stanford, CA, 94305, USA
| | - Elise K Cabral
- Department of Obstetrics/Gynecology, Stanford University School of Medicine, 300 Pasteur Drive HH-333, Stanford, CA, 94305, USA
| | - Prachi Wani
- Department of Obstetrics/Gynecology, Stanford University School of Medicine, 300 Pasteur Drive HH-333, Stanford, CA, 94305, USA
| | - Fan Zhang
- Department of Obstetrics/Gynecology, Stanford University School of Medicine, 300 Pasteur Drive HH-333, Stanford, CA, 94305, USA
| | - Yi Wei
- Department of Obstetrics/Gynecology, Stanford University School of Medicine, 300 Pasteur Drive HH-333, Stanford, CA, 94305, USA
| | - Thomas M Baer
- Stanford Photonics Research Center, Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Bertha Chen
- Department of Obstetrics/Gynecology, Stanford University School of Medicine, 300 Pasteur Drive HH-333, Stanford, CA, 94305, USA
| |
Collapse
|
32
|
Pancheri FQ, Peattie RA, Reddy ND, Ahamed T, Lin W, Ouellette TD, Iafrati MD, Luis Dorfmann A. Histology and Biaxial Mechanical Behavior of Abdominal Aortic Aneurysm Tissue Samples. J Biomech Eng 2017; 139:2588203. [DOI: 10.1115/1.4035261] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Indexed: 12/20/2022]
Abstract
Abdominal aortic aneurysms (AAAs) represent permanent, localized dilations of the abdominal aorta that can be life-threatening if progressing to rupture. Evaluation of risk of rupture depends on understanding the mechanical behavior of patient AAA walls. In this project, a series of patient AAA wall tissue samples have been evaluated through a combined anamnestic, mechanical, and histopathologic approach. Mechanical properties of the samples have been characterized using a novel, strain-controlled, planar biaxial testing protocol emulating the in vivo deformation of the aorta. Histologically, the tissue ultrastructure was highly disrupted. All samples showed pronounced mechanical stiffening with stretch and were notably anisotropic, with greater stiffness in the circumferential than the axial direction. However, there were significant intrapatient variations in wall stiffness and stress. In biaxial tests in which the longitudinal stretch was held constant at 1.1 as the circumferential stretch was extended to 1.1, the maximum average circumferential stress was 330 ± 70 kPa, while the maximum average axial stress was 190 ± 30 kPa. A constitutive model considering the wall as anisotropic with two preferred directions fit the measured data well. No statistically significant differences in tissue mechanical properties were found based on patient gender, age, maximum bulge diameter, height, weight, body mass index, or smoking history. Although a larger patient cohort is merited to confirm these conclusions, the project provides new insight into the relationships between patient natural history, histopathology, and mechanical behavior that may be useful in the development of accurate methods for rupture risk evaluation.
Collapse
Affiliation(s)
| | - Robert A. Peattie
- Department of Surgery, Tufts Medical Center, Boston, MA 02111 e-mail:
| | - Nithin D. Reddy
- Department of Surgery, Tufts Medical Center, Boston, MA 02111
| | - Touhid Ahamed
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA 02155
| | - Wenjian Lin
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA 02155
| | | | - Mark D. Iafrati
- Department of Surgery, Tufts Medical Center, Boston, MA 02111
| | - A. Luis Dorfmann
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA 02155; Department of Biomedical Engineering, Tufts University, Medford, MA 02155
| |
Collapse
|
33
|
Villard C, Eriksson P, Hanemaaijer R, Lindeman JH, Hultgren R. The composition of collagen in the aneurysm wall of men and women. J Vasc Surg 2016; 66:579-585.e1. [PMID: 27234441 DOI: 10.1016/j.jvs.2016.02.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/12/2016] [Indexed: 01/07/2023]
Abstract
BACKGROUND Loss of vessel wall integrity by degradation is essential for the development of abdominal aortic aneurysm (AAA) and ultimately its rupture. The observed greater rupture rate in women with AAA might be related to gender differences in the biomechanical properties of the aneurysm wall. The aim of the study was to compare the biomechanically important structure of collagen between men and women with AAA. METHODS Biopsies of the aneurysm walls were obtained during elective open repair of men (n = 14) and women (n = 14) treated for AAA. High-performance liquid chromatography (HPLC), Western blot, messenger RNA expression, and histochemical analyses were performed to assess the cross-linking and the amount and the composition of collagen. RESULTS There was neither a difference in the thickness of the aneurysm wall, nor in the histological evaluation of the collagen composition between the sexes. Relative collagen content in the aneurysm wall was similar in men and women, as assessed by messenger RNA expression and HPLC. Collagen cross-linking differed between the sexes; women had more lysyl pyridinoline (LP) than men (0.140 vs 0.07; P = .005), resulting in a lower hydroxyl pyridinoline (HP):LP ratio (3.28 vs 8.41; P = .003). There was no difference in messenger RNA and protein expressions of lysyl hydroxylase and lysyl oxidase to associate with the lower HP:LP ratio in women. CONCLUSIONS The composition of collagen in the aneurysm wall of men and women are in several aspects similar, with the exception of collagen cross-linking, suggesting that the difference in rupture rate between the sexes rather depend on the composition of other vessel wall structures.
Collapse
Affiliation(s)
- Christina Villard
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Vascular Surgery, Karolinska University Hospital, Stockholm, Sweden.
| | - Per Eriksson
- Atherosclerosis Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Jan H Lindeman
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Rebecka Hultgren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Vascular Surgery, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
34
|
Sommer G, Sherifova S, Oberwalder PJ, Dapunt OE, Ursomanno PA, DeAnda A, Griffith BE, Holzapfel GA. Mechanical strength of aneurysmatic and dissected human thoracic aortas at different shear loading modes. J Biomech 2016; 49:2374-82. [PMID: 26970889 DOI: 10.1016/j.jbiomech.2016.02.042] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 02/21/2016] [Indexed: 10/22/2022]
Abstract
Rupture of aneurysms and acute dissection of the thoracic aorta are life-threatening events which affect tens of thousands of people per year. The underlying mechanisms remain unclear and the aortic wall is known to lose its structural integrity, which in turn affects its mechanical response to the loading conditions. Hence, research on such aortic diseases is an important area in biomechanics. The present study investigates the mechanical properties of aneurysmatic and dissected human thoracic aortas via triaxial shear and uniaxial tensile testing with a focus on the former. In particular, ultimate stress values from triaxial shear tests in different orientations regarding the aorta׳s orthotropic microstructure, and from uniaxial tensile tests in radial, circumferential and longitudinal directions were determined. In total, 16 human thoracic aortas were investigated from which it is evident that the aortic media has much stronger resistance to rupture under 'out-of-plane' than under 'in-plane' shear loadings. Under different shear loadings the aortic tissues revealed anisotropic failure properties with higher ultimate shear stresses and amounts of shear in the longitudinal than in the circumferential direction. Furthermore, the aortic media decreased its tensile strength as follows: circumferential direction >longitudinaldirection> radial direction. Anisotropic and nonlinear tissue properties are apparent from the experimental data. The results clearly showed interspecimen differences influenced by the anamnesis of the donors such as aortic diseases or connective tissue disorders, e.g., dissected specimens exhibited on average a markedly lower mechanical strength than aneurysmatic specimens. The rupture data based on the combination of triaxial shear and uniaxial extension testing are unique and build a good basis for developing a 3D failure criterion of diseased human thoracic aortic media. This is a step forward to more realistic modeling of mechanically induced tissue failure i.e. rupture of aneurysms or progression of aortic dissections.
Collapse
Affiliation(s)
- Gerhard Sommer
- Institute of Biomechanics, Graz University of Technology, Austria
| | - Selda Sherifova
- Institute of Biomechanics, Graz University of Technology, Austria
| | | | - Otto E Dapunt
- University Clinic of Cardiac Surgery, Medical University Graz, Austria
| | - Patricia A Ursomanno
- Department of Cardiothoracic Surgery, NYU Langone Medical Center, New York, NY, USA
| | - Abe DeAnda
- Division of Cardiothoracic Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Boyce E Griffith
- Departments of Mathematics and Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA
| | | |
Collapse
|
35
|
Tong J, Cheng Y, Holzapfel GA. Mechanical assessment of arterial dissection in health and disease: Advancements and challenges. J Biomech 2016; 49:2366-73. [PMID: 26948576 DOI: 10.1016/j.jbiomech.2016.02.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 11/17/2022]
Abstract
Arterial dissection involves a complex series of coupled biomechanical events. The past two decades have witnessed great advances in the understanding of the intrinsic mechanism for dissection initiation, and hence in the development of novel therapeutic strategies for surgical repair. This is due in part to the profound advancements in characterizing emerging behaviors of dissection using state-of-the-art tools in experimental and computational biomechanics. In addition, researchers have identified the important role of the microstructure in determining the tissue׳s fracture modality during dissection propagation. In this review article, we highlight a variety of approaches in terms of biomechanical measurements, computational modeling and histological/microstructural analysis used to characterize a dissection that propagates in healthy and diseased arteries. Notable findings with quantitative mechanical data are reviewed. We conclude by discussing some unsolved problems that are of interest for future research.
Collapse
Affiliation(s)
- Jianhua Tong
- Shanghai East Hospital, Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, PR China
| | - Yu Cheng
- Shanghai East Hospital, Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, PR China
| | - Gerhard A Holzapfel
- Graz University of Technology, Institute of Biomechanics, Stremayrgasse 16-II, 8010 Graz, Austria.
| |
Collapse
|
36
|
Brieu M, Chantereau P, Gillibert J, de Landsheere L, Lecomte P, Cosson M. A nonlinear-elastic constitutive model for soft connective tissue based on a histologic description: Application to female pelvic soft tissue. J Mech Behav Biomed Mater 2015; 58:65-74. [PMID: 26482594 DOI: 10.1016/j.jmbbm.2015.09.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/14/2015] [Accepted: 09/18/2015] [Indexed: 12/26/2022]
Abstract
To understand the mechanical behavior of soft tissues, two fields of science are essential: biomechanics and histology. Nonetheless, those two fields have not yet been studied together often enough to be unified by a comprehensive model. This study attempts to produce such model. Biomechanical uniaxial tension tests were performed on vaginal tissues from 7 patients undergoing surgery. In parallel, vaginal tissue from the same patients was histologically assessed to determine the elastic fiber ratio. These observations demonstrated a relationship between the stiffness of tissue and its elastin content. To extend this study, a mechanical model, based on an histologic description, was developed to quantitatively correlate the mechanical behavior of vaginal tissue to its elastic fiber content. A satisfactory single-parameter model was developed assuming that the mechanical behavior of collagen and elastin was the same for all patients and that tissues are only composed of collagen and elastin. This single-parameter model showed good correlation with experimental results. The single-parameter mechanical model described here, based on histological description, could be very useful in helping to understand and better describe soft tissues with a view to their characterization. The mechanical behavior of a tissue can thus be determined thanks to its elastin content without introducing too many unidentified parameters.
Collapse
Affiliation(s)
- Mathias Brieu
- Ecole Centrale de Lille, bd Paul Langevin, 59650 Villeneuve d'Ascq, France; LML, UMR 8107, CNRS, bd Paul Langevin, 59650 Villeneuve d'Ascq, France.
| | - Pierre Chantereau
- LML, UMR 8107, CNRS, bd Paul Langevin, 59650 Villeneuve d'Ascq, France
| | | | | | - Pauline Lecomte
- Ecole Centrale de Lille, bd Paul Langevin, 59650 Villeneuve d'Ascq, France; LML, UMR 8107, CNRS, bd Paul Langevin, 59650 Villeneuve d'Ascq, France
| | - Michel Cosson
- LML, UMR 8107, CNRS, bd Paul Langevin, 59650 Villeneuve d'Ascq, France; Department of Gynecology, Jeanne de Flandre Hospital-CHRU de Lille, Institut National de la Sante et de la Recherche Medicale U703, University Nord de France, Lille, France
| |
Collapse
|
37
|
A Review of Computational Methods to Predict the Risk of Rupture of Abdominal Aortic Aneurysms. BIOMED RESEARCH INTERNATIONAL 2015; 2015:861627. [PMID: 26509168 PMCID: PMC4609803 DOI: 10.1155/2015/861627] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/26/2015] [Indexed: 12/02/2022]
Abstract
Computational methods have played an important role in health care in recent years, as determining parameters that affect a certain medical condition is not possible in experimental conditions in many cases. Computational fluid dynamics (CFD) methods have been used to accurately determine the nature of blood flow in the cardiovascular and nervous systems and air flow in the respiratory system, thereby giving the surgeon a diagnostic tool to plan treatment accordingly. Machine learning or data mining (MLD) methods are currently used to develop models that learn from retrospective data to make a prediction regarding factors affecting the progression of a disease. These models have also been successful in incorporating factors such as patient history and occupation. MLD models can be used as a predictive tool to determine rupture potential in patients with abdominal aortic aneurysms (AAA) along with CFD-based prediction of parameters like wall shear stress and pressure distributions. A combination of these computer methods can be pivotal in bridging the gap between translational and outcomes research in medicine. This paper reviews the use of computational methods in the diagnosis and treatment of AAA.
Collapse
|
38
|
Georg Y, Delay C, Schwein A, Lejay A, Thaveau F, Gaertner S, Stephan D, Heim F, Chakfe N. [Contribution of mathematical models and biomechanical properties in predicting the risk of abdominal aortic aneurysm rupture]. ACTA ACUST UNITED AC 2015; 41:63-8. [PMID: 26318549 DOI: 10.1016/j.jmv.2015.07.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 07/17/2015] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Rupture is the worst outcome of abdominal aortic aneurysm (AAA). The decision to operate should include counterbalancing the risk of aneurysm rupture against the risk of aneurysm repair, within the context of a patient's overall life expectancy. Current surgical guidelines are based on population studies, and important variables are missed in predicting individual risk of rupture. METHODS In this literature review, we focused on the contribution of biomechanical and mathematical models in predicting risk of AAA rupture. RESULTS Anatomical features as diameter asymmetry and lack of tortuosity are shown to be anatomical risk factors of rupture. Wall stiffness (due to modifications of elastin and collagen composition) and increased inflammatory response are also factors that affect the structural integrity of the AAA wall. Biomechanical studies showed that wall strength is lower in ruptured than non-ruptured AAA. Intra-luminal thrombus also has a big role to play in the occurrence of rupture. Current mathematical models allow more variables to be included in predicting individual risk of rupture. CONCLUSION Moving away from using maximal transverse diameter of the AAA as a unique predictive factor and instead including biological, structural and biomechanical variables in predicting individual risk of rupture will be essential in the future and will help gain precision and accuracy in surgical indications.
Collapse
Affiliation(s)
- Y Georg
- Groupe européen de recherche sur les prothèses appliquées à la chirurgie vasculaire (Geprovas), faculté de médecine, institut d'anatomie pathologique, 4, rue Kirschleger, 67085 Strasbourg cedex, France; Service de chirurgie vasculaire et transplantation rénale, hôpitaux universitaires de Strasbourg, 1, place de l'Hôpital, BP n(o) 426, 67091 Strasbourg cedex, France
| | - C Delay
- Groupe européen de recherche sur les prothèses appliquées à la chirurgie vasculaire (Geprovas), faculté de médecine, institut d'anatomie pathologique, 4, rue Kirschleger, 67085 Strasbourg cedex, France; Service de chirurgie vasculaire et transplantation rénale, hôpitaux universitaires de Strasbourg, 1, place de l'Hôpital, BP n(o) 426, 67091 Strasbourg cedex, France
| | - A Schwein
- Groupe européen de recherche sur les prothèses appliquées à la chirurgie vasculaire (Geprovas), faculté de médecine, institut d'anatomie pathologique, 4, rue Kirschleger, 67085 Strasbourg cedex, France; Service de chirurgie vasculaire et transplantation rénale, hôpitaux universitaires de Strasbourg, 1, place de l'Hôpital, BP n(o) 426, 67091 Strasbourg cedex, France
| | - A Lejay
- Groupe européen de recherche sur les prothèses appliquées à la chirurgie vasculaire (Geprovas), faculté de médecine, institut d'anatomie pathologique, 4, rue Kirschleger, 67085 Strasbourg cedex, France; Service de chirurgie vasculaire et transplantation rénale, hôpitaux universitaires de Strasbourg, 1, place de l'Hôpital, BP n(o) 426, 67091 Strasbourg cedex, France
| | - F Thaveau
- Groupe européen de recherche sur les prothèses appliquées à la chirurgie vasculaire (Geprovas), faculté de médecine, institut d'anatomie pathologique, 4, rue Kirschleger, 67085 Strasbourg cedex, France; Service de chirurgie vasculaire et transplantation rénale, hôpitaux universitaires de Strasbourg, 1, place de l'Hôpital, BP n(o) 426, 67091 Strasbourg cedex, France
| | - S Gaertner
- Service des maladies vasculaires, hypertension artérielle et pharmacologie clinique, hôpitaux universitaires de Strasbourg, 1, place de l'Hôpital, 67091 Strasbourg cedex, France
| | - D Stephan
- Service des maladies vasculaires, hypertension artérielle et pharmacologie clinique, hôpitaux universitaires de Strasbourg, 1, place de l'Hôpital, 67091 Strasbourg cedex, France
| | - F Heim
- Groupe européen de recherche sur les prothèses appliquées à la chirurgie vasculaire (Geprovas), faculté de médecine, institut d'anatomie pathologique, 4, rue Kirschleger, 67085 Strasbourg cedex, France; Laboratoire de physique et mécanique textile, ENSISA, 11, rue Alfred-Werner, 68093 Mulhouse cedex, France
| | - N Chakfe
- Groupe européen de recherche sur les prothèses appliquées à la chirurgie vasculaire (Geprovas), faculté de médecine, institut d'anatomie pathologique, 4, rue Kirschleger, 67085 Strasbourg cedex, France; Service de chirurgie vasculaire et transplantation rénale, hôpitaux universitaires de Strasbourg, 1, place de l'Hôpital, BP n(o) 426, 67091 Strasbourg cedex, France.
| |
Collapse
|
39
|
Sassani SG, Kakisis J, Tsangaris S, Sokolis DP. Layer-dependent wall properties of abdominal aortic aneurysms: Experimental study and material characterization. J Mech Behav Biomed Mater 2015; 49:141-61. [DOI: 10.1016/j.jmbbm.2015.04.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/21/2015] [Accepted: 04/27/2015] [Indexed: 12/11/2022]
|
40
|
Tong J, Holzapfel GA. Structure, Mechanics, and Histology of Intraluminal Thrombi in Abdominal Aortic Aneurysms. Ann Biomed Eng 2015; 43:1488-501. [DOI: 10.1007/s10439-015-1332-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 05/06/2015] [Indexed: 01/08/2023]
|
41
|
Schriefl AJ, Schmidt T, Balzani D, Sommer G, Holzapfel GA. Selective enzymatic removal of elastin and collagen from human abdominal aortas: uniaxial mechanical response and constitutive modeling. Acta Biomater 2015; 17:125-36. [PMID: 25623592 DOI: 10.1016/j.actbio.2015.01.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 10/31/2014] [Accepted: 01/05/2015] [Indexed: 02/01/2023]
Abstract
The ability to selectively remove the structurally most relevant components of arterial wall tissues such as collagen and elastin enables ex vivo biomechanical testing of the remaining tissues, with the aim of assessing their individual mechanical contributions. Resulting passive material parameters can be utilized in mathematical models of the cardiovascular system. Using eighteen wall specimens from non-atherosclerotic human abdominal aortas (55 ± 11 years; 9 female, 9 male), we tested enzymatic approaches for the selective digestion of collagen and elastin, focusing on their application to human abdominal aortic wall tissues from different patients with varying sample morphologies. The study resulted in an improved protocol for elastin removal, showing how the enzymatic process is affected by inadequate addition of trypsin inhibitor. We applied the resulting protocol to circumferential and axial specimens from the media and the adventitia, and performed cyclic uniaxial extension tests in the physiological and supra-physiological loading domain. The collagenase-treated samples showed a (linear) response without distinct softening behavior, while the elastase-treated samples exhibited a nonlinear, anisotropic response with pronounced remanent deformations (continuous softening), presumably caused by some sliding of collagen fibers within the damaged regions of the collagen network. In addition, our data showed that the stiffness in the initial linear stress-stretch regime at low loads is lower in elastin-free tissue compared to control samples (i.e. collagen uncrimping requires less force than the stretching of elastin), experimentally confirming that elastin is responsible for the initial stiffness in elastic arteries. Utilizing a continuum mechanical description to mathematically capture the experimental results we concluded that the inclusion of a damage model for the non-collagenous matrix material is, in general, not necessary. To model the softening behavior, continuous damage was included in the fibers by adding a damage variable which led to remanent strains through the consideration of damage.
Collapse
Affiliation(s)
| | - Thomas Schmidt
- University of Duisburg-Essen, Institute of Mechanics, Germany
| | - Daniel Balzani
- Dresden University of Technology, Faculty of Civil Engineering, Germany
| | - Gerhard Sommer
- Graz University of Technology, Institute of Biomechanics, Austria
| | | |
Collapse
|
42
|
Diameter-Related Variations of Geometrical, Mechanical, and Mass Fraction Data in the Anterior Portion of Abdominal Aortic Aneurysms. Eur J Vasc Endovasc Surg 2015; 49:262-70. [DOI: 10.1016/j.ejvs.2014.12.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/08/2014] [Indexed: 11/21/2022]
|
43
|
Makrygiannis G, Courtois A, Drion P, Defraigne JO, Kuivaniemi H, Sakalihasan N. Sex Differences in Abdominal Aortic Aneurysm: The Role of Sex Hormones. Ann Vasc Surg 2014; 28:1946-58. [DOI: 10.1016/j.avsg.2014.07.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/21/2014] [Accepted: 07/27/2014] [Indexed: 01/16/2023]
|
44
|
Villard C, Eriksson P, Swedenborg J, Hultgren R. Differences in Elastin and Elastolytic Enzymes between Men and Women with Abdominal Aortic Aneurysm. AORTA : OFFICIAL JOURNAL OF THE AORTIC INSTITUTE AT YALE-NEW HAVEN HOSPITAL 2014; 2:179-85. [PMID: 26798738 DOI: 10.12945/j.aorta.2014.14-017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 09/04/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND Abdominal aortic aneurysms (AAAs) in women differ in some important aspects from those in men. The lower prevalence rate, higher rupture rate and potentially increased growth rate in women with AAA suggest gender to be of importance for aneurysm development and progression. The aim of the study was to analyze wall properties with respect to synthesis and destruction of elastin in men and women with AAA, with and without an intraluminal thrombus. METHODS Patient characteristics and aneurysm wall biopsies were collected from all women (n = 14) treated with open repair for AAA, 2008-2012, and men with similar aneurysm diameter and similar age (n = 23) treated during the same time period. The expressions of elastin, matrix metalloproteinase (MMP)-2 and -9, and cathepsin K were quantified by immunohistochemistry, Western blot, and gene expression analysis on the aneurysm wall. RESULTS The protein expression of elastin was less in women than in men in the non-thrombus-covered aneurysm wall. In addition, the protein and mRNA expressions of MMP-9 were higher in women (-0.83 versus 0.09, P = 0.041). There was no difference in elastin and elastolytic enzymes between men and women in the thrombus-covered aneurysm wall. CONCLUSION Less elastin in the non-thrombus-covered aneurysm wall in women than that in men, and the simultaneous higher level of MMP-9, suggest differences in the elastolytic process in AAA between the sexes.
Collapse
Affiliation(s)
| | - Per Eriksson
- Atherosclerosis Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Swedenborg
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
45
|
O’Leary SA, Healey DA, Kavanagh EG, Walsh MT, McGloughlin TM, Doyle BJ. The Biaxial Biomechanical Behavior of Abdominal Aortic Aneurysm Tissue. Ann Biomed Eng 2014; 42:2440-50. [DOI: 10.1007/s10439-014-1106-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/28/2014] [Indexed: 11/24/2022]
|
46
|
Kontopodis N, Metaxa E, Papaharilaou Y, Tavlas E, Tsetis D, Ioannou C. Advancements in identifying biomechanical determinants for abdominal aortic aneurysm rupture. Vascular 2014; 23:65-77. [PMID: 24757027 DOI: 10.1177/1708538114532084] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abdominal aortic aneurysms are a common health problem and currently the need for surgical intervention is determined based on maximum diameter and growth rate criteria. Since these universal variables often fail to predict accurately every abdominal aortic aneurysms evolution, there is a considerable effort in the literature for other markers to be identified towards individualized rupture risk estimations and growth rate predictions. To this effort, biomechanical tools have been extensively used since abdominal aortic aneurysm rupture is in fact a material failure of the diseased arterial wall to compensate the stress acting on it. The peak wall stress, the role of the unique geometry of every individual abdominal aortic aneurysm as well as the mechanical properties and the local strength of the degenerated aneurysmal wall, all confer to rupture risk. In this review article, the assessment of these variables through mechanical testing, advanced imaging and computational modeling is reviewed and the clinical perspective is discussed.
Collapse
Affiliation(s)
- Nikolaos Kontopodis
- Department of Vascular Surgery, University of Crete Medical School, Heraklion, Greece
| | - Eleni Metaxa
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Greece
| | - Yannis Papaharilaou
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Greece
| | - Emmanouil Tavlas
- Department of Vascular Surgery, University of Crete Medical School, Heraklion, Greece
| | - Dimitrios Tsetis
- Department of Interventional Radiology, University of Crete Medical School, Heraklion, Greece
| | - Christos Ioannou
- Department of Vascular Surgery, University of Crete Medical School, Heraklion, Greece
| |
Collapse
|
47
|
Zhang X, Thatcher S, Wu C, Daugherty A, Cassis LA. Castration of male mice prevents the progression of established angiotensin II-induced abdominal aortic aneurysms. J Vasc Surg 2014; 61:767-76. [PMID: 24439319 DOI: 10.1016/j.jvs.2013.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/31/2013] [Accepted: 11/01/2013] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Male sex is a nonmodifiable risk factor for abdominal aortic aneurysm (AAA) development. Similar to humans, male mice are more susceptible to angiotensin II (AngII)-induced AAAs than female mice. Previous studies demonstrated that castration of males markedly reduced the formation of AngII-induced AAAs. Progression of AAA size is associated with increased risk of aneurysm rupture. In this study, we hypothesized that castration of male mice would reduce the progression of established AngII-induced AAAs. METHODS Male apolipoprotein E-deficient mice were infused with AngII for 1 month to induce AAA formation. Aortic diameters were measured by ultrasound imaging, and mice were stratified into two groups that underwent a sham operation or castration. AngII infusions were continued for a further 2 months. Ultrasound imaging was used to quantify lumen diameters, and excised aortas were processed for quantification of AAA size, volume, and tissue characteristics. RESULTS Sham-operated mice exhibited progressive dilation of suprarenal aortic lumen diameters during the continued AngII infusion. Aortic lumen diameters were significantly decreased in castrated mice (n = 17) compared with sham-operated mice (n = 15) at study end point (1.63 ± 0.04 vs 1.88 ± 0.05 mm; P < .05). However, maximal external AAA diameters were not significantly different between sham-operated and castrated mice. The vascular volume/lumen volume ratio of excised AAAs imaged by ultrasound was significantly increased by castration (9.5% ± 2.0%) vs sham operation (4.8% ± 0.9%; n = 11 per group; P < .05). Moreover, compared with the thin-walled AAAs of sham-operated mice, aneurysm sections from castrated mice exhibited increased smooth muscle α-actin and collagen. CONCLUSIONS Removal of endogenous male hormones by castration selectively reduces aortic lumen expansion while not altering the external AAA dimensions. CLINICAL RELEVANCE There are no therapeutics that slow the progression of abdominal aortic aneurysms (AAAs), and as the size of an AAA increases, so does the risk of rupture and death. Male sex is a nonmodifiable risk factor for AAA development, but whether male sex hormones have a similar effect on AAA progression is unclear. Removal of male sex hormones in an established mouse model of angiotensin II-induced AAAs resulted in reduced progressive lumen dilation while not altering external AAA dimensions. Therapies that limit androgen action may provide benefit against AAA progression. Alternatively, supplemental testosterone may be contraindicated in men diagnosed with an AAA.
Collapse
Affiliation(s)
- Xuan Zhang
- Graduate Center for Toxicology, University of Kentucky, Lexington, Ky
| | - Sean Thatcher
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, Ky
| | - Congqing Wu
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, Ky
| | - Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Ky
| | - Lisa A Cassis
- Department of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington, Ky.
| |
Collapse
|
48
|
Tong J, Cohnert T, Regitnig P, Kohlbacher J, Birner-Gruenberger R, Schriefl A, Sommer G, Holzapfel G. Variations of dissection properties and mass fractions with thrombus age in human abdominal aortic aneurysms. J Biomech 2014; 47:14-23. [DOI: 10.1016/j.jbiomech.2013.10.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/13/2013] [Indexed: 11/28/2022]
|
49
|
Santos VPD, Alves CAS, Lopes CF, Araujo Filho JSD. Gender-related differences in critical limb ischemia due to peripheral arterial occlusive disease. J Vasc Bras 2013. [DOI: 10.1590/jvb.2013.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND: Mortality from cardiovascular disease has declined among men and increased among North American women. Recent studies have revealed differences between genders in the epidemiology of atherosclerotic disease. OBJECTIVE: To study possible differences between male and female patients with critical limb ischemia (CLI) according to risk factors of atherosclerosis and clinical characteristics of lower limbs with peripheral arterial occlusive disease (PAOD). METHODS: The study included 171 male and female patients treated for CLI due to infrainguinal PAOD and compared clinical characteristics (Rutherford category and PAOD territory), risk factors for atherosclerosis (diabetes, age, smoking and hypertension) and number of opacified arteries on digital angiograms of the leg. The EPI-INFO software was used for statistical analysis, and the level of significance was set at p<0.05. RESULTS: Mean age was 70 years, and 88 patients were men (52%). For most patients (both genders), Rutherford category was 5 (82 % of men and 70% of women; p=0.16). The group of women had higher mean age (73 vs. 67 years; p=0.0002) and greater prevalence of diabetes (66% vs. 45%; p=0.003) and hypertension (90% vs. 56%; p=0.0000001). Among men, the prevalence of smoking was higher (76% vs. 53%; p=0.0008). The analysis of digital angiograms revealed that opacification of only one artery in the leg was found for 74% of women (vs. 50% of men). CONCLUSION: The prevalence of risk factors for atherosclerosis and the characteristics of PAOD are different between male and female patients with CLI.
Collapse
|